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Abstract

An eigenfunction expansion solution is first developed to find stress singualrities for bi-material wedges by directly solving the

governing equations of the Mindlin plate theory in terms of displacement components. The singularity orders of moments and shear

forces at corners are determined from the corresponding asymptotic solutions having the lowest order in r and satisfying the radial

boundary conditions and continuity conditions. The present solution is applied to thoroughly examine the singularities occurring at

the interface joint of bonded dissimilar isotropic plates and at the vertex of a bi-material wedge with two simply supported radial

edges. The corresponding characteristic equations for determining the singularity orders of moments and shear forces are explicitly

given. The singularity orders of moment are shown in graphic form as functions of the flexural rigidity ratio and corner angle, while

the shear force singularity orders are given as functions of the corner angle and the shear modulus ratio multiplied by the thickness

ratio. The order of moment singularity obtained here for bonded dissimilar plates is also compared with that based on the classical

plate theory. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Stress singularities; Eigenfunction expansion; Bi-material plates; Mindlin plate theory

1. Introduction

It is well known that stress singularities arise in the
mathematical solutions of plate problems, which can be
due to concentrated forces and moments, discontinuities
in edge conditions, or sharp corners. It has been pointed
out and numerically shown that if singularities due to
discontinuities in edge conditions or sharp corners are
not properly considered in numerical solutions, signifi-
cant errors will occur in the calculated global behavior
of plates, such as static deflection, free vibration fre-
quencies, forced dynamic response, and critical buckling
load [1–4].

Williams [5,6] was the first to investigate corner stress
singularities in isotropic plates under bending or exten-
sion, due to various homogeneous boundary conditions.
The investigation of corner stress singularities has also
been extended to non-isotropic thin plates [7,8], com-
posite plates [9], isotropic thick plates [10,11], and iso-
tropic three-dimensional problems [12]. The stress
singularity at a crack tip is a special case examined in the
above studies.

Some studies have also been carried out to investigate
stress singularities in a bi-material wedge. Applying

Mellin transformation to solve plane elasticity equa-
tions, Hein and Erdogan [13] investigated stress singu-
larities at a bi-material corner, while Bogy and Wang
[14] examined stress singularities at an interface corner
in bonded dissimilar isotropic materials. Rao [15] used a
solution technique similar to William’s [5] to study sin-
gularities in the solution of a bi-harmonic differential
equation due to interface conditions and boundary
conditions. Dempsey and Sinclair [16] applied a new
form of the Airy stress function to plane elasticity
equations and investigated the singular behavior at the
vertex of a bi-material wedge. Xie and Chaudhuri [17]
proposed an eigenfunction expansion method for ana-
lyzing a three-dimensional problem of a bi-material
wedge. Notably, the methodology used to solve these
plane elasticity problems and some of their results can
be directly applied to bending problems of thin plates
because the governing equation for thin plates is the
same as that for plane elasticity in terms of the Airy
stress function.

The afore-cited studies reveal that there is a need to
investigate the stress singularities at a bi-material in-
terface of thick plates under bending. The aim of this
paper is to develop a solution for determining Wil-
liam’s type singularities at a bi-material corner in the
Mindlin plate theory [18] because this plate theory is
frequently applied in solving thick plate problems. The
methodology used in this work adopts the eigenfunction
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expansion method developed by Hartranft and Sih [12]
for three-dimensional elasticity problems. This meth-
odology is different from those used by Burton and
Sinclair [10] and Huang [11] for isotropic and homo-
geneous thick plates. The numerical results are given in
graphic form for the singularity orders of moments and
shear forces at the interface corner in bonded dissimilar
isotropic plates and at the vertex of a bi-material
wedge with simply supported radial edges. Further-
more, the results for bonded dissimilar isotropic plates
are compared with those of the classical plate theory.
The solution developed herein is important because
only after the stress singularity behavior is known can
one properly account for singularities in numerical
solutions of complex problems involving a bi-material
interface.

2. Governing equations

Consider the bi-material plate shown in Fig. 1. The
plate is separated into two regions. Each region is an
isotropic and homogeneous plate and has its own ma-
terial properties and thickness. Based on the Mindlin
plate theory, the equilibrium equations with no external
loading in terms of stress resultants (moments and shear
forces) in polar coordinates are as follows for each re-
gion (cf. [18]):

M ðiÞ
r;r þ

1

r
M ðiÞ

rh;hi þ
M ðiÞ

r �M ðiÞ
h

r
� QðiÞ
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M ðiÞ
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1
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QðiÞ
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ð1Þ

where the subscript ‘‘; b’’ refers to a partial differential
with respect to independent variable b, and the super-
script ðiÞ denotes region i (see Fig. 1). Notably, the in-
dependent variables in circumferential direction hi are
defined differently in different regions. In each region,
the stress resultants are related to the transverse dis-
placement and bending rotations by

M ðiÞ
r ¼ �Di½wðiÞ

r;r þ tir�1ðwðiÞ
r þ wðiÞ

h;hi
Þ�;
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Þ þ tiw
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2
½r�1ðwðiÞ

r;hi
� wðiÞ
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;hi
Þ;

ð2Þ

where in region i, wðiÞ is the transverse displacement of
the midplane; wðiÞ

r and wðiÞ
h are the bending rotation of

the midplane normal in the radial and circumferential
directions, respectively; hi is the thickness of the plate;
Di ¼ Eih3i =12ð1� t2i Þ is the flexural rigidity; Ei is the
modulus of elasticity; ti is Poisson’s ratio; j2 is the shear
correction factor; and Gi is the shear modulus. The value
of j2 is set equal to p2=12 [18].

