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Abstract—For � � ��� �� and �� � � , we study the task of
transforming a hard function � � ��� ��� � ��� ��, with which
any small circuit disagrees on ��� ���� fraction of the input, into
a harder function � �, with which any small circuit disagrees on
�� � ����� fraction of the input. First, we show that such hard-
ness amplification, when carried out in some black-box way, must
require a high complexity. In particular, it cannot be realized by
a circuit of depth � and size ���� � or by a nondeterministic cir-
cuit of size ���� ��	 �� (and arbitrary depth) for any � � ��� ��.
This extends the result of Viola, which only works when ��� ����
is small enough. Furthermore, we show that even without any re-
striction on the complexity of the amplification procedure, such a
black-box hardness amplification must be inherently nonuniform
in the following sense. To guarantee the hardness of the resulting
function � �, even against uniform machines, one has to start with
a function � , which is hard against nonuniform algorithms with

�� ��	������bits of advice. This extends the result of Trevisan and
Vadhan, which only addresses the case with ��� ���� � ���. Fi-
nally, we derive similar lower bounds for any black-box construc-
tion of a pseudorandom generator (PRG) from a hard function. To
prove our results, we link the task of hardness amplifications and
PRG constructions, respectively, to some type of error-reduction
codes, and then we establish lower bounds for such codes, which
we hope could find interest in both coding theory and complexity
theory.

Index Terms—Computational complexity, hardness amplifica-
tion, list-decodable code, pseudorandom generator.

I. INTRODUCTION

A. Background

U NDERSTANDING the power of randomness in compu-
tation is one of the central topics in theoretical computer

science. A major open question is the versus question,
asking whether all randomized polynomial-time algorithms can
be converted into deterministic polynomial-time ones. A stan-
dard approach to derandomizing relies on constructing
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the so-called pseudorandom generators (PRG), which stretch a
short random seed into a long pseudorandom string that looks
random to circuits of polynomial size. So far, all known con-
structions of PRG are based on unproven assumptions of the
nature that certain functions are hard to compute. The idea of
converting hardness into pseudorandomness first appeared in
the work of Blum and Micali [2] and Yao [29], who showed
how to obtain a PRG from a one-way function. Then, Nisan and
Wigderson [18] showed that a PRG can be constructed from a
Boolean function, which is hard in average case, and this initi-
ated a series of works. To get a stronger result, one would like
to weaken the hardness assumption, and [18], [1], [10] showed
that, in fact, one can start from a (slightly) hard Boolean func-
tion and transform it into a much harder one, before using it to
build a PRG. Finally, Impagliazzo and Wigderson [14] proved
that one can transform a function in that is hard in worst case
into one that is hard in average case, both against circuits of ex-
ponential size. As a result, they obtained under the
assumption that some function in cannot be computed by a
circuit of subexponential size. Simpler proofs and better trade-
offs have been obtained since then [23], [13], [22], [26].

Note that hardness amplification is the major step in deran-
domizing in the research discussed above, because the step
from an average-case hard function to a PRG is relatively simple
and has low complexity. We say that a Boolean function is

–hard (or has hardness ) against circuits of size if any such
circuit attempting to compute must make errors on at least

fraction of the input. The error bound is the main param-
eter characterizing the hardness; the size bound also reflects
the hardness, but it plays a lesser role in our study. Formally,
the task of hardness amplification is to transform a function

that is –hard against circuits of size
into a function that is –hard against
circuits of size , with and close to (usually
slightly smaller than) . Normally, one would like to have
as close to as possible, preferably with or even

, so that one could have close to ; other-
wise, one would only be able to have the hardness of against
much smaller circuits. Furthermore, one would like to stay
in the same complexity class of , so that one could establish
the relation among hardness assumptions within the same com-
plexity class.

Two issues come up from those works on hardness amplifi-
cation. The first is on the complexity of the amplification pro-
cedure. All previous amplification procedures going from worst
case hardness ( ) to average case hardness (

) need exponential time [1], [14], [23] (or slightly better,
in linear space [16] or [27]). As a result,
such a hardness amplification is only known for functions in
high complexity classes. Then, a natural question is as follows:
Can it be done for functions in lower complexity classes? For
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example, given a function in , which is worst case hard, can
we transform it into another function in , which is average
case hard? Only for some range of hardness [e.g., starting from
mild hardness, with ] is this known to be pos-
sible [19], [9].

The second issue is that hardness amplification typically in-
volves nonuniformity in the sense that hardness is usually mea-
sured against nonuniform circuits. In fact, one usually needs to
start from a function that is hard against nonuniform circuits,
even if one only wants to produce a function that is hard against
uniform Turing machines. This is why most results on hardness
amplification are based on nonuniform assumptions.

B. Black-Box Hardness Amplification

In light of the discussion above, one would hope to show that
some hardness amplification is indeed impossible. However, it
is not clear what this means, especially given the possibility (in
which many people believe) that average case hard functions
may indeed exist.

