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A Neural-Network Approach for Semiconductor
Wafer Post-Sawing Inspection

Chao-Ton Su, Taho Yang, and Chir-Mour Ke

Abstract—Semiconductor wafer post-sawing requires full in-
spection to assure defect-free outgoing dies. A defect problem is
usually identified through visual judgment by the aid of a scanning
electron microscope. By this means, potential misjudgment may
be introduced into the inspection process due to human fatigue.
In addition, the full inspection process can incur significant per-
sonnel costs. This research proposed a neural-network approach
for semiconductor wafer post-sawing inspection. Three types of
neural networks: backpropagation, radial basis function network,
and learning vector quantization, were proposed and tested. The
inspection time by the proposed approach was less than one second
per die, which is efficient enough for a practical application pur-
pose. The pros and cons for the proposed methodology in compar-
ison with two other inspection methods, visual inspection and fea-
ture extraction inspection, are discussed. Empirical results showed
promise for the proposed approach to solve real-world applica-
tions. Finally, we proposed a neural-network-based automatic in-
spection system framework as future research opportunities.

Index Terms—Defect, neural network, post-sawing inspection,
semiconductor wafer.

I. INTRODUCTION

T HE USE of integrated circuits (ICs) has been rapidly
increasing and will continue to increase in the foreseeable

future. Therefore, semiconductor manufacturing continues
to be in the spotlight of global manufacturing industries [1].
According to SEMI statistics [2], worldwide semiconductor
manufacturing equipment sales totaled $21.9 billion for the first
half of 2000, which surpassed the entire 1998 market. Although
a semiconductor fabrication process utilizes highly automated
and precisely monitored tools in clean-room environment,
process variation remains the major challenge in the course of
yield enhancement. The sources of variation are from different
stages of the manufacturing process. Materials, equipment,
operations, etc., can cause the problems. A significant amount
of research has aimed at improving the process yield by
investigating and developing yield management methodologies
at different process stages [3]–[5].

Post-sawing inspection is relatively imprecise inspection step
especially compared to others such as laser scanning, wafer ac-
ceptance testing, etc., however it requires full inspection to as-
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Fig. 1. Commonly seen post-sawing defect types.

sure defect-free outgoing dies. A technician is usually dedicated
to this task. Using a scanning electron microscope (SEM), a de-
fect is then identified by the technician’s visual judgment. Po-
tential inspection errors may be introduced into the inspection
process due to human fatigue. In addition, the full inspection
process can incur significant personnel costs.

There are several commonly seen defect types for wafer
post-sawing. They are crack, scratch, passivation coverage, ink
spot, foreign material pollution, and pad discolor as illustrated
in Fig. 1.

Zhanget al. [6] developed an automatic post-sawing inspec-
tion system using computer vision techniques. The system first
extracted boundary features from reference images that were
then compared with incoming dies for defect identification by
a rule-based algorithm. The use of this approach was limited
to boundary defect problems such as chip out and dies crack.
The inspection time by this approach was about thirty minutes
per wafer. Existing methods for defect identification problems
mainly used a feature extraction approach, e.g., Chen and Liu
[7] and Sreenivasanet al. [8]. The use of these approaches was
restricted to learned patterns, e.g., specific defect patterns and
to predetermined regions, e.g., die boundary. Furthermore, they
are usually time-consuming for in-line implementation. We are
not aware of any literature that proposes to solve the post-sawing
inspection problem by looking at the whole die area or any that
is efficient enough for a practical application.

0894-6507/02$17.00 © 2002 IEEE
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Fig. 2. Proposed approach.

This research proposed a neural-network approach for
post-sawing inspection. There are several advantages for using
a neural network to solve a complex manufacturing system
problem. They are: 1) processing speed through massive
parallelism; 2) learning and adapting by means of efficient
knowledge acquisition; 3) robustness with respect to fabrication
and different failures; and 4) compact processors for space- and
power-constrained applications, etc. [9].

For the proposed approach, images were gathered from a set
of sample dies by using SEM. These images were then digitized
using gray levels, and were used for neural-network training and
testing samples. Three neural learning methods were proposed
and tested. They are backpropagation (BP), radial basis func-
tion (RBF), and learning vector quantization (LVQ) networks.
Their respective pros and cons in solving the proposed problem
are discussed. Empirical results illustrate the effectiveness and
efficiency of the proposed approach.

The remainder of this paper is organized as follows. Section II
provides the detailed discussions for the proposed approach.
Empirical illustrations are discussed in Section III. Conclusions
are then given in Section IV.