Substituting Eq. (2) into Eq. (1) yields the equilibrium
equations in terms of displacement components:
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;hihi

� wðiÞ
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Þ ¼ 0: ð3cÞ

3. Methodology

The governing equations given in Eqs. (3a)–(3c) will
be solved using an eigenfunction expansion method. The
results given in the writer’s previous work on isotropic
and homogeneous plates [11] reveal that the singularity
behaviors for moments and shears are different in the
Mindlin plate theory. Consequently, they are separately
considered below.

3.1. Solution for moment singularity

On the basis of separation of variables, the displace-
ment components in each region for the solution of Eqs.
(3a)–(3c) can be expanded in the following double series:

wðiÞ
r ðr; hiÞ ¼

X1

m¼0

X1

n¼0;2
rkmþnWðiÞ

nmðhi; kmÞ; ð4aÞ
Fig. 1. A bi-material wedge with coordinates.
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wðiÞ
h ðr; hiÞ ¼

X1

m¼0

X1

n¼0;2
rkmþnUðiÞ

nmðhi; kmÞ; ð4bÞ

wðiÞðr; hiÞ ¼
X1

m¼0

X1

n¼0;2
rkmþnþ1W ðiÞ

nm ðhi; kmÞ; ð4cÞ

where the characteristic values km are assumed to be
constants and can be complex numbers. It is noted that
odd n in Eqs. (4a)–(4c) will not generate any additional
solution; therefore, they are not considered in Eqs. (4a)–
(4c).

The real part of km has to exceed zero to satisfy the
regularity condition for finite displacement compo-
nents (wðiÞ; wðiÞ

r and wðiÞ
h ) as r approaches zero. Con-

sequently, the relations between moments and
displacement components given in Eq. (2) reveal that
the solution in the form of Eqs. (4a)–(4c) results in
moment singularities when the real part of km is less
than one. Notably, when km is complex, the moments
in the neighborhood of r ¼ 0 have the oscillatory
character of the type rg�1 cosðor sinÞe log r, where g
and e are the real part and imaginary part of km, re-
spectively. Nevertheless, no shear force singularities
will be produced from the solution form of Eqs. (4a)–
(4c).

Substituting Eqs. (4a)–(4c) into Eqs. (3a)–(3c) yields

Di

2

X1

m¼0

X1

n¼0;2
rkmþn�2f2ðkm þ nþ 1Þðkm þ n� 1ÞWðiÞ

nm
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nm � ¼ 0; ð5aÞ
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2
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nm;hi
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n¼0;2
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þ W ðiÞ
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nm;hihi þ ðkm þ nþ 1Þ2W ðiÞ
nm

� ðkm þ nþ 1ÞWðiÞ
nm � UðiÞ

nm;hi � ¼ 0: ð5cÞ

Satisfying Eqs. (5a)–(5c) leads to coefficients of r with
different orders equal to zero. Subsequently, a set of
recurrent relationships for W ðiÞ

nm ; WðiÞ
nm, and UðiÞ

nm can be
attained and expressed as

ð1� tiÞWðiÞ
ðnþ2Þm;hihi þ 2ðkm þ nþ 3Þðkm þ nþ 1ÞWðiÞ

ðnþ2Þm

þ ½ð1þ tiÞðkm þ nþ 1Þ � 2ð1� tiÞ�UðiÞ
ðnþ2Þm;hi

¼ � 2j2Gihi
Di

ð�WðiÞ
nm þ ðkm þ nþ 1ÞW ðiÞ

nm Þ; ð6aÞ

2UðiÞ
ðnþ2Þm;hihi þ ð1� tiÞðkm þ nþ 3Þðkm þ nþ 1ÞUðiÞ

ðnþ2Þm

þ ½ð1þ tiÞðkm þ nþ 3Þ þ 2ð1� tiÞ�WðiÞ
ðnþ2Þm;hi

¼ � 2j2Gihi
Di

ð�UðiÞ
nm þ W ðiÞ

nm;hiÞ; ð6bÞ

W ðiÞ
ðnþ2Þm;hihi þ ðkm þ nþ 3Þ2W ðiÞ

ðnþ2Þm

� ðkm þ nþ 3ÞWðiÞ
ðnþ2Þm � UðiÞ

ðnþ2Þm;hi ¼ 0: ð6cÞ

Furthermore, the following equations can be established
from the coefficients of the lowest order of r in Eqs.
(5a)–(5c):

ð1� tiÞWðiÞ
0m;hihi

þ 2ðkm þ 1Þðkm � 1ÞWðiÞ
0m

þ ½ð1þ tiÞðkm � 1Þ � 2ð1� tiÞ�UðiÞ
0m;hi

¼ 0; ð7aÞ

2UðiÞ
0m;hihi

þ ð1� tiÞðkm þ 1Þðkm � 1ÞUðiÞ
0m

þ ½ð1þ tiÞðkm þ 1Þ þ 2ð1� tiÞ�WðiÞ
0m;hi

¼ 0; ð7bÞ

W ðiÞ
0m;hihi þ ðkm þ 1Þ2W ðiÞ

0m � ðkm þ 1ÞWðiÞ
0m � UðiÞ

0m;hi ¼ 0:

ð7cÞ

It is easy to find that the general solution for the set of
linear ordinary differential equations given by Eqs. (7a)–
(7c) is

WðiÞ
0mðhi; kmÞ ¼ AðiÞ

1 cosðkm þ 1Þhi þ AðiÞ
2 sinðkm þ 1Þhi

þ AðiÞ
3 cosðkm � 1Þhi

þ AðiÞ
4 sinðkm � 1Þhi; ð8aÞ

UðiÞ
0mðhi; kmÞ ¼ AðiÞ

2 cosðkm þ 1Þhi � AðiÞ
1 sinðkm þ 1Þhi

þ kiA
ðiÞ
4 cosðkm � 1Þhi

� kiA
ðiÞ
3 sinðkm � 1Þhi; ð8bÞ

W ðiÞ
0m ðhi; kmÞ ¼ CðiÞ

1 cosðkm þ 1Þhi þ CðiÞ
2 sinðkm þ 1Þhi

þ ciA
ðiÞ
3 cosðkm � 1Þhi

þ ciA
ðiÞ
4 sinðkm � 1Þhi; ð8cÞ

where

ki ¼ � 3� ti þ km þ tikm

3� ti � km � tikm
;

ci ¼
ti � 1

�3þ km þ ti þ tikm
;

and the characteristic value km and the coefficients AðiÞ
1 ,

AðiÞ
2 , A

ðiÞ
3 , A

ðiÞ
4 , C

ðiÞ
1 , and CðiÞ

2 are to be determined by sat-
isfying the radial boundary conditions and continuity
conditions cross interfaces of two regions.
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The solution for W ðiÞ
nm ; WðiÞ

nm, and UðiÞ
nm with n > 0 can be

obtained by solving Eqs. (6a)–(6c). However, the sin-
gularity behaviors of moments are determined from
W ðiÞ

nm ; WðiÞ
nm, and UðiÞ

nm corresponding to the lowest order of
r, namely, W ðiÞ

0m , W
ðiÞ
0m, and UðiÞ

0m; therefore, the solution for
W ðiÞ

nm ; WðiÞ
nm, and UðiÞ

nm with n > 0 will not be further con-
sidered here.

3.2. Solution for shear force singularity

From the investigations reported in [11,17], it is dis-
covered that the displacement components in each re-
gion for the solution of Eqs. (3a)–(3c) can be expanded
in the following double series to consider the shear force
singularity:

wðiÞ
r ðr; hiÞ ¼

X1

m¼0

X1

n¼0;2
rkmþnþ1W

ðiÞ
nmðhi; kmÞ; ð9aÞ

wðiÞ
h ðr; hiÞ ¼

X1

m¼0

X1

n¼0;2
rkmþnþ1U

ðiÞ
nmðhi; kmÞ; ð9bÞ

wðiÞðr; hiÞ ¼
X1

m¼0

X1

n¼0;2
rkmþnW

ðiÞ
nmðhi; kmÞ; ð9cÞ

where the characteristic values km are also assumed to be
constants and can be complex numbers. Again, the real
part of km must be positive to satisfy the regularity
condition under r approaching zero. The relations be-
tween stress resultants and displacement components
given in Eq. (2) indicate that the solution form of Eqs.
(9a)–(9c) will produce a shear force singularity when r
approaches zero if the real part of km is less than one,
but no moment singularity will be given. It is also noted
that when km is complex the shear forces in the neigh-
borhood of r ¼ 0 have the oscillatory character of the
type rg�1 sinðor cosÞe log r, where g and e are the real
part and imaginary part of km, respectively.

Using a procedure similar to that employed in the
previous section and substituting Eqs. (9a)–(9c) into Eqs.
(3a)–(3c), one finds that W