One important type of hardness amplification is called
black-box hardness amplification. First, the initial function is
only given as a black box to construct the new function . That
is, there is an oracle procedure such that , so

only uses as an oracle and does not depend on the internal
structure of . Second, the hardness of the new function is
proved in a black-box way. That is, there is an oracle procedure

, such that if some algorithm disagrees with on less
than fraction of the input, then using as an oracle
disagrees with on less than fraction of the input. Again,

only uses as an oracle and does not depend on the
internal structure of . We call the encoding function
and the decoding function. In fact, almost all previous
constructions of hardness amplification are done in such a
black-box way, so it is nice to establish impossibility results for
this type of approaches.

C. Previous Lower Bound Results

Viola [27] gave the first lower bound on the complexity
required for black-box hardness amplification. He showed
that to transform a worst case hard function into a mildly
hard function , both against circuits of size , the en-
coding function cannot be realized in the complexity
class . This rules out the possibility of
doing such hardness amplification in , which explains why
previous procedures all require a high computational com-
plexity. He also showed a similar lower bound for black-box
construction of PRG from a worst case hard function.

Trevisan and Vadhan [25] observed that a black-box hard-
ness amplification from worst case hardness corresponds to an
error-correcting code with some list-decoding property. Then,
results from coding theory can be used to show that for such
amplification from worst case hardness to hardness ,
the decoding function must need bits of ad-
vice in order to compute . This explains why almost all pre-
vious hardness amplification results were done in a nonuniform
setting, except [15] and [25], which did not work in a black-box
way.

There were also impossibility results on weaker types of hard-
ness amplification, from worst case hardness to average case
hardness. Bogdanov and Trevisan [3] considered hardness am-
plification for functions in in which the black-box require-
ment on the encoding function is dropped. They showed that the
decoding function cannot be computed nonadaptively in poly-
nomial time unless collapses. Viola, in another recent paper
[28], considered hardness amplification in which the black-box
requirement on the decoding function is dropped. He showed
that if the encoding function can be computed in , then there
exists an average case hard function in unconditionally. We
will not consider such weaker types of hardness amplification
in this paper, and hereafter when we refer to hardness amplifi-
cation, we always mean the black-box one.

D. Our Results

Previous lower bound results only address hardness in a spe-
cific range. However, whether one can amplify hardness beyond
this range is also a natural and interesting question. For example,
it is known that a black-box hardness amplification from hard-
ness to average case hardness can be realized in poly-
nomial time [29], [5], [10], [14]. Can such a hardness amplifi-
cation be realized in a lower complexity class, such as ?
Can it start from hardness below and still be realized
in polynomial time? Can it be done in a uniform way (with a
uniform decoding function)? In general, how does the quality
of a hardness amplification (the amount of hardness increased)
determine its inherent complexity or nonuniformity? All these
questions will be addressed in this paper. We generalize pre-
vious results [27], [25] and consider hardness amplification in
a much broader spectrum: from hardness to hardness

, for general and . We should stress
that our work is mainly inspired by the seminal works of [27]
and [25] and we follow closely their approaches; our main effort
is to generalize their ideas and to get a more precise picture.

Following [28], we consider a more restricted model called
parallel black-box hardness amplification, in which oracle
queries by the encoding function are done in a nonadaptive
way. More precisely, we say that a circuit class realizes
a parallel black-box hardness amplification if its encoding
function can be implemented in the following way. Given
any input , it first generates a circuit together with

query inputs , then queries at those inputs,
and finally computes as its output.
Note that here and only depend on but not

. Although this is a more restricted model, almost all previous
constructions of hardness amplification can be done in this way,
so it would be nice to know its limitation. Furthermore, through
a standard simulation [4], [8], negative results in this model can,
in fact, be translated to those in the general black-box model.

Our first result addresses both the complexity issue and the
nonuniformity issue in the same framework, showing how com-
plexity constraints on the encoding function result in the in-
herent nonuniformity of the decoding function. Formally, we
prove that if such a parallel black-box hardness amplification,
from hardness to hardness , is realized by
circuits of depth and size , then the decoding func-
tion must need an advice of length . Translating this
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to the general model, we obtain the same advice lower bound
when such a (general) black-box hardness amplification is real-
ized in . This implies that no such hardness
amplification is possible if the hardness is measured against cir-
cuits of size .

Our lower bound is almost tight because the well-known XOR

lemma [29], [5] gives a way to realize a parallel black-box hard-
ness amplification by circuits of depth and size ,
with using an advice of length . Note that
Viola’s result in [27] is a special case of ours, because he only
addressed explicitly the specific case with
and (or equivalently,
and ). Although it seems that his technique can
be extended to show lower bounds when is small
enough, but beyond that, say with , it fails
to give a meaningful bound. We can, in fact, cover this case:
our result implies that circuits cannot realize a parallel
black-box hardness amplification, say, from hardness to
hardness . On the other hand, our result when
restricted to worst case to average case hardness amplification is
incomparable to those of [3] and [28].1 Finally, two interesting
facts follow from our result. First, it is impossible to produce
in a black-box way a function that is –hard against
a uniform low complexity class, say , even if we
start from a function that is –hard against a uniform
but arbitrarily high complexity class equipped with an advice
of length , say . On the other hand, it
is easy to show that hard functions against do
exist.2 This demonstrates one severe weakness of black-box
hardness amplifications. Second, when amplifying hardness
from to , the complexity of such amplifi-
cation is determined mainly by the parameter ; a larger value
of results in a higher complexity requirement, for typical
values of . Thus, to determine the complexity needed for a
hardness amplification process, one should express the initial
and final hardness in the forms of and ,
respectively.3 This point was not clear from previous works.

