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The original S-boxes and algorithms of DES are designed to resist differential at-
tack[11]. We propose eight more new S-boxes with the same cryptographic properties as
S-boxes in DES. These 16 S-boxes are used to construct the extended DES, which is
double the size of the original DES. The differential and linear cryptanalyses of the ex-
tended DES are given. The complexities of the two attacks are found to be 2112 and 2142

respectively.

Keywords: cryptography, DES, extended DES, differential attack, linear attack, S-box

1. INTRODUCTION

DES is one of the most popular block ciphers. It is a block cipher encrypting 64 bits
of data block with a 56-bit key size. The small key size and increased computing power
of modern computers make DES unsafe even under exhaustive search attack. Therefore,
a cipher based on DES with a larger key size is necessary.

Each S-box consists of four boolean functions mapping from 6-bit input data to
4-bit output data. It is the major part of DES which defends against cryptanalysis.
S-boxes are designed to defend against differential attack [11]. In addition to the design
criteria that have been made public, many cryptographic properties of S-box have been
studied [1, 4, 5, 10].

Differential attack [7] makes use of the exclusive-or difference of plaintext and ci-
pher pairs. It estimates the probability that certain a plaintext difference will result in a
certain ciphertext difference, by estimating the probability of intermediate difference
patterns in the DES algorithm. This exclusive-or difference sequence of plaintext, inter-
mediate state, and ciphertext is the characteristic. A plaintext pair is the right pair for a
characteristic if their xor sequence in encryption is the same as the characteristic. Right
pairs could be used to analyze the correct key value but the analysis of wrong pairs sug-
gests random values. To reduce the complexity of differential attack, one has to find a
high probability characteristic.

Biham and Shamir showed that DES can be broken by a differential attack involv-
ing 247 chosen plaintexts or 255 known plaintexts. Many modified variants of DES result
in a weaker DES-like cipher [7]. DES with independent sub keys can be broken by a
differential attack involving 260 chosen plaintexts or 261 known plaintexts.
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To increase the key size without lossing strength against differential attack, eight
more S-boxes are proposed. They have the same cryptographic properties and design
criteria of the original S-boxes. These 16 S-boxes are used to construct the extended DES,
which has a 112-bit key size.

2. PROPERTIES OF S-BOXES

An approach to generating new S-boxes is to construct S-boxes using 4 small boo-
lean functions, which are called as row function defined in section 2.1. Each row func-
tion is a boolean function mapping 4-bit data to 4-bit output data. A new S-box similar to
the original S-box, for example S-box i + 8, can be constructed by 4 row functions that
have the same cryptographic properties as the row functions of S-box i, where i = 1, …,
8.

An exhaustive search for row functions can be used to construct 8 more new
S-boxes the same as the original S-boxes in terms of their cryptographic properties.

2.1 S-Boxes

Let x be a bit string, and let |x| denote the number of bits in x. Three operations, ∨, ∧,
and �, are defined as the bit-wise “OR,” “AND” and “Exclusive-OR,” respectively.
Throughout this paper we will assume that each value is a bit string of length n unless
otherwise indicated. Let h be a hamming function; i.e., h(x) is the number of 1’s in x. A
value v is called a unit if h(v) = 1. The ith unit is denoted as Ui if Ui is a unit and the ith
bit of Ui is 1. Let N = {0, 1, …, 15}.

An S-box in DES is a function f from X to Y, where X and Y are the sets of bit
strings of lengths 6 and 4, respectively, satisfying the following criteria [11]:

a. Each row is a permutation on N and is called row function. There are 4 rows in an
S-box.

b. It is a nonlinear function and not an affine function.
c. h(f(x)�f(x�Ui)) ≥ 2, where i = 1, …, 6.
d. ∀x ∈ X, h(f(x)�f(x�001100)) ≥ 2.
e. ∀x ∈ X, f(x) �f(x�11ef00) for e, f ∈ {1, 0}.
f. If the value of any single input bit is fixed, then the number of inputs for which

any fixed output bits has the value 0 (or 1) is “close” to 25/2 = 16. In other words,
an S-box is a 1-order 0-1 balance in tolerance 3 function as will be discussed lat-
ter.

These criteria are needed to defend against differential cryptanalysis in DES. Any
violation will weaken DES.

2.2 Notations and Definitions

Let f be a boolean function from X to Y, where X and Y are the sets of bit strings of
lengths n and m, respectively. Let f = (f1, …, fm), where fi is a mapping from X to {0, 1},
for i = 1, …, m. We shall define the following terms.
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1) Output sequential function(Seq)[1]: Pi(Seq(fj)) = fj(i) for some j, i, x ∈ X, Pi(x)
is the ith bit in x. That is, Seq(fj) represents the output sequence bit string of fj.

