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Abstract. – We discuss the influence of the Aharonov-Bohm effect on phase shifts. The
general integral representation of phase shifts for short-range potentials with an Aharonov-
Bohm flux at the origin is given. The interesting result is that the phase shifts δγ will become
(n + 1/2)π (n = 0, 1, 2, . . .) as long as the flux is adjusted at the values Φ = (n + 1/2)Φ0,
where Φ0 = (2πh̄c/e) is the fundamental flux quantum. According to the Levison theorem, it
implies that new bound states will appear at these values. This phenomenon may be useful in
controlling the number of bound states in quantum well as well as the spectra of light emission.

Since the implication of the global structure of the Aharonov-Bohm (AB) effect was discov-
ered in 1959 [1], it has had much impact in our comprehension of the foundations of quantum
theory [2]. Forty years later, the AB effect has contributed to the understanding of the phe-
nomenon of fractional quantum Hall effect [3], superconductivity [3], repulsive Bose gases [4],
cosmic string [5], and (2 + 1)D gravity theories [6]. Nevertheless, we are probably still far
from exhausting the full meaning of the deep global concept [7]. The general discussion of
the AB effect in phase shifts is still lacking. In this paper we discuss the general influence of
the AB effect on phase shifts in spherical symmetric systems. Starting from the influence of
the nonintegrable phase factor [8, 9] for the AB effect in the wave function, the pure radial
wave equation containing the AB effect is extracted. The general formula for phase shifts
of a magnetic flux plus a short-range potential is given. As a realization, we calculate the
phase shifts of a charged particle which is scattered by a square-well plus an Aharonov-Bohm
flux. The obtained result is compared with the exact solution. Furthermore, an experiment
is proposed which may be useful to detect whether the quantum non-local effect is instant
or not.

The Schrödinger equation for a charged particle with mass m moving in a spherical sym-
metry potential can be expressed as[

E − H0

(
r,

h̄

i
∇

)]
Ψ0

nlk(r) = 0, (1)

where H0 = −h̄2∇2/2m + V (r) is the system Hamiltonian and Ψ0
nlk is the wave function.

Due to the spherical symmetry, the angular part of the wave function can be decomposed as
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Ψ0
nlk(r) = Rnl(r)Ylk(θ, ϕ), where Ylk are the well-known spherical harmonics. Equation (1)

in spherical polar coordinates can be rewritten as{
E −

[
− h̄2

2m

(
d2

dr2
+

2
r

d
dr

)
+

l(l + 1)h̄2

2mr2

]
− V (r)

}
Rnl(r)Ylk(θ, ϕ) = 0. (2)

Since any arbitrary number pair (l, k) satisfies the equation, we have

∞∑
l=0

l∑
k=−l

{
E −

[
− h̄2

2m

(
d2

dr2
+

2
r

d
dr

)
+

l(l + 1)h̄2

2mr2

]
− V (r)

}
Rnl(r)Ylk(θ, ϕ) = 0. (3)

For a charged particle interacting with the magnetic field, the wave function is different from
the original one by a global nonintegrable phase factor [8, 9]

Ψnlk(r, P ) = Ψ0
nlk(r)e

ie
h̄c

∫ r
P

A(r′)·dr′
, (4)

where we have used the vector potential A(r′) to describe the magnetic field and P to represent
the nonintegrable phase of the wave function which depends on the path (e.g., Chapt. 10 in
ref. [10]). For the Aharonov-Bohm effect under consideration, the vector potential can be
described by

A(x) =




1
2
Bρêϕ (ρ < ε),

1
2
B

ε2

ρ
êϕ =

Φ
2πρ

êϕ (ρ > ε),
(5)

where ρ2 = x2 + y2 is the two-dimensional radial length, êϕ is the unit vector of coordinate ϕ,
ε is the radius of the region where magnetic field exists, and Φ is the magnetic flux which is
given by Φ = πε2B. The associated magnetic field lines are confined within a tube along the
z-axis. Along the free region of magnetic field, the path-dependent nonintegrable phase factor
is given by exp[−iµ0