Note that our first result becomes meaningless for
as the circuit size becomes .

Our second result takes care of this: we show that if a parallel
black-box hardness amplification, from hardness to
hardness , is realized by nondeterministic circuits of
size , even with arbitrary depth, then the decoding
function must need an advice of length . For ex-
ample, to amplify hardness from to , our
second result implies that it cannot be realized by nondetermin-
istic circuits of size in a parallel black-box way.

1In [3], the complexity lower bound is given on the decoding function in-
stead, under the unproven (though widely believed) assumption that does
not collapse. In [28], a more general type of hardness amplification than ours is
considered, but the possibility of such hardness amplification is not ruled out as
we do; instead, it was shown that if the encoding function can be computed in

, a hard function in exists unconditionally.
2For example, the parity function is ���� � � �–hard against

������. However, according to our result, its hardness cannot be
shown in such a black-box way.

3Note that for a function with hardness ��� ���� against small circuits, the
quantity � is the maximum correlation of the function with such circuits. There-
fore, our result shows that to reduce such correlation from � to � , the com-
plexity is mainly determined by �.

Our third result shows that even without any complexity con-
straint on the encoding or decoding function, amplification be-
tween certain range of hardness is still inherently nonuniform.
For the special case of amplifying hardness beyond 1/4, the need
of nonuniformity can be shown using the Plotkin bound [21]
from coding theory. We consider hardness amplification in a
general range and obtain a quantitative bound on the amount of
nonuniformity. More precisely, we show that to amplify hard-
ness from to , the decoding function
must need an advice of bits. Thus, when ,
an advice of length is necessary, and when

for some constant , such hardness amplification must be
inherently nonuniform. Our result generalizes that of Trevisan
and Vadhan [25].

Finally, we derive similar lower bounds on black-box con-
structions of PRG from hard functions.

E. Our Techniques

Our results are obtained via a connection between black-box
hardness amplifications and some type of “error-reduction”
codes, which generalizes the connection given by Trevisan and
Vadhan [25] and Viola [27]. A similar observation was also
made by Trevisan [24]. Formally, a black-box amplification
from hardness to hardness induces a code
with the following list decoding property, which is also known
as approximate list decoding [11]. Given a corrupted codeword
with a fraction of less than errors, we can always find
a small list of candidate messages such that one of them is close
to the original message, with their relative Hamming distance
less than . Therefore, we can focus our attention on
such codes, as results on such codes immediately give results
on corresponding hardness amplifications.

Our first two results are based on the following idea. A code
with such a list-decoding property can only have a small number
of codewords close to any codeword, so a random perturbation
on an input message is unlikely to result in a close codeword.
On the other hand, if such a code is computed by an algorithm
that is insensitive to noise on the input, then a random pertur-
bation on an input message is likely to result in a close code-
word, and we reach a contradiction. Circuits of small size, or
circuits of small depth and moderate size can be shown to be
insensitive to noise on their input. Thus, they cannot be used to
compute such a code and the corresponding hardness amplifica-
tion. This basically follows Viola’s idea in [27], but because we
consider hardness amplification in a much broader spectrum, a
more involved analysis is required. For example, because Viola
only considered the case with a small hardness, he only had to
deal with noise of a small rate. With such a small noise rate,
the output value will only be affected with a small probability,
and small loss in his analysis does not matter too much. How-
ever, if a large hardness is considered, a high noise rate is needed
and then the loss in his analysis will become intolerable, and his
bound will become meaningless (see Remark 4 in Section II-D
for details). To overcome this problem, we drive another upper
bound on noise sensitivity, which works for any noise rate and
thus can be used for hardness in a general range.

For the nonuniformity of hardness amplification, we show
that given a corrupted codeword with a high fraction
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(for a small ) of errors, one may need a long list of candidate
messages in order to have one of them within a small relative
distance (for a large ) to the original message. To
show this, we would like to find a set of messages such that some
ball of relative radius in the codeword space contains
many of their corresponding codewords, but any ball of relative
radius in the message space contains only a small
number of messages from that set. We choose these messages
randomly and show that they have some chance of satisfying the
condition above when is larger than to some
extent.

Finally, to prove lower bounds for black-box constructions
of PRG from hard functions, we discover that there is also a
connection between the error-reduction codes we just consid-
ered and such PRG constructions. Then, the results we obtain
for such codes immediately yield results for such PRG con-
structions. Note that in [27], Viola used a connection between
black-box PRG constructions and randomness extractors, and
then he proved a separate lower bound for extractors, in addi-
tion to that for codes. Our connection, in fact, can be seen as a
connection between extractors and codes, and with this connec-
tion, we no longer need a separate proof for PRG constructions.