2) An affine function (af) from X to {0, 1}: af(x) = h(a ∧ x) + c mod 2, where c is a
constant in {1, 0}, x ∈ X, and a is a constant bit string. There are a total of 2n+1

affine functions.[1]
3) Nonlinearity (N) of fi [4]: N(fi) = minaf h(Seq(fi)�Seq(af)).
4) Global nonlinearity (GN) of f[5]: GN(f) = ∑iN(fi).

5) Completeness[2]: The boolean function f is complete if SAC-map[i, j]�0 for
every i, j where SAC shall be defined later.

6) 0-1 Balance[1]: If∑ =
x

if )x( 2n-1 for i = 1, …, m, then f is called 0-1 balance.

7) Linear structure[3]: If fi(x)�fi(x�c) is a constant for all x and for any i, i.e.,

,
2

0
)cx(f)x(f in

x
ii ∀


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=⊕⊕∑ then c is called a linear structure of f. If c is a

linear structure, the value f(x)�f(x�c) is the same for all x. A linear structure
in S-boxes can be used to attack DES. If the value f(x)�f(x�c) is the same for
most x, then c is a linear-like structure. Evertse found that a linear-like structure
in S-boxes can be used to break 6 round DES.

8) Strict Avalanche Criterion[2]: If 12)Ux(f)x(f −=⊕⊕∑
n

x
ijj for i = 1, …, n, j =

1, …, m, then f is an SAC function.
9) An SAC-map is an n X m matrix, and each entry SAC-map[i, j] =∑ ⊕

x
j )x(f

)Ux(f ij ⊕ for i = 1, …, n, j = 1, …, m.
10) A perfect SAC-map is an SAC-map, where SAC-map[i, j] = 2 n-1 for all i, j. If an

SAC-map of f is a perfect SAC-map, then f is an SAC function [2]. From the
design criteria of S-boxes, it is impossible to find a perfect SAC-map.

However, an S-box close to a perfect SAC-map is still novel. We define three
SAC-map estimate distances to indicate the SAC degree of a function:

11) Global SAC-map distance(GD): GD(f) = ((∑
ji,

SAC( -map[i, j] − 2n-1)2)/(m*n))1/2.

12) Input SAC-map distance(ID): ID(f) = (∑ ∑
i j

SAC(( -map[i, j]) − m*2 n-1) 2)/n) 1/2.

13) Output SAC-map distance(OD): OD(f) = (∑ ∑
j i

(( SAC -map[i, j]) − n*2n-1)2)/m)
1/2.

14) 0-1 Balance in the tolerance T: The function f satisfying 2 n-1 − T ≦∑
x

i xf )( ≦ 2 n-1

+ T, for i = 1, …, m, is called 0-1 balance in the tolerance T if T is the minimal
value needed to satisfy the above inequality equation. Obviously, f is 0-1 bal-
ance if T = 0. The tolerance T is a value used to show the 0-1 balance degree of
a function.

15) Linear structure in the tolerance Tc: A constant c is called a linear structure in
the tolerance Tc if Tc = |}2)cx(f)x(f{|max 1n−−⊕⊕∑

x
ii

i
. Tc is the linear struc-

ture in the tolerance for c. The linear structure in the tolerance of f is T if T =
}.T{max c

c
This linear structure tolerance value of f is indicates how close a lin-

ear-like structure is that can be found.
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16) Mask(x, M) returns a string which is the substring obtained by discarding some
bits of x. For any bit whose value is 1 in M, the corresponding bits of x are dis-
carded.

Take(x, M) returns a string which is the substring obtained by discarding some bits
of x. For any bit whose value is 0 in M, the corresponding bits of x are discarded.

For example, the underlining bits in first argument are discarded:

Mask(101001, 000111) = 101 and Take(101001, 000111) = 001.

t-order sub function of f:
Given two values M, M’, where h(M) = t |M| = n and |M’| = t, we can define a func-

tion ft
M,M’ : 2n-t → 2m ;

ft
M,M’(x’) = f(x), where mask(x, M) = x’, take(x, M) = M’.

t-order decomposition of f:
Given a value M, where h(M) = t, the t-order decomposition of f is a set of functions

{ft
M,M’ |M` ∈ 2t}. Each element in this set is a t-order sub function of f with mask M.

17) A function f with the t-order property B: If all t-order sub functions of f are
functions satisfying the property B, then f is a function with the t-order property
B. For example, a t-order complete boolean function is a boolean function all of
whose t-order sub functions are complete. Other t-order properties are also de-
fined in the same way. (Note that B in “property B” is the name of the property.)