∫ λ

P
dλ′ϕ̇(λ′)], where ϕ̇ = dϕ/dλ′, and µ0 = −2eg/h̄c is a dimensionless

number defined by Φ = 4πg. The minus sign is a matter of convention. According to the
discussion of ref. [9], only the loops of the phase factor are considered, the description of
the electromagnetic phenomenon is then complete. Therefore the integral

∫ λ dλ′ϕ̇(λ′) can be
written as (2πñ+ϕ), where ñ is an integer which classifies the topological homotopy class. The
magnetic interaction is therefore purely topological. The nonintegrable phase factor becomes
e−iµ0(2ñπ+ϕ). The influence of the magnetic flux in the wave function Ψ0 can be considered
by noting the relation between the associated Legendre polynomial Pµ

ν (z) and the Jacobi
function P

(α,β)
n (z) [11]:

P k
l (cos θ) = (−1)k Γ(l + k + 1)

Γ(l + 1)
(cos θ/2 sin θ/2)kP

(k,k)
l−k (cos θ) (6)

as well as Poisson’s summation formula
∑∞

k=−∞ f(k) =
∫ ∞
−∞ dy

∑∞
n=−∞ e2πnyif(y) (e.g.,

p. 124 in ref. [10]). We find that eq. (3) turns into [11,12]

∞∑
q=0

∞∑
k=−∞

{
E −

[
− h̄2

2m

(
d2

dr2
+

2
r

d
dr

)
+

γ(γ + 1)h̄2

2mr2

]
− V (r)

}
Rn,γ(r) ×

×
√

(2γ+1)
4π

Γ(1+q)Γ(γ+|k+µ0|+1)
Γ2(γ + 1)

(cos θ/2 sin θ/2)|k+µ0|P (|k+µ0|,|k+µ0|)
q (cos θ)eikϕ=0, (7)
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where we have defined q + |k + µ0| = γ. We see that the influence of the AB effect in the
radial wave function is completely determined by replacing the integer quantum number l
by the fractional one γ. The same result was discussed within the path integral approach
in refs. [11–14] which also holds for relativistic systems [11, 15]. With the help of orthogonal
property of the angular part [11], it is easy to find that the radial wave function with the fixed
quantum number (q, k) satisfies the wave equation{

E −
[
− h̄2

2m

(
d2

dr2
+

2
r

d
dr

)
+

γ(γ + 1)h̄2

2mr2

]
− V (r)

}
Rn,γ(r) = 0. (8)

With the help of the definition, uγ(κr) = rRn,γ(r) and the reduced potential U(r) = 2mV (r)/h̄2,
the corresponding radial wave equation reads[

d2

dr2
+ κ2 − γ(γ + 1)

r2
− U(r)

]
uγ(κr) = 0, (9)

where we define κ =
√

2mE/h̄2. We see that the AB effect reflects itself by a coupling to the
angular momentum in the radial wave equation which converts the integer quantum number
to a fractional one. For our discussions of phase shifts, we consider the particle scattering by
two reduced potentials U(r) and Ũ(r). Equation (9) implies the equation

d
dr

W (uγ , ũγ) = −(
U − Ũ

)
uγ ũγ , (10)

where the Wronskian is defined as

W (uγ , ũγ) = uγ

(
d
dr

ũγ

)
−

(
d
dr

uγ

)
ũγ (11)

in which ũγ is the solution corresponding to the potential Ũ(r). For short-range potentials,
i.e. U vanishes for r > a, we can divide the domain of the variable r into an internal region
(r < a) and an external region (r > a). The exterior solution may be given by uγ(r) =
r[C1

γ(κ)jγ(κr)+C2
γ(κ)nγ(κr)], where jγ(z) ≡ √

π/2zJγ+1/2(z) is the spherical Bessel function
which is regular at the origin, i.e. jγ(0) = 0, and nγ ≡ cos[(γ + 1)π]