F. Organization of This Paper

First, some preliminaries are given in Section II. Then, in
Sections III and IV, we prove the impossibility results of hard-
ness amplification by constant-depth circuits and nondetermin-
istic circuits, respectively. In Section V, we show that hardness
amplification, in general, is inherently nonuniform. Finally, we
show the impossibility results for black-box PRG constructions
from hard functions in Section VI.

II. PRELIMINARIES

For any , let denote the set and let
denote the uniform distribution over the set . When

we sample from a finite set, the default distribution is the uni-
form one. For a string , let denote the th bit of . All the
logarithms in this paper will have base two. Define the binary
entropy function .

We need some standard complexity classes. Let
denote the class of functions computed by alternating Turing
machines in time with at most alternations, and let
denote . Let denote the polynomial-time hier-
archy, which is . Let denote
the class of functions computed by nondeterministic Turing ma-
chines in time . More information about complexity classes can
be found in standard textbooks, such as [20]. The circuits we
consider here consist of AND/OR/NOT gates, allowing unbounded
fan-in for AND/OR gates. The size of a circuit is the number of
noninput gates it has and the depth of circuit is the number of
gates on the longest path from an input bit to the output gate.
We call such circuits circuits.

Definition 1: Let denote the class of functions com-
puted by circuits of depth and size .

Note that the standard complexity class corresponds to
our class . We also introduce the nondeter-
ministic version of circuits. An circuit has two parts

of inputs: the real input and the witness input . The Boolean
function computed by such a circuit is defined as
if and only if there exists a witness such that .

Definition 2: Let be the class of functions computed
by circuits of size .

A function with more than one output bits is said to be com-
puted by some type of circuits (e.g., or ) if each
output bit can be computed by one such circuit.

A. Black-Box Hardness Amplification and
Pseudorandom Generators

Informally speaking, a function is hard if any algorithm
without enough complexity must make some mistakes. For-
mally, we define the hardness of a function as follows.

Definition 3: We say that a function
has hardness against circuits of size if for any circuit

of size

Note that we use the error bound to characterize the hard-
ness of a function, and we pay less (sometimes no) attention to
the size bound . For hardness amplification, we want to trans-
form a function with a smaller hardness
into a function with a larger hardness .
We will focus on a special type of hardness amplification called
black-box hardness amplification, defined next, which consists
of two oracle procedures and . We allow to be
a nonuniform oracle Turing machine, and we write to
denote taking an oracle and an advice string .

Definition 4: A black-box hardness amplifica-
tion consists of an oracle procedure
(called encoding function) and a nonuniform oracle Turing ma-
chine (called decoding function)
with the following property. For any , if a
function satisfies

then there exists an advice string such
that

For a complexity class , we say that the black-box hardness
amplification can be realized in if for any oracle , the proce-
dure can be computed in .

Here, the transformation of the initial function into a harder
function is done in a black-box way, as the harder function

only uses as an oracle. Moreover, the hardness of the
new function is also guaranteed in a black-box way.
Namely, any algorithm breaking the hardness condition of

can be used as an oracle for a machine to break the
hardness condition of . Note that neither of the hardness refers
to circuit size, and no constraint is placed on the complexity
of the procedure . This freedom makes our impossibility
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results stronger. The parameter characterizes the amount of
nonuniformity associated with this process. When , we
say the hardness amplification is nonuniform.

Remark 1: One can also use the notion of “advan-
tage” to characterize the hardness of a Boolean func-
tion. We say that any circuit of size has advantage
at most for computing if for any such a circuit ,

. Clearly, the
advantage is related to the hardness in the form .
We will focus on the task of amplifying hardness from to

, or equivalently, reducing the advantage from to . We
choose to present our results in terms of hardness instead of
advantage for the following two reasons. First, when talking
about hardness amplification, it seems more natural and less
confusing to use hardness instead of advantage. Second, as
we will see, there is some nice connection between hardness
amplifications and error-correcting codes, in which hardness of
functions corresponds naturally to distance in codes. However,
the drawback of using hardness instead of advantage is that our
notation sometimes looks more cumbersome.

Similarly, we can define the notion of black-box construction
of pseudorandom generators from hard functions.

Definition 5: A black-box PRG construction con-
sists of an oracle procedure (called
encoding function) and a nonuniform oracle Turing machine

(called decoding function) with the
following property. For any , if a function

satisfies

then there exists an advice string such
that

For a complexity class , we say that the black-box PRG con-
struction can be realized in if for any oracle , the procedure

can be computed in .

Remark 2: When talking about a black-box hardness ampli-
fication or PRG construction, we usually mean a sequence of
them, parameterized by the parameter . Other parameters
such as are, in fact, allowed to be functions of

.

In this general model of black-box hardness amplification or
PRG construction, we do not put any restriction on how the or-
acle is queried by the encoding function ( or ). On the
other hand, we will also consider the following more restricted
model, first introduced in [28], in which the oracle can only
be queried in a nonadaptive way. We call such model a parallel
black-box hardness amplification or PRG construction. More
precisely, we define the following.