18) A DDT map is the difference distribution Table [7] of a function. It is an output
xor distribution map. For any a ∈ X, b ∈ Y, DDT[a, b] is the number of ele-
ments in the set, {z| z ∈ X, ∋ x ∈ X such that x�z = a and f(x)�f(z) = b}.
Moreover, two functions f1, f2 are semi-similar if the zero columns of their
DDT maps are the same, i.e., DDTf1[a, 0] = DDTf2[a, 0] for any a.

2.3 Coupling Rows and Construction of S-boxes

An S-box is composed of 4 rows and a special 2-order sub function of the S-box.
The four rows of an S-box is a 2 order decomposition of the S-box where m = 100001.
The row(s, i) represents the ith row of S-box #s, for i = 1, ..., 4.

Four special 1-order functions can be determined by ignoring the leftmost or the
rightmost bit where m = 100000 or 000001 in the mask function. They are called the cou-
pling-rows composed by two rows. The number of input bits in an S-box is 6 while the
number of input bits in the corresponding coupling rows is 5. The couple-row(s, i, j)
represents the coupling-rows composed by ith and jth row functions in the S-box #s. The
possible values for (i, j) in the couple-row(s, i, j) are (1, 3), (2, 4), (1, 2), and (3, 4) which
are also called couple-rows1, couple-rows2, couple-rows3, couple-rows4, respectively.
Two types of the coupling rows can be defined. The Type-I of the coupling-rows which
are the 1-order decomposition of S-box #s where m = 100000 are the couple-row(s, 1, 3)
and the couple-row(s, 2, 4). The Type-II of the coupling-rows which are the 1-order de-
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composition of S-box #s where m = 000001 are the couple-row(s, 1, 2) and the cou-
ple-row(s, 3, 4). The 5th input bit and 1st input bit are used to indicate the selected row in
Type-I and Type-II coupling rows respectively. Output is decided by other input bits.

An S-box can be decomposed into the two coupling-rows. If we want to construct a
S-box similar as DES S-box 1,for example, the basic approach to construct the S-box is
to select rows with similar properties as S-box 1 from the 16!, the number of permuta-
tions on N, search spaces. These rows are used to construct the Type-I of the coupling
rows which still have similar properties as the corresponding Type-I coupling-rows of
S-box 1. The well-selected rows to construct the Type-I of the coupling-rows are very
important because the construction of an S-box is based on the coupling-rows. After an
S-box is formed, two corresponding Type-II coupling rows are occurred. Next we will
test the two Type-II coupling rows to see if they have similar properties as Type-II cou-
pling rows of S-box 1. The two types of the coupling-rows must all have similar proper-
ties as in S-box 1, otherwise the S-box taken should not be considered and we have to
find another one by repeating the previous processes.

In the section 2.2, we define many mathematical properties that can be applied to a
non-specific boolean function. The definitions 1, …, 15 can be used to test whether two
row functions or coupling-rows functions have similar properties.

2.4 New S-box Properties

8 new S-boxes are proposed in and listed in the following tables. Table 1 shows the
similarity between the new S-boxes and original S-boxes. S-boxi+8 is cryptographically
similar to S-boxi, i = 1, …, 8, and they are also semi-similar. The new S-boxes are listed
in Table 2 which is also a comparison between the original and new S-boxes.

Table 1. The similarity of new and original S-boxes.

Our design Original LST B1 B2
C

order GD ID OD L1 L2 L3 L4 GL
None-zer

o
rate

S-box #9 S-box #1 20 3 3 1 9.31 32.25 46.56 18 20 22 18 78 79.4%

S-box #10 S-box #2 28 3 3 1 11.22 35.81 56.32 22 20 18 18 78 78.6%

S-box #11 S-box #3 24 3 4 1 12.65 41.70 63.62 18 22 20 18 78 79.6%

S-box #12 S-box #4 12* 3 2* 2* 8.16* 32.66 44.00 22 22 22 22 88 68.5%

S-box #13 S-box #5 20 3 2* 1 9.90 35.81 55.32 22 20 18 20 80 76.5%

S-box #14 S-box #6 24 3 3 1 11.31 38.85 59.53 20 20 20 20 80 80.4%

S-box #15 S-box #7 24 3 3 1 12.17 43.45 65.18 18 22 14 20 74 77.2%

S-box #16 S-box #8 20 3 2* 1 10.95 38.71 56.21 22 20 20 22 84 77.1%

LST: Linear structure tolerance.
B1: First order 0-1 balance tolerance.
B2: Second order 0-1 balance tolerance.
C order: Maximum order of completeness.
GD: Global SAC-map distance.
ID: Input SAC-map distance.
OD: Output SAC-map distance.
Li: Nonlinearity of output bit i.
GL: Global nonlinearity.
None-zero rate: Percentage of none zero entry in the DDT map.
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Table 2. Extended S-boxes.