√
π/2zJ−γ−1/2(z) is the

spherical von Neumann function which is irregular at the origin [16]. With the help of the
asymptotic forms of spherical Bessel functions (see [16], p. 199), we obtain

jγ(z) z→∞−→ 1
z

sin(z − γπ/2),

nγ(z) z→∞−→ −2 cos γπ

z
cos(z + γπ/2), (12)

where for nγ the prefactor cos γπ is chosen so that it reduces to the well-known one: −2 cos(z−
lπ/2)/z when the AB effect disappears. The asymptotic behavior for uγ (r → ∞) reads

uγ(r) −→ 1
κ

[sin(κr − γπ/2 + δγ) + sin δγ cos(κr + 3γπ/2)]. (13)

In this case, we have defined the phase shifts tan δγ(κ) = −C2
γ(κ)/C1

γ(κ), and
√

(C1
γ)2 + (C2

γ)2

= 1. We see that the AB effect leads to the appearance of an additional term in the asymptotic
form of uγ(r) in eq. (13). The Wronskian (11) can now be calculated and is given by

W (uγ , ũγ) =
1
κ

[(
tan δγ − tan δ̃γ

)
(cos 2γπ + 1)

]
. (14)
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Integrating eq. (10), we finally obtain the integral representation of phase shifts for any short-
range potential with a magnetic flux

(
tan δγ − tan δ̃γ

)
= − κ

(1 + cos 2γπ)

∫ ∞

0

drũγ(r)
[
U(r) − Ũ(r)

]
uγ(r). (15)

If we let Ũ(r) = 0, then ũγ(r) = rjγ(κr), and we obtain

tan δγ = − κ

(1 + cos 2γπ)

∫ ∞

0

drr2jγ(κr)Rγ(r)U(r). (16)

Let us now discuss the tendency of phase shifts when the energy of the incident particle is fixed
but the potential strength is changed. Let U(r) → U(α, r), Ũ(r) → Ũ(α̃, r), and dα = (α̃−α).
It is easy to obtain

d
dα

δγ(κ, α) = − κ

(1 + cos 2γπ)

∫ ∞

0

dr[uγ(α, r)]2
∂U(α, r)

∂α
. (17)

It stands for the appearance of more negative phase shifts when the potential strength is
increased. The tendency is the same as in the flux free case when the flux γ �= n + 1/2 [17].

There is an interesting phenomenon arising from the magnetic flux which can be observed
from eq. (16). When we regulate the magnetic flux Φ at the values of γ = n + 1/2 (n =
0, 1, 2, . . .), the values of the phase shift must be (n+1/2)π (n = 0, 1, 2, . . .). From the famous
Levinson theory [18, 19], we may argue that then additional bound states will appear. This
possible influence of the AB effect in the number of bound states is observed in the conclusion
of ref. [20]. Here we have the more quantitative result in form of eq. (16). The number of
bound states will increase by one when we increase a flux quantum. We expect that the
quantum well system is a good candidate for checking this anticipation.

A. The behavior of the phase shifts for large γ �= n + 1/2.
For a potential of finite range, it is function-known that the wave function Rγ(r) will differ
little from the corresponding free wave jγ when γ � κa. Therefore, we conclude from eq. (16)

tan δγ ≈ − κ

(1 + cos 2γπ)

∫ ∞

0

drr2[jγ(κr)]2U(r). (18)

Using the asymptotic form

jγ(z −→ 0) =
√

π

2
(z/2)γ

Γ(γ + 3/2)
, (19)

we have

tan δγ ≈ −
π
4

κ2γ+1

4γΓ2(γ+3/2)

(1 + cos 2γπ)

∫ ∞

0

drr2γ+2U(r). (20)

Let us consider the square-well potential

U(r) =

{
−C, r < a,

0, r > a.
(21)

The integral can be performed and yields

tan δγ =
(Ca2)π(κa)2γ+1

4γ+1(2γ + 2)Γ2(γ + 3/2)(1 + cos 2γπ)
. (22)



D.-H. Lin: Aharonov-Bohm effect in phase shifts 339

0 0.5 1 1.5 2 2.5 3
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

γ

ln
 | 

ta
n

 δ
γ|

Exact
Approx

Fig. 1

charged particles

clock 2clock 1

screenmagnetic flux

V(r)

Fig. 2

Fig. 1 – The phase shifts of a square-well potential plus a magnetic flux located at the origin. The
parameters κa = 0.01, and αa = 1 have been selected. The solid line represents the exact result
obtained from eq. (28), whereas the dash-dotted line represents the approximative result obtained
from eq. (22).