Definition 6: Let be a class of circuits, such as
or . We say that realizes a parallel

black-box hardness amplification, if we have a black-box
hardness amplification in which the encoding function
can be implemented in the following way. Given any oracle

and any input , it first
generates a circuit together with query inputs

, then queries at those inputs, and
finally outputs . The case of parallel
black-box PRG construction is defined similarly.

Note that and are produced before the oracle
is actually queried, so they depend on but not on the oracle
. This restriction makes it easier to obtain negative (or lower

bound) results in such a parallel model. Nevertheless, the fol-
lowing lemma provides a way to translate such results to those
in the general black-box model.

Lemma 1: If a black-box hardness amplification
(or PRG construction) can be realized in , then a
parallel black-box hardness amplification (or PRG
construction) can be realized in .

Proof: Consider any black-box hardness amplification
(the case of PRG construction is similar) with the encoding
function such that for any oracle , belongs to

. It is known from [4] and [8] that by adding two
alternations (an existential one for guessing the oracle answers
along a computational branch and a universal one for verifying
the guessed answers), one can transform into another
procedure that only queries once in each branch of
its computation. Then, by a standard simulation of alternating
Turing machines by circuits [4], [8], we know that for any
input , the value of can be computed by a circuit in

with the answers to the corresponding oracle
queries given as part of the input. Note that the circuit and the
oracle queries depend only on the input but not the oracle

. Thus, we have a parallel black-box hardness amplification
realized in .

B. Codes and Correspondence to Hardness Amplification

We measure the distance between two strings by their relative
Hamming distance.

Definition 7: For , define their dis-
tance as their relative Hamming distance, namely,

.

According to this distance, we define open balls of radius
in the space .

Definition 8: For any , , and ,
let , which
is the open ball in of radius centered at . Let

denote the set consisting of all such balls.

The following simple fact gives an upper bound on the size
of such a Hamming ball.

Fact 1: The size of any ball in is at most .

We borrow the notion of list-decodable codes, but we ex-
tend it in a way that leads to some natural correspondence with
black-box hardness amplifications.
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Definition 9: We call a
-list code if for any , there are

balls from such that if a codeword is con-
tained in , then is contained in one of those
balls.

A -list code is related to a standard list-decodable
code in the way that each ball in contains at most

codewords. Next, we show how such a code arises
naturally from a black-box hardness amplification. Let
and . Given any oracle algorithm

, let us define the corresponding code
as . That is, seeing any function

as a vector in , produces as
output the function , which is seen as a vector in .
The following is a simple generalization of an observation by
Viola [27].

Lemma 2: Let be the encoding
function of a black-box hardness amplification.
Then, , defined as , is a

-list code.
Proof: Let be the encoding function of a black-box

hardness amplification, and let be the
corresponding decoding function that is an oracle Turing
machine with an -bit advice. Consider any ,
seen as . For any codeword
with ,
by Definition 4, there exists an such that

. That is,
if is in , then is contained in one of
the balls of radius centered at for .
Therefore, is a -list code.

Remark 3: Note that if a circuit class can realize a par-
allel hardness amplification, then every output bit of the corre-
sponding code can be computed by a circuit in . This
is because for any input , the th output bit of

equals , which is
computed by some circuit on some bits of .

In Section VI, we will show that there also exists a natural
correspondence between black-box PRG constructions and such
list-decodable codes.

C. Noise Sensitivity

Following [19] and [27], we will apply Fourier analysis on
Boolean functions. For any and for any

, let Here is a
well-known fact.

Fact 2: For any , .
It is known that for circuits of small depths, the main

contribution to the above sum comes from the low-order terms.

Lemma 3 [17]: For any
and for any , .

This can be used to show that circuits of small depth are
insensitive to noise on their input. We will need the following
more precise relation between the noise sensitivity of a Boolean
function and its Fourier coefficients.

Lemma 4: Suppose is sampled from the uniform distribu-
tion over and is obtained by flipping each bit of in-
dependently with probability . Then, for any

and for any ,
.

Proof: We know from [19, Prop. 9] that
. Note that

Then, the lemma follows from Fact 2.

Combining Lemmas 3 and 4, we immediately have the
following.

Corollary 1: Suppose and are sampled as in Lemma 4.
Then, for any and for any

, .

Remark 4: In [27], Viola derived a weaker bound
, with ,

which becomes vacuous when is not small enough.
This prevents him from having a meaningful bound
when the hardness is not small enough. The main loss
in his derivation comes from his use of the inequality

.
Our Lemma 4 uses a different inequality to avoid this problem.

III. IMPOSSIBILITY OF AMPLIFICATION BY

SMALL-DEPTH CIRCUITS

In this section, we will show that any parallel black-box
hardness amplification realized in

with small and must be highly nonuniform. More precisely,
we will prove the following.

Theorem 1: There exist constants such that
for any and any with

and , any parallel
black-box hardness amplification realized in

must have .