3 0 9 7 15 12 6 11 14 13 2 1 5 10 8 4
0 3 5 8 9 15 12 6 13 10 11 7 14 4 2 1
15 5 12 2 0 11 9 14 4 3 1 8 10 6 7 13
9 15 0 5 10 6 3 8 2 12 13 11 4 1 14 7

S-box #9

1 10 15 12 8 3 6 5 13 4 0 7 14 9 11 2
4 7 10 0 15 9 1 12 8 14 3 13 5 2 6 11
2 5 4 10 7 12 9 3 11 8 14 1 13 6 0 15
7 0 9 3 4 15 10 6 2 13 5 14 11 8 12 1

S-box #10
15 4 12 1 5 10 2 13 3 8 6 11 0 7 9 14
6 13 15 2 8 4 5 11 0 7 9 12 3 10 14 1
4 13 15 10 2 1 8 6 14 3 0 5 11 12 7 9
13 3 1 4 11 14 2 8 7 10 12 15 0 5 9 6

S-box #11

10 7 15 12 4 2 1 11 0 13 5 3 9 14 6 8
6 13 12 0 1 7 11 14 3 8 9 15 10 4 5 2
4 1 2 11 15 12 8 6 7 10 14 5 0 9 13 3
1 11 7 14 12 0 2 5 13 6 4 9 3 10 8 15

S-box #12
4 7 1 12 14 11 8 2 13 10 6 9 0 5 3 15
13 0 2 7 4 14 1 11 3 12 5 10 15 9 8 6
10 1 12 11 9 2 7 14 6 13 15 4 5 8 0 3
7 11 9 4 2 1 14 13 0 6 10 3 12 15 5 8

S-box #13

2 14 15 0 12 11 9 5 4 13 8 3 1 6 7 10
12 5 9 10 7 0 2 15 3 6 14 13 8 11 4 1
12 2 3 14 15 4 10 9 11 1 5 8 6 13 0 7
1 15 12 5 10 9 7 2 6 8 0 14 3 4 13 11

S-box #14
13 2 4 7 3 12 8 1 0 15 14 9 5 10 11 6
3 8 14 13 9 2 5 11 15 4 0 10 12 7 6 1
2 11 8 13 15 0 4 14 12 5 1 6 10 3 7 9
13 6 1 8 2 11 14 5 10 9 12 3 7 4 0 15

S-box #14

12 2 10 7 1 4 15 8 11 14 0 9 13 3 6 5
2 1 9 4 7 14 12 11 13 8 3 15 10 5 0 6
1 11 15 8 4 13 2 7 14 0 5 6 3 10 9 12
11 13 6 1 8 2 5 14 4 7 10 12 15 9 3 0

S-box #16

3. THE EXTENDED DES

The extended DES is very similar to DES. It has exactly the same data flow and is
based in the concept of DES. Eight more S-boxes are used in the extended DES to double
the size. Some modifications must be made to the P-box and key scheduling algorithms.

3.1 Algorithm of the Extended DES

The extended DES encrypts a 128-bit data block using 112 key bits. All data bits go
through an initial permutation (IP block in Fig. 1). The data bits are then split into two
64-bit data blocks that are right and left data blocks. These two data blocks then go
through 32 identical rounds. As shown in Fig. 1, there is no swap of the two data blocks
in the last round. After the last round, the two data blocks are combined to form a 128-bit
block. The result will be through the inverse initial permutation.

In each round, the right data block and 96-bit sub-key (Ri-1 and Ki in Fig. 2) are
combined by a round function called F. The output of F is then combined with the left
part data block by an xor operation. The two data blocks swap in the next round.

Fig. 2 shows the function F in detail. The 64-bit right data block is expanded to 96
bits by means of expansion permutation (the expansion block shown in Fig. 2). After
combining with the 96-bit sub-key, the 96-bit data is distributed to all 16 S-boxes as in-
put. Each S-box has 4 output bits. Therefore, 64-bit data is used in the next step. This is
P-box permutation. Note that the elliptic shadowed area shown in Fig. 2 is a round of
function F shown in Fig. 1.
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R31 =L30⊕ F(R30,k31)

128-bit Plaintext

IP

F(R0,K0)
R0L0

F(R1,K1)
R1=L0⊕ F(R0,k1)L1

K1

K2

F(R31,K32)

L31

K32

IP-1

128-bit Ciphertext

S-boxes

P-box

F(Ri-1,Ki)

Ri-1
Li-1

Ri
Li

Ki

112-bit key

shift shift

Key compression

112-bit key

Expansion

Fig. 1. 128-bit extended DES. Fig. 2. One round of 128-extended DES.