II. PROPOSEDAPPROACH

There are five major steps for the proposed neural-network
approach as shown in Fig. 2.

1) Sample images collection:Valid input data are essential in
knowledge learning for an artificial intelligence approach. The
sample images are collected from both good and defective dies.
The defective ones should include the most commonly seen de-
fects for the neural-network training purpose.

2) Image digitization and 3) mask size decision:The image
digitization converts the brightness of each pixel to a gray level.
When one pixel represents one neural-network input node, the
number of input nodes becomes intractable in addition to the in-
fluences of image noises. To alleviate the network size problem,
a proper mask size is defined to represent a neural-network input
node. Mask size is a rectangular area comprised of
pixels, where and are the number of pixels for rectan-
gular width and length, respectively. The average value of the
gray levels of the pixels inside the same mask is used to rep-
resent one input node. When both and equal one, each
pixel represents one node, which represents an extreme case. In
general, the larger the mask size is, the fewer the neural-network
input nodes will be. Fewer input nodes may reduce model effec-
tiveness. The determination of the number of input nodes is a

tradeoff between training efficiency and model effectiveness. In
this research, we incrementally increase the mask size, and then
choose the one that provides the best defect inspection results
in terms of prediction accuracy as the final mask size setup.

4) Neural-network modeling and 5) model validation:The
design of an efficient neural-network, post-sawing inspection
system is not straightforward. It requires an appropriate choice
for the neural paradigm and a fine-tuning of the network
topology to find a suitable compromise between performance
and computational complexity. Three types of supervised
neural networks are applied to the proposed problem and are
discussed as follows.

The BP network has input, hidden, and output layers. Usually,
there are one to two hidden layers [10]. There are two user-
defined parameters: learning rate and momentum, the selections
of which have effects on computation efficiency. General rules
have been reported by Lippmann [11]. Readers are referred to
Pao [12] and Houet al. [13] for more background reviews for
the BP network.

The RBF network has the same basic structure as the BP net-
work, except there is only one hidden layer. In addition, there are
no connection weights between the input layer and the hidden
layer. Its learning process iteratively adjusts the center and shape
of the receptive field functions. Learning rate and momentum
values are also user inputs. The RBF network features both a
simple structure and fast learning. Accordingly, it becomes one
of the candidates for the proposed problem. Further information
may be found in Janget al. [14].

LVQ is an adaptive data classification method based on
training data with desired class information. Although it is
a supervised training method, LVQ employs unsupervised
data-clustering techniques to process the data set and obtain
cluster centers. There are two user-defined parameters: the
number of Kohonen nodes for the output layer and the learning
rate. Readers can find additional information for the LVQ
network in Guptaet al. [15].

Model validation uses testing samples to calculate model ac-
curacy. When a validated model is available, it is ready to be
launched for the in-line implementation.

III. EMPIRICAL ILLUSTRATION

A. Sample Images Collection

For the purpose of an empirical illustration, we collected
data from an integrated IC back-end service provider located
in Hsinchu, Taiwan. Our study was conducted in one of its
production lines, which is dedicated to the inspection of the
die size of 1.71 1.89 mm . An in-line SEM was used
to extract the die image. In order to collect enough training
patterns, we deliberately collected thirty defective dies that
contained those commonly seen defect types in addition to ten
good dies. The image processing and neural-network training
were performed by Ulead PhotoImpact v5.0 and Neural Works
Professional II/PLUS v5.3, respectively.

B. Image Digitization

The SEM took a die image by placing it on the top of a piece
of black paper. The procedure for image process started by ad-
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Fig. 3. Image processing.

justing the image’s orientation, then its background is removed
as shown in Fig. 3. For experimental purpose, orientation ad-
justment is performed manually while background removal is
done by PhotoImpact. Currently, this manual process is time
consuming, e.g., tens of seconds to a few minutes. For future
in-line implementation, we can automate this process by cus-
tomized computing codes such as C programming language.

The original images from the single-product production line
were 24-bit colored and contained 293284 pixels. When there
are more than one product types, e.g., different die sizes, an
additional neural-network input node is required to represent
product types for model training. For this instance, we need to
collect samples from all product types, and then train the model
with a product-type input node in addition to the previous net-
work structure. The image was converted to 8-bit gray levels
(0–255) by Matlab v5.3 to simplify the neural-network learning
complexity. For the convenience of the mask size decision dis-
cussed in the following section, a minor border cut was applied
to produce a 288 280 pixels image. Preliminary studies by ob-
servations and by interviews with quality assurance engineers
showed that this minor cut would not affect the inspection re-
sult, e.g., border crack defect.