Before giving the proof, let us take a closer look at the the-
orem itself and discuss some of its consequences. First, note that
the conditions on the ranges of and are natural in the fol-
lowing sense. When , the initial function is already
hard enough, so hardness amplification is usually not needed.
When , the resulting function only has a
very small hardness, which is rarely what hardness amplifica-
tion is used to achieve. Also, as discussed in the Introduction,
hardness amplifications normally have close to (preferably
with ), therefore , which is at least , would
be much larger than .

Although Theorem 1 is on the more restricted parallel model,
it in fact implies the following result on the general model of
hardness amplification, according to Lemma 1.

Corollary 2: Under the same condition as in Theorem 1, no
black-box hardness amplification can be
realized in .
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Note that Viola’s result [27] is a special case of ours, with
initial hardness (amplifying from worst case hard-
ness). A closer look at his technique shows that it, in fact, can
be extended to cases with small initial hardness. For example,
with , his technique can be modified to show
the impossibility in to amplify the hardness to with

, which also follows from our corollary above. How-
ever, as discussed in Remark 4, when the initial hardness grows
beyond a certain point, say to , his technique fails
to give a meaningful bound. Moreover, our lower bound al-
most matches the upper bound given by the well-known XOR

lemma [29], [5], while the technique in [27] does not yield such
a bound.

Theorem 2: For any and any , a parallel
black-box hardness amplification can be real-
ized in for .

Proof: The encoding function is
, with , defined as

It is known that the parity of bits can be computed by an
circuit (cf., [8]), and note that this circuit and those

query inputs do not depend on the oracle . Furthermore, using
Levin’s proof for the XOR lemma given in [5], one can construct
a decoding function that uses an advice of length .
Thus, we have the theorem.

Now we proceed to prove Theorem 1.

Proof (of Theorem 1): Consider any parallel black-box
hardness amplification realized in ,

with for a small enough positive constant .
Let and . Recall from Lemma 2 that such
a hardness amplification induces a -list code

. Then, from Remark 3, it suffices to
show that any such code computed by an circuit
must have .

The basic idea behind the proof is the following. Suppose
has only a small number of codewords close to any codeword.
Then, a random perturbation on an input message is unlikely to
result in a close codeword. On the other hand, if is computed
by an circuit with small and , which is insensitive
to noise on the input, then a random perturbation on an input
message is likely to result in a close codeword, and we reach a
contradiction.

Now we give the details. Let be sampled from the uniform
distribution over and let be the random variable ob-
tained by flipping each bit of independently with some prob-
ability . We set so that is only slightly larger
than .4 We call any two codewords close if their (relative)
distance is less than . The next lemma gives a lower bound
on the probability that is close to , which relies on the
fact that such an circuit is insensitive to noise on the input.

4We do not attempt to optimize parameters here, and in fact, it suffices to set
� � ��� � �����.

Lemma 5: There exist constants such that for any
and any with , if

, then is close to .
Proof: Suppose for a small enough

constant . Suppose for some constant
such that . Then, using Corollary 1 with

, we have that for each

Therefore, , which implies
that is not close to by Markov in-
equality. Thus

is close to

for some constant .

Next, we give an upper bound on the probability that
is close to , which relies on the fact that each codeword is
only close to a small number of other codewords. This requires a
more careful analysis than that in [27], in order to get the tighter
bound we need.

Lemma 6: For any -list code ,
is close to .

Proof: Consider any fixed . Because is a
-list code, there are at most dif-

ferent ’s such that is close to . The lemma would
follow easily if each such had a very small probability to occur.
However, this may not be the case in general. We will show that
although some ’s may occur with higher probability, there are
not too many of them, so their overall contribution is still toler-
able.

For any ,
, which decreases

as increases. Let .5 Call
good for if and call bad for

otherwise. Note that for any that is good for

5Again, we make no attempt on optimizing the parameter here. In fact, it
suffices to set � � ��� � ����� while still maintaining � � ���� �����.
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On the other hand, is only bad for with a small probability.
This is because is obtained by flipping each bit of indepen-
dently with probability , so , and by
Chernoff bound,

is bad for

Thus, is at most

is close to is good for

is bad for

Because this holds for every , the lemma follows.

Suppose and
for suitable constants . Then, from Lemmas 5 and 6,
we get

is close to

which implies that

Thus, we have the following.

Lemma 7: There exist constants such that for
any and any with and

, if
is a -list code computable by an
circuit, then .

Combining this lemma with Lemma 2, we obtain Theorem 1.

IV. IMPOSSIBILITY OF AMPLIFICATION BY

NONDETERMINISTIC CIRCUITS

Note that the result in the previous section becomes meaning-
less for , as it only rules out circuits in
with . In this section, we show that even
without any restriction on the circuit depth, a meaningful lower
bound on the circuit size can still be derived. Formally, we have
the following theorem.

Theorem 3: There exist constants such
that for any and any with

and , any parallel
black-box hardness amplification realized in

must have .

To the best of our knowledge, no such result has been shown
for circuits. From Lemma 1, this implies the following im-
possibility result on general black-box hardness amplification.

Corollary 3: Under the same condition as in Theorem 3, no
black-box hardness amplification can be
realized in , for some constant .