ðiÞ
nm;W

ðiÞ
nm and U

ðiÞ
nm have to satisfy

ð1� tiÞW
ðiÞ
ðnþ2Þm;hihi þ 2ðkm þ nþ 4Þðkm þ nþ 2ÞWðiÞ

ðnþ2Þm

þ ½ð1þ tiÞðkm þ nþ 2Þ � 2ð1� tiÞ�U
ðiÞ
ðnþ2Þm;hi

þ 2j2Gihi
Di

ðkm þ nþ 2ÞW ðiÞ
ðnþ2Þm

¼ 2j2Gihi
Di

W
ðiÞ
nm; ð10aÞ

2U
ðiÞ
ðnþ2Þm;hihi þ ð1� tiÞðkm þ nþ 4Þðkm þ nþ 2ÞUðiÞ

ðnþ2Þm

þ ½ð1þ tiÞðkm þ nþ 4Þ þ 2ð1� tiÞ�W
ðiÞ
ðnþ2Þm;hi

þ 2j2Gihi
Di

W
ðiÞ
ðnþ2Þm;hi

¼ 2j2Gihi
Di

U
ðiÞ
nm; ð10bÞ

W
ðiÞ
ðnþ2Þm;hihi þ ðkm þ nþ 2Þ2W ðiÞ

ðnþ2Þm

¼ ðkm þ nþ 2ÞWðiÞ
nm þ U

ðiÞ
nm;hi

; ð10cÞ

and

ð1� tiÞW
ðiÞ
0m;hihi

þ 2kmðkm þ 2ÞWðiÞ
0m þ ½ð1þ tiÞkm

� 2ð1� tiÞ�U
ðiÞ
0m;hi

þ 2j2Gihi
Di

kmW
ðiÞ
0m ¼ 0; ð11aÞ

2U
ðiÞ
0m;hihi

þ ð1� tiÞkmðkm þ 2ÞUðiÞ
0m þ ½ð1þ tiÞðkm þ 2Þ

þ 2ð1� tiÞ�W
ðiÞ
0m;hi

þ 2j2Gihi
Di

W
ðiÞ
0m;hi

¼ 0; ð11bÞ

W
ðiÞ
0m;hihi

þ k
2

mW
ðiÞ
0m ¼ 0: ð11cÞ

Again, to investigate the shear force singularity, one
only needs to consider the solution for W

ðiÞ
0m, W

ðiÞ
0m and

U
ðiÞ
0m. By employing a typical mathematical procedure for

solving a set of linear ordinary differential equations,
one is able to find the general solution of Eqs. (11a)–
(11c):

W
ðiÞ
0mðhi; kmÞ ¼ A

ðiÞ
1 cos kmhi þ A

ðiÞ
2 sin kmhi

þ A
ðiÞ
3 cosðkm þ 2Þhi þ A

ðiÞ
4 sinðkm þ 2Þhi; ð12aÞ

U
ðiÞ
0mðhi; kmÞ ¼ B

ðiÞ
1 cos kmhi þ B

ðiÞ
2 sin kmhi

þ A
ðiÞ
4 cosðkm þ 2Þhi � A

ðiÞ
3 sinðkm þ 2Þhi; ð12bÞ

W
ðiÞ
0mðhi; kmÞ ¼ l

ðiÞ
1 ðAðiÞ

1 cos kmhi þ A
ðiÞ
2 sin kmhiÞ

þ l
ðiÞ
2 ðBðiÞ

2 cos kmhi � B
ðiÞ
1 sin kmhiÞ; ð12cÞ

where

l
ðiÞ
1 ¼ �Di

2j2Gihi
ð3� ti þ ð1þ tiÞð1þ kmÞÞ;

and

l
ðiÞ
2 ¼ Di

2j2Gihi
ð2ð1� tiÞ � ð1þ tiÞkmÞ:

The characteristic value km and the coefficients A
ðiÞ
1 , A

ðiÞ
2 ,

A
ðiÞ
3 , A

ðiÞ
4 , B

ðiÞ
1 , and B

ðiÞ
2 are to be determined by satisfying

the radial boundary conditions and continuity condi-
tions.

4. Case study

As a demonstration of the procedure for determining
the characteristic values km and km, two examples will be
given: in one, singularities at the interface joint in bon-
ded dissimilar isotropic plates are considered; in the
other, singularities at the vertex of a bi-material wedge
with simply supported radial edges are investigated. The
effects of the material and geometric properties of the
plates on km and km will be discussed.
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4.1. Case I: Bonded dissimilar isotropic plates

Consider a plate composed of two isotropic materials
perfectly bonded together as shown in Fig. 2. The plate
is separated into two regions, each of which has its own
material properties and thickness. The solutions given in
Eqs. (8a)–(8c) and Eqs. (12a)–(12c) for moment singu-
larity and shear force singularity, respectively, have to
satisfy the continuity conditions along the two inter-
faces.

The continuity conditions are expressed in terms of
the displacement components, moments, and shear force
along the interfaces (see Fig. 2):

wð1Þðr; h1Þ
��
h1¼�a1=2

¼ wð2Þðr; h2Þ
��
h2¼�a2=2

; ð13aÞ

wð1Þ
r ðr; h1Þ

��
h1¼�a1=2

¼ wð2Þ
r ðr; h2Þjh2¼�a2=2

; ð13bÞ

wð1Þ
h ðr; h1Þ

���
h1¼�a1=2

¼ wð2Þ
h ðr; h2Þjh2¼�a2=2

; ð13cÞ

M ð1Þ
h ðr; h1Þ

���
h1¼�a1=2

¼ M ð2Þ
h ðr; h2Þjh2¼�a2=2

; ð13dÞ

M ð1Þ
rh ðr; h1Þ

���
h1¼�a1=2

¼ M ð2Þ
rh ðr; h2Þjh2¼�a2=2

; ð13eÞ

Qð1Þ
h ðr; h1Þ

���
h1¼�a1=2

¼ Qð2Þ
h ðr; h2Þjh2¼�a2=2

: ð13fÞ

Because of the symmetry of the domain and continuity
conditions considered here, Eqs. (8a)–(8c) and Eqs.
(12a)–(12c) can be divided into symmetric and anti-
symmetric deformation parts, respectively, both of
which must satisfy Eqs. (13a)–(13f).