The real key size of the extended DES is 112 bits. The key-scheduling algorithm
generates a different 96-bit sub-key in each round. The key-scheduling algorithm of the
extended DES is the same as the one of DES except that the key initial permutation, key
compression permutation and shift permutation are replaced by those shown in Table 3,
Table 4 and Table 5 respectively.

Table 3. Key initial permutation. Table 4. Key compression permutation.

121 113 105 97 25 17 9 31 17 2 24 42 10
57 49 41 33 89 81 73 43 50 34 14 1 26

1 122 114 106 98 26 18 44 28 13 53 20 6
65 58 50 42 34 90 82 45 12 37 5 52 23
10 2 123 115 107 99 27 36 19 27 11 3 48
74 66 59 51 43 35 91 29 38 47 15 7 54
19 11 3 124 116 108 100 22 8 33 56 49 40
83 75 67 60 52 44 36 51 25 18 39 32 9

127 119 111 103 31 23 15 76 91 62 107 83 69
63 55 47 39 95 87 79 82 89 68 100 60 75

7 62 118 110 102 30 22 80 57 73 65 94 105
71 126 54 46 38 94 86 90 108 101 59 74 66
14 6 61 117 109 101 29 92 77 85 99 106 61
78 70 125 53 45 37 93 104 81 112 70 88 97
21 13 5 28 20 12 4 63 96 103 110 71 87
85 77 69 92 84 76 68 111 86 102 95 78 64
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Table 5. Shift permutation.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Rotations 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

3.2 Permutations in the Extended DES

The following tables list the permutations used in the extended DES. These tables
should be read from left to right and from top to bottom. For example, Table 6 shows the
initial permutation (the IP block shown in Fig. 1). After the initial permutation, the 114th

data bit is permuted to the first bit, and the 82th data bit is permuted to the third bit.

Table 6. Initial permutation(IP). Table 7. Expansion permutation.

114 98 82 66 50 34 18 2 64 1 2 3 4 5
116 100 84 68 52 36 20 4 4 5 6 7 8 9
118 102 86 70 54 38 22 6 8 9 10 11 12 13

120 104 88 72 56 40 24 8 12 13 14 15 16 17

122 106 90 74 58 42 26 10 16 17 18 19 20 21

124 108 92 76 60 44 28 12 20 21 22 23 24 25

126 110 94 78 62 46 30 14 24 25 26 27 28 29

128 112 96 80 64 48 32 16 28 29 30 31 32 33

113 97 81 65 49 33 17 1 32 33 34 35 36 37

115 99 83 67 51 35 19 3 36 37 38 39 40 41

117 101 85 69 53 37 21 5 40 41 42 43 44 45

119 103 87 71 55 39 23 7 44 45 46 47 48 49

121 105 89 73 57 41 25 9 48 49 50 51 52 53

123 107 91 75 59 43 27 11 52 53 54 55 56 57

125 109 93 77 61 45 29 13 56 57 58 59 60 61

127 111 95 79 63 47 31 15 60 61 62 63 64 1

4. DIFFERENTIAL CRYPTANALYSIS OF THE EXTENDED DES

The reader is expected to be familiar with differential cryptanalysis and the corre-
sponding full 16-round attack on DES [7]. Any pair of encryptions forms a characteristic.
A characteristic is the xor value of the two plaintexts, the xor value of the two ciphertexts,
and the xor of the two input and output values of F-function in every round.

The 2-round iterative characteristic interchanges the left and right parts after 2
rounds of DES-like cryptosystems. The characteristic works as shown in Fig. 3.

For a pair of plaintexts to be a 2-round characteristic, two outputs of the F-function
must be the same. In addition, the two inputs of the F-function must differ in at least 3
neighboring S-boxes [8] which are called active S-boxes. Moreover, a smaller number of
active S-boxes results a higher probability that a 2-round characteristic will exist. The
probability of a 2-round characteristic depends only on the zero column of the S-boxes.
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Table 8. Reverse initial permutation(IP-1). Table 9. P-box permutation.