C. Mask Size Decision

The case study used six different mask sizes, which deter-
mined their corresponding neural-network input nodes as shown
in Table I. The number of input nodes was the division of die
size to its mask size. For example, when mask size is (3228)
pixels, the number of input nodes is:

. The resulting mapping address (input node number) is illus-
trated as Fig. 4.

D. Neural-Network Modeling and Model Validation

The forty sample dies were randomly separated into two
groups: training and testing as shown in Table II.

One hidden layer is usually adopted for modeling training,
unless we cannot achieve an acceptable result. Learning itera-
tion, learning rate, momentum and the number of nodes in the
hidden layer are the four parameters for neural-network model
training. LVQ has no momentum parameters. For the learning
iteration decision, we first fixed the momentum and the learning
rate at a predetermined level. Then, the model training continued
until a stable and acceptable root-mean-square error (RMSE)

TABLE I
MASK SIZES

Fig. 4. Mapping address for a die with 90 masks.

TABLE II
NEURAL-NETWORK DATA GROUPING

was obtained. The RMSE is defined as shown in (1) for mea-
suring the neural-network modeling errors.

(1)

where , and are the number of samples, actual response
of sample , and predicted response of sample, respectively.

is either 0 or 1 to represent a bad or a good die, respectively.
is a real number between 0 and 1 from the neural-network

model. The RMSE decreases as the number of iterations in-
crease. Experimental results also showed that the decision of
iteration number is not sensitive to momentum and learning
rate. Therefore, we chose values from commonly seen rates
for the learning rate, momentum, and the number of hidden
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Fig. 5. RMSE versus number of iterations example.

TABLE III
NEURAL-NETWORK PARAMETERS SETUPS

layer nodes of [0.6–0.9], [0.1–0.4], and [10–30], respectively.
Through several trial-and-error iterations, we chose 0.8, 0.2, and
20 for learning rate, momentum, and number of hidden nodes,
respectively, for iteration number decision.

For example, the relationship between the RMSE and the
number of iterations for a BP neural-network model with 90,
0.8, 0.2, and 20, as the values of input nodes, learning rate,
momentum, and number of hidden layer nodes, respectively, is
shown as Fig. 5. When number of iterations is greater than 400,
a stable and low RMSE is obtained. We can then conservatively
determine 400 as the terminating iteration number for the BP
network training.

Next, we fixed the number of hidden layer nodes at 20
in addition to the terminating iteration decision from the
earlier step. For learning rate and momentum parameters,
we divided each parameter’s common range into four equal
intervals of 0.1. It then resulted in sixteen combinations
from different learning rates and momentum levels as:

. The best combination is then chosen as the final
parameters value. We repeated the parameters setting procedure
for different mask sizes associated with each type of neural
network. The results were summarized as shown in Table III.

Finally, we redefine the number of nodes in the hidden layer.
Since the model output is to distinguish between a bad and a

TABLE IV
BACKPROPAGATIONNEURAL-NETWORK TRAINING EXAMPLE

TABLE V
NEURAL-NETWORK PARAMETERS SETUP

Fig. 6. Accuracy comparisons.

good dies, we conservatively determined two threshold points
of 0.2 and 0.8 for a bad and a good dies, respectively. In other
words, when the model output value is less (greater) than 0.2
(0.8), the predicted result is a bad (good) die. We then defined
prediction accuracy as division of the number of correctly pre-
dicted samples to the total number of samples.

For each setup in Table III, we trained a neural network by
using different number of nodes in the hidden layer (or Kohonen
layer), then the best one was chosen based on the following
criteria:
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Fig. 7. A neural-network-based automatic inspection system.

TABLE VI
SUMMARY OF DIFFERENTINSPECTIONMETHODS

1) the higher the accuracy, the better is the neural-network
model;

2) minimal RMSE from testing samples;
3) minimal RMSE from training samples;
4) minimal discrepancy between RMSEs from training and

testing samples.

For example, Table IV shows the results using one of the
BP network setups (360 for mask size, 224 for input nodes,
400 for learning iterations, 0.8 for learning rate, and 0.2
for momentum) to test the different number of nodes in the
hidden layer. The best number of nodes in the hidden layer
was 20.

Table V summarized the best number of nodes for each setup
and indicated the best setup for each type of neural network.
Fig. 6 compared the difference in performance for the three
types of networks.