4.1.1. Characteristic equation for moment singularity
Substituting the symmetric deformation part in Eqs.

(8a)–(8c) into Eqs. (13a)–(13f) yields six linear inde-
pendent homogeneous algebraic equations for the co-

efficients AðiÞ
1 , A

ðiÞ
3 , and CðiÞ

1 with i ¼ 1 and 2. This results
in a six by six determinant equal to zero, which is nec-
essary to have a non-trivial solution for these coeffi-
cients. With the aid of the symbolic logic software
program MATHEMATICA, the zero determinant re-
sults in km satisfying

fj2G1h1 cosððkm þ 1Þa2=2Þ sinððkm þ 1Þa1=2Þ
þ j2G2h2 cosððkm þ 1Þa1=2Þ sinððkm þ 1Þa2=2Þg ¼ 0;

ð14aÞ
or

fd1 sin kma1 sin kma2 þ d2 sin kma1 sin a2
þ d3 sin a1 sin kma2 þ d4 sin a1 sin a2
þ d5 cos kma1 cos kma2 � d5 cos a1 cos a2g ¼ 0; ð14bÞ

where

d1 ¼ D2
1ð�1þ t1Þ2ð1þ t1Þð�3þ t2Þ
� 2D1D2ð�1þ t1Þ2ð�1þ t2Þ2

þ D2
2ð�3þ t1Þð�1þ t2Þ2ð1þ t2Þ; ð15aÞ

d2 ¼ kmð1þ t2Þ½D2
1ð�1þ t1Þ2ð1þ t1Þ

� 2D1D2ð�1þ t1Þ2ð�1þ t2Þ
þ D2

2ð�3þ t1Þð�1þ t2Þ2�; ð15bÞ

d3 ¼ kmð1þ t1Þ½D2
1ð�1þ t1Þ2ð�3þ t2Þ

� 2D1D2ð�1þ t1Þð�1þ t2Þ2

þ D2
2ð1þ t2Þð�1þ t2Þ2�; ð15cÞ

d4 ¼ D2
1k

2
mð�1þ t1Þ2ð1þ t1Þð1þ t2Þ

� 2D1D2ð�1þ t1Þð�1þ t2Þð�4þ k2mð1þ t1Þ
� ð1þ t2ÞÞ þ D2

2k
2
mð1þ t1Þð�1þ t2Þ2ð1þ t2Þ;

ð15dÞ
d5 ¼ 8D1D2ð�1þ t1Þð�1þ t2Þ: ð15eÞ

It should be noted that the situation where km does
not satisfy Eq. (14b) but only satisfies Eq. (14a) causes
the coefficients AðiÞ

1 and AðiÞ
3 to vanish. The solution given

in Eqs. (4a)–(4c) degenerates to the solution given by
Eqs. (9a)–(9c), and no moment singularity will occur.
Consequently, Eq. (14a) is abandoned in this case, and
Eq. (14b) is the characteristic equation.

To verify the correctness of Eq. (14b), let us consider
a special case in which D1=D2 approaches zero and
compare the resulting characteristic equations with
published ones. As D1=D2 approaches zero, the charac-
teristic equation (14b) becomes

fð�3þ t2Þ sin kma2 þ kmð1þ t2Þ sin a2g
� fsin kma1 þ km sin a1g ¼ 0: ð16Þ

Physically, when D1=D2 approaches zero, region I (see
Fig. 2) reacts just like a wedge with two radial clamped
edges, and region II reacts like a wedge with two freeFig. 2. Interface corner in bonded dissimilar materials.
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Fig. 3. Variation of the minimum ReðkmÞ with D1=D2 for: (a) a1 ¼ 1�; 5�, and 30�; (b) a1 ¼ 90�; 150� and 170�.
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radial edges. Carefully examining Eq. (16) and the re-
sults of Burton and Sinclair [10] and Huang [11] reveals
that

ð�3þ t2Þ sin kma2 þ kmð1þ t2Þ sin a2 ¼ 0

and

sin kma1 þ km sin a1 ¼ 0

are, respectively, the characteristic equation for a wedge
with two free radial edges and that for a wedge with two
clamped radial edges in the case of symmetric defor-
mation.

Similarly, by substituting the anti-symmetric defor-
mation part in Eqs. (8a)–(8c) into Eqs. (13a)–(13f) and
performing lengthy mathematical operations, one finally
obtains the characteristic equation

� d1 sin kma1 sin kma2 þ d2 sin kma1 sin a2
þ d3 sin a1 sin kma2 � d4 sin a1 sin a2
� d5 cos kma1 cos kma2 þ d5 cos a1 cos a2 ¼ 0: ð17Þ

Apparently, the characteristic values km for Eqs.
(14a), and (17) are dependent on D1=D2, t1, t2, and a1
(or a2). Under the restriction that the real part of
km ðReðkmÞÞ exceeds zero, the variation of the minimum
ReðkmÞ with D1=D2 for t1 ¼ t2 ¼ 0:3 is shown in Figs.
3(a) and (b), in which (M) and (C), respectively, denote
the results for the Mindlin plate theory and classical

plate theory. Fig. 4 depicts the effect of Poisson’s ratios
on the solution for km. Notably, when t1 ¼ t2, the
minimum ReðkmÞ for D1=D2 ¼ v1 and a1 ¼ v2 is the same
as that for D1=D2 ¼ 1=v1 and a2 ¼ v2, where v1 and v2
are physically acceptable arbitrary constants. Similarly,
if regions I and II have the same Young’s modulus
and plate thickness, then the minimum ReðkmÞ for
ðt1; t2Þ ¼ ðv3; v4Þ and a1 ¼ v2 will be equal to that for
ðt1; t2Þ ¼ ðv4; v3Þ and a2 ¼ v2, where v3 and v4 are also
physically acceptable arbitrary constants.