Now we prove the theorem.
Proof (of Theorem 3): The basic proof idea is similar to

that for Theorem 1. The only difference is to replace Lemma 5
by an analogous one for circuits. Here we use the method
of random restriction. A restriction on a set of variables

is a mapping , which ei-
ther fixes the value of a variable with or
leaves free with . For , let denote
the distribution on such restrictions such that each variable
is mapped independently with and

. For a
Boolean function and a restriction , let denote the func-
tion obtained from by applying the restriction to its vari-
ables. That is, with if

and otherwise.
Define the degree of a function as

. It is not hard to verify that a constant function has
degree and a function depending on only input bits has de-
gree at most . We need the following lemma that bounds the
contribution of higher order Fourier coefficients.

Lemma 8 [17]: Let and with
. Then, for any Boolean function ,

.

The following is the key lemma in this section, which gives a
concrete bound on the sum above for circuits.

Lemma 9: For any ,
, when .

Proof: Suppose is computed by an circuit of size ,
which divides its input into the real input part and the witness
part. Let be the set of gates that receive some real input vari-
ables directly. Consider applying a random restriction
on the real input variables. We say a gate in is killed if it is
an AND gate and receives a real input variable, which is fixed to

by , or if it is an OR gate and receives a real input variable,
which is fixed to by . For a gate , let denote the
number of real input variables it receives. For a restriction , let

denote the number of remaining real input variables it
receives if is not killed by , and let otherwise.
Set to be any constant in so that . Then

where the first inequality holds because if no gate exists, then
must depend on fewer than variables, and therefore,

must have degree less than .
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Any with clearly has
. On the other hand, any

with is likely to be killed, so that

is not killed by

From Lemma 8, we have
.

Then, analogously to Lemma 5 (in the previous section), we
have the following.

Lemma 10: There exist constants such that for any
and any with , if
, then is close to .

Proof: Suppose ,
for some large enough constant . Using Lemmas 4 and 9 with

, we have that for each

when for some suitable constant . Then,
the rest is the same as that for Lemma 5, and we can have

is close to for some constant .

Suppose and ,
for suitable constants . By combining Lemma 10 with
Lemma 6, we get , which gives the
following.

Lemma 11: There exist constant such that for
any and any with and

, if is
a -list code computable by , then

.

Combining this with Lemma 2, we obtain Theorem 3.

V. INHERENT NONUNIFORMITY OF HARDNESS AMPLIFICATION

In the previous two sections, we have proven that any
black-box hardness amplification must be very nonuniform
when the computational complexity of the amplification proce-
dure is bounded in certain ways. In this section, we prove
that even without any such complexity bound, there still exists
some inherent nonuniformity.

First, we state the following simple result that seems to
be a folklore. For completeness, we include the proof in the
Appendix.

Theorem 4: For some constant and for any ,
no oracle algorithm can realize a
black-box hardness amplification with

.

As discussed in the Introduction, hardness amplifications nor-
mally have . Thus, the theorem basically says that
amplifying hardness beyond must introduce nonuniformity
in general. However, the theorem does not provide a quantita-
tive bound on the nonuniformity. This is addressed by our next
theorem.

Theorem 5: Suppose for some suitable con-
stant , and suppose . Then, any
black-box hardness amplification must have

.

Thus, any such hardness amplification, even without
any complexity constraint, must be inherently nonuniform,
with when for some constant , or with

when . Note that our lower bound gen-
eralizes that of Trevisan and Vadhan [25]: they only considered
the case with (or equivalently )
and obtained the lower bound , while we consider
general and obtain the lower bound .

Now we proceed to the proof of Theorem 5.
Proof (of Theorem 5): Consider an arbitrary code

. We would like to show that for
some constant to be determined later, one can find a string

and a set such that the following
two conditions hold.

• For every , is contained in the ball
.

• needs balls in to cover with.
For this, we first choose uniformly and indepen-

dently from to form the set , for some .
Call the set -good if (i.e., for any )
and any ball in contains elements of .
Later, we will derive the set from a -good .

Lemma 12: When , is -good with prob-
ability .

Proof: First, the probability that for some
is at most . Next, the probability that
some ball in contains elements of is at
most For
some , both probabilities above are when

. This proves the lemma.

We want to choose a string such that the ball
contains a lot of codewords coming from a

-good . We will fix some of ’s bits first.

Definition 10: For each , let be the bit such that
. Call -good for if is

-good and .
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Lemma 13: Suppose . Then, for any
, is -good for with probability .
Proof: From Lemma 12, is not -good with probability

. Now fix any . Let , for , be the in-
dicator random variable such that if and

otherwise. Then

Note that form a sequence of independent identically
distributed (i.i.d.) random variables, with for each .
Let be the sequence of i.i.d. binary random variables
with for each . Then

Therefore, we have

as . Then, is -good for with probability at
least .

An averaging argument immediately gives the following.

Corollary 4: Suppose . Then, there exist a
set with and a set with

such that for every , is -good for .