The best setup in terms of accuracy consistently had a mask
size of 360 for all three types of networks. Both BP and LVQ

networks reported inspection results with 100% accuracy. The
RBF showed inferior results.

The processing time for the proposed approach to report the
inspection result for a die was less than one second. If there are
760 dies on a 200-mm wafer, then the inspection time is about
thirteen minutes, which is significantly less than thirty minutes
required by a computer vision system developed by Zhanget
al. [6]. In fact, some preliminary experiments showed that it is
the die picker (see Fig. 7 for an illustration) that constrains the
inspection speed. For example, an automatic die picker takes
about 1 second for a pick-and-place cycle.

To evaluate the efficiency and effectiveness of the proposed
neural-network system for a practical application, it is compared
against two other methodologies, visual and feature extraction
methods, with respect to eight key factors: inspection area, ac-
curacy, speed, stability, costs, ease of operation, system setup
lead-time, and flexibility. The stability factor is considered to
be high when the potential performance deterioration rate is low.
The flexibility factor indicates the robustness of the system to
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product changes. The other factors are self-explanatory and are
not further explained. Table VI shows the pros and cons for the
three inspection approaches.

For the case-study company, 100 out of the 200 dedicated in-
spection operators are devoted to visual die-defect inspection
process. The inspection time for each die is usually ranging from
1 to 10 seconds. When the quality of a die can be easily iden-
tified, the operator quickly pulls in the next die for inspection
and takes about 1 second for this process. On the other hand,
when a die seems to have a potential defect, the operator needs
more time to perform a more detailed check and may take up to
10 seconds for this process. In addition to the longer inspection
time, physical fatigue will add inspection time as well as dete-
rioration in inspection accuracy.

The acquisition costs for an automatic die-pick is about
$85 000. The addition of the neural-network model will cost
about $15 000. Accordingly, the proposed automatic neural-net-
work based inspection system will cost about $100 000. The
feature extraction method has the similar cost. In consideration
of the significant manpower for the visual inspection process,
an automatic system is potentially efficient and effective in the
long run.

The proposed method is easier for model building due to its
simpler model training process and less required domain knowl-
edge when it is compared with the feature extraction approach.

In general, the proposed neural-network method embodies
superior performance with respect to inspection area, accuracy,
speed, stability, costs, and operations. However, it shows infe-
rior setup lead-time performance than visual inspection method-
ology. In addition, it has the lowest product flexibility. The vi-
sual inspection method is more applicable to a high-variety and
low-volume manufacturing system, e.g., a research line, due to
its negligible setup time. When partial die area inspection is ade-
quate to locate a defect problem, the feature extraction approach
may be the best candidate. For a low-variety and high-volume
manufacturing system, e.g., a product manufacturing line, the
proposed method is the most efficient and effective one.

E. System Implementation

When the proposed methodology is introduced into a manu-
facturing line, it needs to combine with several hardware com-
ponents including the SEM, conveyor, and die picker to auto-
mate the inspection process. Fig. 7 presents a conceptual schema
for an automatic inspection system for future implementation.

The conceptual automatic inspection system has a conveyor
to transfer a wafer from sawing process to the inspection sta-
tion. The SEM starts to extract a die image from the upper-right
corner of the wafer. The die image is then digitized and pro-
cessed by the proposed neural-network-based defect inspection
system. If the die is normal, then the die picker picks and places
it in a tray. Otherwise, the SEM moves forward to extract the
next die image along the scanning path. This process continues
until all dies are inspected. Then, the wafer with defective dies
is moved away. A new inspection cycle commences.

IV. CONCLUSION

Post-sawing inspection is a relatively crude inspection step
especially compared to others for semiconductor manufac-
turing processes, however it requires full inspection to assure
defect-free outgoing dies. A defect problem is usually iden-
tified through visual judgment by the aid of a SEM. Potential
inspection errors may be introduced into the inspection process
due to human fatigue. In addition, the full inspection process
can incur significant personnel costs. This research proposed
a neural-network approach for post-sawing inspection. Three
types of neural networks were proposed and tested. The in-
spection time was less than one second per die by the proposed
approach. Empirical results showed promise for the proposed
approach to solve real-world applications. A conceptual inte-
grated, in-line, neural-network, post-sawing inspection system
offers opportunities for future research. Although the proposed
neural-network based computing process is not the bottleneck
for an inspection cycle, improved computational efficiency will
become important to parallel the improved die-picker speed.
This is also one of the future research directions.
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