Recalling that ReðkmÞ < 1 results in a moment sin-
gularity when r approaches zero, several facts are ob-
served from Figs. 3(a) and (b), and Fig. 4. When
D1 6¼ D2, the moment singularity always occurs for all
values of a1 considered in Fig. 3(a) and (b). Neverthe-
less, it should be noted that there will not be singularity
for a1 ¼ 0�; 180� or 360�. The singularity generally be-
comes stronger as D1=D2 moves further away from 1.
The singularity caused by unequal Poisson’s ratios alone
is rather weak.

To compare the present results with those from the
classical plate theory, Figs. 3(a) and (b) also depict the
results for the classical plate theory obtained using
William’s approach [19]. The comparison shows that
when a1 P 90�, the singularity is stronger for the
Mindlin plate theory when D1=D2 is less than one, while
the opposite situation is observed when D1=D2 exceeds

Fig. 4. Variation of the minimum ReðkmÞ with a1 for E1 ¼ E2 and h1 ¼ h2.
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one. For small a1 (say 6 5�), the two theories produce
very similar singularities for D1=D2 less than one, while
the Mindlin theory produces much stronger singularity
than the classical theory does for D1=D2 between 1 and
1000.

4.1.2. Characteristic equation for shear force singularity
Substituting the symmetric deformation part in Eqs.

(12a)–(12c) into Eqs. (13a)–(13f) and performing the
procedure employed in the previous section, one is able
to obtain the following characteristic equations for km:

G1h1 cosðkma2=2Þ sinðkma1=2Þ
þ G2h2 cosðkma1=2Þ sinðkma2=2Þ ¼ 0 ð18aÞ

for symmetric deformation and

G1h1 cosðkma1=2Þ sinðkma2=2Þ
þ G2h2 cosðkma2=2Þ sinðkma1=2Þ ¼ 0 ð18bÞ

for anti-symmetric deformation. When G1h1=G2h2 ap-
proaches zero, the two equations can also be reduced to
the characteristics equations for an isotropic and ho-
mogeneous wedge with clamped radial edges or free
radial edges [11]. Obviously, the resulting characteristic

value is dependent on G1h1=G2h2 and a1 (or a2) but is
independent of Poisson’s ratios.

Fig. 5 depicts the variation of the minimum ReðkmÞ
with G1h1=G2h2 for several values of a1. Some observa-
tions can be made from this figure. When G1h1 6¼ G2h2,
the shear force singularity always occurs for all values of
a1 considered in this figure. However, it should be noted
that no singularity will occur for a1 ¼ 0�; 180� or 360�.
The minimum ReðkmÞ for G1h1=G2h2 ¼ y1 and a1 ¼ y2
will be the same as that for G1h1=G2h2 ¼ 1=y1 and
a2 ¼ y2, where y1 and y2 are physically acceptable arbi-
trary constants. Hence, only some values less than 180�
for a1 are considered in this figure. The singularity be-
comes stronger as G1h1=G2h2 moves further away from
1. For very large or small G1h1=G2h2 (say,
G1h1=G2h2 > 1000 or G1h1=G2h2 < 0:001), the singular-
ity becomes stronger as a1 becomes smaller.

4.2. Case 2: A bi-material wedge with simply supported
radial edges

Consider a bi-material wedge as shown in Fig. 1 with
simply supported boundary conditions at h1 ¼ 0 and
h2 ¼ a2. The radial boundary conditions are wðiÞ ¼
wðiÞ

r ¼ M ðiÞ
h ¼ 0. The interface is perfectly bonded, and

Fig. 5. Variation of the minimum ReðkmÞ with G1h1=G2h2 for bonded dissimilar isotropic plates.
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the continuity conditions along the interface are the
same as those given in Eqs. (13a)–(13f) except that these
conditions are prescribed at h1 ¼ a1 and h2 ¼ 0.

4.2.1. Characteristic equation for moment singularity
Substituting the solution given in Eqs. (8a)–(8c) into

the boundary conditions and the continuity conditions
yields 12 linear independent homogeneous algebraic
equations for the coefficients AðiÞ

1 ;AðiÞ
2 ;AðiÞ

3 ;AðiÞ
4 ;CðiÞ

1 and
CðiÞ
2 with i ¼ 1 and 2. This results in a twelve by twelve

determinant equal to zero, which is necessary to have a
non-trivial solution for these coefficients. By using the
symbolic logic software program MATHEMATICA,
one is able to obtain the following characteristic equa-
tion for km that will produce moment singularities:

n1 sinðkm þ 1Þa2 cosðkm � 1Þa2 cosðkm þ 1Þa1
� sinðkm � 1Þa1 þ n2 sinðkm þ 1Þa2 sinðkm � 1Þa2
� cosðkm þ 1Þa1 cosðkm � 1Þa1 þ n3 sinðkm þ 1Þa2
� cosðkm � 1Þa2 sinðkm þ 1Þa1 cosðkm � 1Þa1
þ n2 cosðkm þ 1Þa2 cosðkm � 1Þa2 sinðkm þ 1Þa1
� sinðkm � 1Þa1 þ n4 cosðkm þ 1Þa2 sinðkm � 1Þa2
� cosðkm þ 1Þa1 sinðkm � 1Þa1 þ n5 cosðkm þ 1Þa2
� sinðkm � 1Þa2 sinðkm þ 1Þa1 cosðkm � 1Þa1 ¼ 0;