72 8 80 16 88 24 96 32 16 39 52 21
104 40 112 48 120 56 128 64 61 44 60 49
71 7 79 15 87 23 95 31 33 15 55 58

103 39 111 47 119 55 127 63 5 18 31 42
70 6 78 14 86 22 94 30 2 8 24 14

102 38 110 46 118 54 126 62 32 27 35 9
69 5 77 13 85 21 93 29 19 45 62 38

101 37 109 45 117 53 125 61 54 11 4 25
68 4 76 12 84 20 92 28 48 7 20 53

100 36 108 44 116 52 124 60 29 12 28 17
67 3 75 11 83 19 91 27 1 47 23 26
99 35 107 43 115 51 123 59 37 50 63 10
66 2 74 10 82 18 90 26 34 40 56 46
98 34 106 42 114 50 122 58 64 59 3 41
65 1 73 9 81 17 89 25 51 13 30 6
97 33 105 41 113 49 121 57 22 43 36 57

Fig. 3. 2-round characteristic of DES.

In this work, every new S-box is a semi-similar type of original S-boxes. That is,
DDTS-boxi+8[x, 0] = DDTS-boxi[x, 0] for i = 1, …, 8 x = 0, …, 64. Therefore, the best prob-
ability that a 2-round iterative characteristic will exist in the extended DES is exactly the
same as in DES.

The 2-round iterative characteristics were used by Biham and Shamir [7] as the best
characteristics in a differential attack designed to break DES. Some researchers have
concluded that this is, in fact, the case [8]. The characteristic (ψ, 0) = 19 60 00 00 00 00
00 00x used in [7] can be used in differential cryptanalysis of the extended DES with
some modification.

(ψ, 0) = 00 00 00 00 19 60 00 00x

(ψ, 0) = 19 60 00 00 00 00 00 00x
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The differential crytanalysis of the full 32-round extended DES is base on Biham
and Shamir’s work [7]. Fig. 4 shows how the extended DES could be analyzed. The
2-round iterative characteristic “19 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00x” is

used in rounds 2 to 30, and the overall probability is about 2.110
14

2
234

1 −=






 . Note that the

probability of the 2-round characteristic is the same as the probability of the characteris-
tic used in [7]. We will show that the extended DES using 16 S-boxes can also be broken
by Biham’s method of differential attack toward DES using 8 S-box. That is, the 32
rounds of the extended DES give more security then 16 rounds of DES. The additional
round will not reduce the probability of the characteristic by the following method.

The output xorυ of the first round shown in Fig. 4 has only 12 non-zero bits, and
there are in total 212 such values. Biham constructed 213 plaintexts by choosing an arbi-
trary plaintext P and defined

)0,( ii PP υ⊕= , ),0())0,(( ψυ ⊕⊕= ii PP for 0 ≤ i < 212.

For any i, there must be a j that makes the first round output xor of the plaintext
pair ),( ji PP equal to )( ji υυ ⊕ , which is a possible value ofυ . Therefore, there are 212

such plaintexts out of the 224 pairs. If we can examine these 224 pairs in the order of 212,
then the probability of the first round characteristic can be ignored. If the pair ),( ji PP is
the desired pair, then there are 4*13 zero-bits in the round 32 input xor shown in Fig. 4.
All 212 plaintexts jP are hashed by these zero-bits. For a plaintext Pi, a constant time hash
table lookup is used to examine if any jP forms the desired zero xor value in these bits.

The counting algorithm used by Biham and Shamir does not employ a counter. In
this work, the counting algorithm is similar to Biham’s work, but more then one key
value will be analyzed for each pair. If the output xor and the non-zero input xor of an
S-box are known and if the input value is also known, the number of possible key used
by the S-box can be reduced from 64 to 4 [7]. In Fig. 4, the input and output xor pairs of
S-box1, 2 and 3 in round 1 are known, which give 4 possible keys of each active S-box
[7]. In addition, the input and output xor pairs of the last round are also known, which
also give 4 possible keys of each S-box in the last round except S-box 1 and S-box 2
which have zero input xor values. Some key bits of S-box1, 2 and 3 in round 1 are used
by S-box1, S-box2, …, S-box8 in round 32. The counter algorithm makes use of the
common key bits in the first and last round to further reduce the number of possible keys.

For two S-boxes, S1 and S2, the numbers of possible keys are m and n, respectively,
and K1i, K2j are the possible key values of S1, S2, respectively, where i = 1, …, m and j =
1, …, n. Suppose they share k common key bits. The numbers of possible keys for the
S-box can be reduced if the possible keys have different common key bit values in S1
and S2. The probability that K1i and K2j have different common key bit values is .

2
11 k−

For any i, j. The expected number of possible keys for S1 that has the same common key
bit value as S2 is:

m • (1 − ).)
2

11( n
k− (4.1)

Table 10 lists the common key bits of S-box1, S-box 2 and S-box 3 in round 1 and
S-box1, S-box2, …, S-box8 in round 32. Using Eq. 4.1, the number of possible key val-
ues of S-box 1, …, S-box 8 in round 32 can be calculated, and the results are shown in
Table 11.
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Fig. 4. Differential attack on the full 32 round extended DES.