Let us fix the sets and guaranteed by the corollary above.
Next, we want to show that many ’s from satisfy the property
that the codeword has enough agreement with the vector
(with each bit defined in Definition 10) on those dimensions
in .

Lemma 14: There exists with such that
for any , .

Proof: For any , is -good for , so

By Markov’s inequality

Thus, there exists of size such that for
any , .

We let the vector inherit from the vector those bits indexed
by , and it remains to set the values for the remaining bits. It
is easy to show that there exist (in fact, can be
chosen from ) and with such
that for any , , so we just define

as if and otherwise. Then,
for any

for any large enough constant .
Furthermore, as and is -good, any ball in

contains elements of , and hence,
must need such balls to cover with.

This shows that any -list code must have
. Replacing the parameter by , we have the

following.

Lemma 15: Suppose for some suitable constant , and
suppose . Then, any -list code
must have .

This, combined with Lemma 2, proves the theorem.

Remark 5: Recently (after the conference version of our
paper), Guruswami and Vadhan [7] used a more involved
argument to proved that any -list code must have

, which is tight as a matching upper bound (within
a constant factor) is known to exist [6], [12]. The proof in [7],
in fact, can be extended to show that any -list
code must have . Therefore, any such black-box
hardness amplification with , for some constant ,
must be inherently nonuniform.

VI. IMPOSSIBILITY RESULTS ON PRG CONSTRUCTIONS

In this section, we prove lower bound (impossibility) results
for black-box PRG constructions from hard functions. For this,
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we establish a connection between black-box PRG construc-
tions and codes. Then, using those lower bound results for
codes in previous sections, we obtain lower bound results for
black-box PRG constructions.

Consider any black-box PRG construction with an en-
coding function . We call the
ratio as the stretch factor of the PRG construction. Let

and , and define the corresponding code
as . That is, seeing any

function as a vector in ,
produces as output the function , which is seen as a vector
in (the concatenation of ’s over

). Analogously to Lemma 2, we have the following
connection between PRG constructions and codes.

Lemma 16: Suppose is
the encoding function of a black-box PRG
construction with a stretch factor . Then,

, defined as , is a
-list code.

Proof: Suppose is the encoding function of a black-box
PRG construction, and is the decoding func-

tion, which is an oracle Turing machine with an -bit advice.
Consider any string , which can be seen as a func-
tion . We want to show that not many
codewords are close to . For this, we show that there exists a
distinguisher such that if any is close to , then
can distinguish from random.

Define the distinguisher as
if and only if . Sup-

pose , and assume without loss of generality that
.6 Then

Consider any codeword with .
Now as , by Markov
inequality, we have

. Thus

6For a PRG � � ��� �� � ����� , one can only expect � � � � � ,
because this can be achieved by a simple distinguisher � defined as � ��� � �
if and only if � � ��� �. Because � is a PRG, � � � � �, � � � �
� � � , and we have � � .

Therefore, we have

From Definition 5, this implies that there exists an
such that .

We have shown that if is in , then is
contained in one of the balls of radius centered at
for . This implies that is a -list code.

With the help of this lemma, lower bound results on codes in
previous sections now immediately yield results on black-box
constructions of PRG.

First, observe that if the PRG construction has a parallel
realization in a circuit class, then every output bit of can
be computed by a circuit in the class. Then, by combining
Lemma 16 with Lemma 7, we have the following theorem on
parallel black-box PRG constructions realized by small-depth

circuits.

Theorem 6: There exist constants such that for
any and any with
and , any parallel black-box

realized in with a stretch factor
must have .

Next, by combining Lemma 16 with Lemma 11, we imme-
diately have the following theorem on parallel black-box PRG
constructions realized by circuits.

Theorem 7: There exist constants such that for
any and any with and

, any parallel black-box
PRG construction realized in with a stretch factor

must have .

Similar to those in Sections III and IV, the two theorems
above on the parallel model immediately imply impossibility
results on general black-box PRG constructions, via Lemma 1.

Finally, by combining Lemma 16 with Lemma 15, we
have the following theorem on the inherent nonuniformity of
black-box PRG constructions.

Theorem 8: Suppose for some suitable constant , and
suppose . Then, any black-box
PRG construction with a stretch factor must have

.

APPENDIX

PROOF OF THEOREM 4

From Lemma 2, this reduces to the following coding-theo-
retical question: for which values of and do we have an

-list code?
We call an code if the (rel-

ative Hamming) distance of any two codewords is at least . We
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need the following good code, which can be constructed using,
say, the concatenation of Reed–Solomon code with Hadamard
code.

Fact 3: codes exist for any .

This says that unique decoding is possible if the fraction of
error is slightly smaller than . On the other hand, according
to the following Plotkin bound, unique decoding is basically
impossible if the fraction of error grows beyond .

Fact 4 (Plotkin Bound [21]): An code with
must have .

Combining these two facts, we have the following.

Lemma 17: For some constant and for any , any
-list code with

must have .
Proof: From Fact 3, there exists a code

with for some constant . Suppose that is a
-list code with . If , then

is a code with
, which is impossible according to Fact 4.

Then, from Lemma 2, we obtain Theorem 4.
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