ð19Þ

where

n1 ¼ �½D1ð1þ kmÞð�1þ t21Þ � D2ð�3þ km þ t1

þ kmt1Þð�1þ t2Þ� � ½D1ð�1þ t1Þð3þ km

� t2 þ kmt2Þ � D2ð�1þ kmÞð�1þ t22Þ�; ð20aÞ

n2 ¼ �16D1D2ð�1þ t1Þð�1þ t2Þ; ð20bÞ

n3 ¼ ð�1þ kmÞ½D1ð�1þ t1Þ þ D2ð1� t2Þ�
� ½D1ð�1þ t21Þð3þ km � t2 þ kmt2Þ
� D2ð3þ km � t1 þ kmt1Þð�1þ t22Þ�; ð20cÞ

n4 ¼ ð1þ kmÞ½D1ð�1þ t1Þ þ D2ð1� t2Þ�
� ½D1ð�1þ t21Þð�3þ km þ t2 þ kmt2Þ
� D2ð�3þ km þ t1 þ kmt1Þð�1þ t22Þ�; ð20dÞ

n5 ¼ �½D1ð�1þ kmÞð�1þ t21Þ � D2ð3þ km � t1

þ kmt1Þð�1þ t2Þ� � ½D1ð�1þ t1Þð�3þ km

þ t2 þ kmt2Þ � D2ð1þ kmÞð�1þ t22Þ�: ð20eÞ

Apparently, the characteristic values km for Eq. (19) are
dependent on D1=D2; t1; t2, and a1 (or a2).

To confirm the correctness of the characteristic
equation, let us consider some special cases for the
material properties. When D1=D2 approaches zero, one
is able to reduce Eqs. (19) and (20a)–(20e) to the fol-
lowing equations through lengthy mathematical opera-
tions:

sin 2kma2 � km sin 2a2 ¼ 0; ð21aÞ

or

ð�3þ t1Þ sin 2kma1 � kmð1þ t1Þ sin 2a1 ¼ 0: ð21bÞ

Eq. (21a) happens to be the characteristic equation for
region II (see Fig. 1) with simply supported at one radial
edge and free at the other radial edge [10,11]. Eq. (21b)
is also the characteristic equation for region I with
simply supported at one radial edge and clamped at the
other radial edge [10,11]. These results are also expected
from the physical sense for D1=D2 approaching zero.
Similarly, by letting D2=D1 approach zero, one can also
reduce Eqs. (19) and (20a)–(20e) to the characteristic
equation for region I with simply supported and free
radial edges and to the characteristic equation for region
II with simply supported and clamped radial edges.
Furthermore, by letting D1 ¼ D2 and t1 ¼ t2, Eqs. (19)
and (20a)–(20e) can be reduced to the characteristic
equation for an isotropic and homogeneous wedge with
simply supported edges as given in [10,11].

Figs. 6 and 7, respectively, show the minimum pos-
itive real part of km for two general cases, which
commonly occur when dissimilar materials are jointed.
The first case is for the most favorable angle for the
interface when two dissimilar materials are joined to
give a half-plane (a1 þ a2 ¼ 180�). The second case is
for a2 ¼ 180�. Since Poisson’s ratios do not consider-
ably affect km, the results shown in Figs. 6 and 7 are for
t1 ¼ t2 ¼ 0:3.

It should also be noted that in the case of
a1 þ a2 ¼ 180�, the minimum ReðkmÞ for D1=D2 ¼ v1
and a1 ¼ v2 is the same as that for D1=D2 ¼ 1=v1 and
a2 ¼ v2, where v1 and v2 are physically acceptable ar-
bitrary constants. Hence, Figs. 6(a) and (b) only depict
the numerical results for some values of a1 less than 90�.
The results shown in Fig. 6(a) indicate that for very large
or small D1=D2 (say, D1=D2 P 105 or D1=D2 6 10�4), the
singularity becomes stronger as a1 becomes smaller.
There is no singularity for a1 ¼ 5� and D1=D2 between 1
and 2000, and no singularity for a1 ¼ 30� and D1=D2

between 1 and 10. It is also observed that there is no
singularity for D1=D2 6 1 and a1 ¼ 75�.

To further investigate the effect of a1 on the singu-
larity for the case of a1 þ a2 ¼ 180�, Fig. 6(b) shows the
variation of the minimum ReðkmÞ with a1 for
D1=D2 ¼ 10�4; 10�2, 0.1, 10, 100, and 104 when a1 is less
than 90�. For the values of D1=D2 considered here, there
is always a region for a1, where no moment singularity
exists. When D1=D2 6 0:1, no moment singularity exists
when a1 is larger than approximately 51�. When
D1=D2 ¼ 10 and 100, there are no singularities for
a1 6 30� and 15�, respectively, and there is no singularity
for D1=D2 ¼ 10000 and a1 6 2�.