Fig. 2 – Two synchronized clocks are used, one located at the scattering center and another at the
screen, which can test the instantaneousness of the non-local effect of phase shifts. Two cases are
studied: one refers to the situation that the magnetic flux is given by γ �= n + 1/2, and the other
refers to γ = n + 1/2.

In the low-energy region, i.e. κa 	 1, the equation implies that the quantity tan δγ falls
off rapidly as γ increases. In fact, when γ � κa, it is easy to obtain the ratio δγ+1/δγ ≈
(κa)2/(2γ)2. The phase shifts δγ(κ) will tend to zero (modulo π) for large γ. A similar
argument for the case at high energies gives the same result, i.e. limκ→∞ δγ(κ) = 0, if γ �=
(n + 1/2), n = 0, 1, 2, . . ..

B. Scattering by a square-well plus Aharonov-Bohm effect.
To confirm the correctness of eq. (16), let us analyze the influence of the AB effect in the
square-well system. The potential reads

V (r) =

{
−V0, r < a,

0, r > a.
(23)

The radial wave equation which contains the AB effect is given by[
d2

dr2
+

2
r

d
dr

+ κ2 +
2m

h̄2 V0 − γ(γ + 1)
r2

]
Rγ = 0, r < a,

[
d2

dr2
+

2
r

d
dr

+ κ2 − γ(γ + 1)
r2

]
Rγ = 0, r > a. (24)

It is easy to find the solutions

Rγ(r) = Cγjγ(αr), α =
√

κ2 +
2m

h̄2 V0 for r < a,

Rγ(r) =
[
C1

γ(κ)jγ(κr) + C2
γ(κ)nγ(κr)

]
for r > a. (25)
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The boundary conditions at r = a require that the logarithmic derivative is continuous:

1
Rγ

dRγ

dr

∣∣∣∣
r=a−

=
1

Rγ

dRγ

dr

∣∣∣∣
r=a+

. (26)

With the help of the following identity:

j′γ(z) = jγ−1(z) − γ + 1
z

jγ(z), (27)

and the definition tan δγ = −C2
γ/C1

γ , eq. (26) yields

tan δγ(κ) =
jγ(κa)
nγ(κa)

κ
jγ−1(κa)
jγ(κa) − α

jγ−1(αa)
jγ(αa)

κ
nγ−1(κa)
nγ(κa) − α

jγ−1(αa)
jγ(αa)

. (28)

We plot the phase shifts in fig. 1, where the parameters κa = 0.01 and αa = 1 have been
selected. The solid line represents the exact result obtained from eq. (28), whereas the dash-
dotted line represents the approximate result obtained from eq. (22). We see that the approx-
imation agrees with the exact result. The phase shifts are given by nπ except for the values
of γ = n + 1/2, where the phase shifts become (n + 1/2)π. According to the Levison theory,
new bound states will appear at these values which may be applied to control the number
of bound states and frequencies of emission light. We expect that the phenomenon can be
checked in a quantum well or a quantum dot. Another application of phase shifts influenced
by the AB effect is to test the instantaneousness of the quantum non-local effect [21, 22]. As
shown in fig. 2, one branch of charged particles scattered by a short-range potential plus a
magnetic flux (γ �= n+1/2) and the other one moving in the free space will interfere and show
a certain interference pattern on the screen. Since the AB effect is non-local, the change of
phase shifts by varying the magnetic flux from γ = n to γ = n + 1/2 will result in an instant
effect on the pattern. For example, take the distance from the scattered center to the screen
to be 1 meter. During one nanosecond light will propagate 0.3 meter only, so if we change
the magnetic flux from γ = n to γ = n + 1/2 during this period, the influence of light via
the usual causal manner will not touch the screen. Thus if there indeed exists fluctuation on
the pattern, it should be due to the non-local influence. In fact, a single branch of charged
particles scattered by the potential-flux system in fig. 2 can produce observable phase shifts
due to non-local effects on the screen.
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