P’ = (P’L, P’R) = (υ, ψ)

T’ = (T’L, T’R)

G’=h’=T’R
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T’L⊕ψ

h’ = T’R
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round

The 29-round
characteristic with
probability 2-110.2

Two round
for the 2R-attack



YI-SHIUNG YEH AND CHING-HUNG HSU360

Table 10. Number of common key bits. Table 11. Number of possible keys after
reduction.

S-box 1 S-box 2 S-box 3 Possible key # Reduced key #
S-box 1 0 1 0 S-box 1 64 49.7
S-box 2 1 0 1 S-box 2 64 26.7
S-box 3 0 1 0 S-box 3 4 3.7
S-box 4 0 0 1 S-box 4 4 3.7
S-box 5 1 1 0 S-box 5 4 3.5
S-box 6 0 1 3 S-box 6 4 1.4
S-box 7 0 0 0 S-box 7 4 4
S-box 8 3 1 0 S-box 8 4 1.4

By analyzing the common key bits in round 1 and 32, the number of possible keys
for S-box 1, …, S-box 8 in round 32 can be reduced to about 500000. The number of
possible keys for S-box9, …,16 in round 32 is 48.

The signal to noise ratio is the ratio of the number of right pairs to the average count
of incorrect subkeys. When the ratio is high enough, only a few right pairs are needed to
identify the subkey. Biham observed that 4 right pairs are needed for a higher ratio and
about 40 right pairs are needed for a ratio value of 1-2 to break DES. In Fig. 4, only the
three active S-boxes in round 31 have non-zero xor value of output bits. There are (16 −
3) * 4 = 52 output bits which have zero xor values. Thus, only m*2-52 pairs are analyzed
among m chosen plaintexts. The counting algorithm analyzes 96 bits of key (the sub-key
in the last round) and gives about 235 possible keys for each analyzed plaintext pair. The
S/N ratio is

.2

2
22

2 3

96

3552

110

=
••

•=
−

−

m

m
NS

On average, 4 right pairs out of 2112 chosen plaintext pairs are needed. 296 counters
are used in the counting algorithm. Using the quartet structure [7] and another character-
istic “1B 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00x,” the number of plaintexts
needed can be reduced by half. Therefore, about 2112 chosen plaintexts are needed to find
enough right pairs for the 2-R attack in rounds 31 and 32. As in Biham’s work [7], the
initial permutation is skipped.

5. LINEAR CRYPTANALYSIS OF THE EXTENDED DES

The reader is expected to be familiar with linear cryptanalysis toward DES [9]. Lin-
ear cryptanalysis [9] was first introduced by Matsui. This cryptanalysis makes use of the
probabilistic xor parity relation between certain bits of the plaintext, ciphertext, and the
key. The xor value of some carefully selected bits from plaintext and ciphertext and the
xor value of some bits from key are the same with probability not equal to 0.5. That is,
every plaintext and ciphertext pair carries some information about the key.

A LADT map is the linear approximation distribution table [9] of a function. It is a
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distribution of input bits xor and output bits xor. LADT[a, b] = |{x ∈ X |�(a ∧ x) = �

(f(x) ∧ b)}| where a, b ∈ X. Each entry of LADT is a linear approximation for f. For
S-box to resist against any linear attack, its LADT entry should be balance that is close to
32. We define absolute LADT to be ALADT[a, b] = |LADT[a, b] − 32|. To break DES by
linear cryptanalysis, Matusi found high probability linear approximation from the
LADTs of S-boxes. Matusi’s linear approximation uses a special type of entries LADT[a,
b] where h(a) = 1.

Every entry in the LADTs of the S-boxes is a linear approximation for the S-box. If
an entry of an S-box’s LADT is used in the linear approximation, the S-box is said to be
active. By limiting the max number of active S-boxes in every round to 1, Matsui found a
high probability linear approximation for 16 round DES. Biham had shown Matsui’s ap-
proximation to be the best [12].

By adding two additional rounds in the first and last round, Matusi attacked 16
round DES using a 14 round linear approximation in Eq. 5.1.

R1[8, 14, 25]⊕L15[17]⊕R15[3, 8, 14, 25] = J3⊕J7⊕J10⊕K14[26] (5.1)

Where Ji = Ki[26]⊕Ki+1[4]⊕Ki+2[26], for any i, j Ki[j] is the value of the jth bit of the
sub-key in round i. R1[8, 14, 25] is the xor value of the 8th,14th,25th bit of right data part
in round 1. And R15[3, 8, 14, 25] is the xor value of the 3th, 8th, 14th, 25th bit of left data
part in round 15.