Fig. 7 depicts the variation of the minimum ReðkmÞ
with D1=D2 for a1 ¼ 30�; 60�; 90�; 120�, and 150�, when
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Fig. 6. (a) Variation of the minimum ReðkmÞ with D1=D2 for a wedge with a1 þ a2 ¼ 180�. (b) Variation of the minimum ReðkmÞ with a1 for a wedge
with a1 þ a2 ¼ 180�.
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a2 ¼ 180�. These results reveal that the singularity al-
ways occurs. The weakest singularity for each a1 value
occurs in the range of D1=D2 between 1 and 5. As D1=D2

moves further away from that range, the singularity
becomes stronger.

4.2.2. Characteristic equation for shear force singularity
Substituting the solution given in Eqs. (12a)–(12c)

into the boundary conditions and continuity conditions,
one is able to find the following characteristic equation
for a shear force singularity:

G2h2 cos kma2 sin kma1 þ G1h1 cos kma1 sin kma2 ¼ 0:

ð22Þ
As found in the case of bonded dissimilar isotropic
plates, the solution km of the characteristic equation is
dependent on G1h1=G2h2 and a1 (or a2), but is indepen-
dent of Poisson’s ratios.

It should also be mentioned that as G1h1=G2h2 or
G2h2=G1h1 approaches zero, Eq. (22) degenerates to the
characteristic equations for a wedge with clamped and
simply supported radial edges and for a wedge with free
and simply supported radial edges, which are consistent
with those given in [11]. Furthermore, when G1h1 ¼
G2h2, Eq. (22) degenerates to the characteristic equation
for a wedge with simply supported radial edges as given
in [11], which will produce the same shear force singu-
larity as that found in the exact solution for the vibra-

tions of sector plates with simply supported radial edges
[11,20].

Fig. 8 shows the variation of the minimum
ReðkmÞ with G1h1=G2h2 for a1 ¼ 5�; 30�; 45�, and 75�
with a1 þ a2 ¼ 180�, while Fig. 9 depicts the variation
of the minimum ReðkmÞ with G1h1=G2h2 for a1 ¼
30�;60�; 90�; 120�, and 150� with a2 ¼ 180�. The re-
sults shown in Fig. 8 indicate that there is no shear
force singularity for G1h1=G2h2 exceeding (or equal to)
one, while the singularity always occurs for G1h1=G2h2
less than one. Furthermore, the singularity becomes
stronger as G1h1=G2h2 decreases. For very small
G1h1=G2h2, the singularity becomes stronger as a1 de-
creases.

The results shown in Fig. 9 reveal that the singularity
always occurs for all G1h1=G2h2. The singularity be-
comes weaker as G1h1=G2h2 becomes larger. As
G1h1=G2h2 gets smaller and approaches zero, the mini-
mum ReðkmÞ approaches 0.5, which is the characteristic
value for a clamped-simply supported isotropic and
homogeneous wedge with an opening angle equal to
180� [11]. When G1h1=G2h2 becomes larger and ap-
proaches infinity, the minimum ReðkmÞ approaches one
for a1 less than (or equal to) 90�, while the values of the
minimum ReðkmÞ for a1 ¼ 120� and 150�, respectively,
approach the characteristic values for clamped-simply
supported isotropic and homogeneous wedges with
corresponding corner angles.

Fig. 7. Variation of the minimum ReðkmÞ with D1=D2 for a wedge with a2 ¼ 180�.
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Fig. 8. Variation of the minimum ReðkmÞ with G1h1=G2h2 for a wedge with a1 þ a2 ¼ 180�.

Fig. 9. Variation of the minimum ReðkmÞ with G1h1=G2h2 for a wedge with a2 ¼ 180�.
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5. Concluding remarks

This paper has presented an eigenfunction expansion
solution procedure for bi-material plates (wedges) based
on the Mindlin plate theory. The stress resultant sin-
gularities of the William’s type at the interface corner
have been determined from the asymptotic solution
satisfying radial boundary conditions and continuity
conditions. The singularities of moments and shear
forces have been independently investigated, starting
from different solution forms.

The present solution procedure has been applied to
investigate singularities at the interface corner of per-
fectly bonded dissimilar isotropic plates and singulari-
ties at the vertex of a bi-material wedge with simply
supported radial edges. The first known characteristic
equations for determining the singularity orders of
moments and shear forces have been explicitly given.
The order of moment singularity is dependent on the
flexural rigidity radio ðD1=D2Þ, Poisson’s ratios (t1 and
t2), and corner angles for each material (a1 and a2),
while the order of shear force singularity depends on
G1h1=G2h2, a1 and a2. However, it seems that the sin-
gularity order of moment is not significantly affected by
Poisson’s ratios. In certain special cases, such as when
D1=D2 or G1h1=G2h2 approaches zero, these character-
istic equations degenerate to those for an isotropic and
homogeneous wedge with corresponding radial bound-
ary conditions. The singularity order for the Mindlin
plate theory is generally different from that for the
classical plate theory, based on a comparison of the
results for bonded dissimilar isotropic plates.

The present solution procedure can be easily extended
to find the singularity orders of moments and shear
forces for wedges with other radial boundary conditions
or wedges composed of more than two materials. The
asymptotic expression for displacement components
that results in moment and shear force singularities can
also be further developed. The obtained singularity or-
ders for moments and shear forces, and the asymptotic
displacement fields will be very important and useful for
further numerical analysis (i.e., using the finite element
approach or Ritz method) of complex problems in-
volving multi-material corners.
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