Expression 5.2 is the detail 14 round linear approximation. A, B, C are one round
linear approximation with only 1 active S-box. A “–’’ means that no approximation is
needed in that round.

− ABC − CBA − ABC − C (5.2)

Table 12. The notations used in expression 5.2.

Linear approximation expression LADT entry of active S-box Probability
A R[17] ⊕ F[8, 14, 25] = K[26] LADTS-box5[16, 14] = 42 42/64
B R[3] ⊕ F[17] = K[4] LADTS-box1[4, 4] = 30 30/64
C R[17] ⊕ F[3, 8, 14, 25] = K[26] LADTS-box5[16, 15] = 12 12/64

The 3-round linear approximation “ABC” is an iterative structure in expression 5.2.
Fig. 5 shows how this type of structure is possible. The active S-box in linear approxima-
tion A and C is S-box5. The active S-box in linear approximation B is S-box1.

Fig. 6 shows how a 3-round linear approximation is possible. B1 and B2 are the
common input and output bits of S1 and S2. O1 and O2 are set of output bits for S1 and
S2 respectively where O1 = O2�B2. A linear approximation used in each round ap-
proximates the relation of one single input bit value and the xor value of certain output
bits of an active S-box. The probability of this type of linear approximation is minimized
in the extended DES.

The extended DES has 16 S-boxes in the F-function. More S-boxes make the design
of p-box more flexible. The p-box used in the extended DES is carefully find-tuned to
reduce the number of 3-round iterative linear approximations and to minimize the prob-
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Fig. 5. 3-round iterative linear approximation.

Fig. 6. A general 3-round iterative linear approximation.

ability of all existing 3-round linear approximations. The best 3-round linear approxima-
tion in the extended DES, “EFG”, can be used to construct the following 30 round linear
approximation.

− EFG − GFE − EFG − GFE − EFG − GFE − EFG − G (5.3)
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Table 13. The notations used in expression 5.3.

Linear approximation expression LADT entry of active S-box Probability
E R[7] ⊕ F[34, 18] = K[10] LADTS-box2[4, 3] = 36 36/64
F R[60] ⊕ F[7] = K[89] LADTS-box15[2, 1] = 34 34/64
G R[7] ⊕ F[60, 34, 18] = K[10] LADTS-box2[4, 7] = 38 38/64

Applying Table 13 to expression 5.3 and Eq. 5.4 can be used in linear cryptanalysis
for the full 32-round extended DES.

R1[34, 18]⊕L31[7]⊕R31[60, 34, 18] = J3⊕J7⊕J10⊕ J14⊕J18⊕J22⊕ J26⊕K31[10] (5.4)

Where Ji = Ki[10]⊕Ki+1[89]⊕Ki+2[10], for any i, j Ki[j] is the value of the jth bit of
the sub-key in round i. R1[34, 18] is the xor value of the 34th, 18th bit of right data part in
round 1. And R31[18, 34, 60] is the xor value of the 60th, 34th, 18th bit of left data part in
round 15.

By Matsui’s piling-up Lemma, we can calculate the probability of Eq. 5.4.

∏
=

− −+=
n

i
i

n pp
1

1 )
2

1
(2

2

1
where P is the probability of the Eq. 5.4 to hold. Pi is the probabil-

ity of the ith round linear approximation to hold. Using the probability value in Table 12
to evaluate Eq. 5.3, the probability P is 0.5 + 269.3 . By Matsui’s rule of thumb, the linear

cryptanalysis requires about 8/(P − 2

1
)2 known plaintexts. We have the complexity of

linear cryptanalysis for the 32-round extended DES to be 2142 known plaintexts.

6. CONCLUSIONS

The original S-boxes and the algorithms of DES are designed to resist differential
attack [11]. We have proposed new S-boxes having properties that are well-known or
defined in this work. We have shown the similarity between new proposed S-boxes and
original DES S-box and the approach to generate them. In addition, the algorithm of the
extended DES is similar to that of DES. The extended DES encrypts a 128-bit data block
using a key size of only 112 bits. The complexities of differential and linear attack are
2112 and 2142 respectively.

The original DES algorithm has some weakness in terms of memory requirement for
storing S-boxes. Since our extension also uses S-boxes in our algorithm, it has the same
weakness as DES from this aspect. Nevertheless, the similarity between our algorithm
and DES makes it easy to provide a securer and larger block size cipher in the system
which uses DES as the encryption solution.

Some researchers have proposed better S-boxes which they claim are better [6, 10].
These S-boxes can be used to further strengthen the extended DES. The number of
S-boxes can be doubled again to obtain a larger key size and larger data size in further
expansion.
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