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A Neural-Network Approach for Semiconductor
Wafer Post-Sawing Inspection

Chao-Ton Su, Taho Yang, and Chir-Mour Ke

Abstract—Semiconductor wafer post-sawing requires full in-
spection to assure defect-free outgoing dies. A defect problem is
usually identified through visual judgment by the aid of a scanning
electron microscope. By this means, potential misjudgment may
be introduced into the inspection process due to human fatigue.
In addition, the full inspection process can incur significant per-
sonnel costs. This research proposed a neural-network approach
for semiconductor wafer post-sawing inspection. Three types of
neural networks: backpropagation, radial basis function network,
and learning vector quantization, were proposed and tested. The
inspection time by the proposed approach was less than one second
per die, which is efficient enough for a practical application pur-
pose. The pros and cons for the proposed methodology in compar-
ison with two other inspection methods, visual inspection and fea-
ture extraction inspection, are discussed. Empirical results showed
promise for the proposed approach to solve real-world applica-
tions. Finally, we proposed a neural-network-based automatic in-
spection system framework as future research opportunities.

Index Terms—DPefect, neural network, post-sawing inspection,
semiconductor wafer.

I. INTRODUCTION
Fig. 1. Commonly seen post-sawing defect types.

HE USE of integrated circuits (ICs) has been rapidly
increasing and will continue to increase in the foreseeable
future. Therefore, semiconductor manufacturing continusgre defect-free outgoing dies. A technician is usually dedicated
to be in the spotlight of global manufacturing industries [1}0 this task. Using a scanning electron microscope (SEM), a de-
According to SEMI statistics [2], worldwide semiconductofect is then identified by the technician’s visual judgment. Po-
manufacturing equipment sales totaled $21.9 billion for the firtgntial inspection errors may be introduced into the inspection
half of 2000, which surpassed the entire 1998 market. Althoughocess due to human fatigue. In addition, the full inspection
a semiconductor fabrication process utilizes highly automatpebcess can incur significant personnel costs.
and precisely monitored tools in clean-room environment, There are several commonly seen defect types for wafer
process variation remains the major challenge in the coursepoist-sawing. They are crack, scratch, passivation coverage, ink
yield enhancement. The sources of variation are from differespot, foreign material pollution, and pad discolor as illustrated
stages of the manufacturing process. Materials, equipmentfFig. 1.
operations, etc., can cause the problems. A significant amounkZhanget al.[6] developed an automatic post-sawing inspec-
of research has aimed at improving the process yield kign system using computer vision techniques. The system first
investigating and developing yield management methodologiegracted boundary features from reference images that were
at different process stages [3]-[5]. then compared with incoming dies for defect identification by
Post-sawing inspection is relatively imprecise inspection steprule-based algorithm. The use of this approach was limited
especially compared to others such as laser scanning, wafertadsoundary defect problems such as chip out and dies crack.
ceptance testing, etc., however it requires full inspection to afhe inspection time by this approach was about thirty minutes
per wafer. Existing methods for defect identification problems
Manuscript received February 24, 2001; revised January 14, 2002. mainly used a feature extraction approach, e.g., Chen and Liu
C.-T. Su is with the Department of Industrial Engineering and Managemefi¥] and Sreenivasaet al.[8]. The use of these approaches was
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tyang@mail.ncku.edu.tw). , ___notaware of any literature that proposes to solve the post-sawing
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(1) Sample images | (4) Neural-network tradeoff between training efficiency and model effectiveness. In
collection " modeling this research, we incrementally increase the mask size, and then
choose the one that provides the best defect inspection results

v h 4 in terms of prediction accuracy as the final mask size setup.
(2) Image digitization| (5) Model validation 4) Neural-network modeling and 5) model validatiorhe

design of an efficient neural-network, post-sawing inspection

v system is not straightforward. It requires an appropriate choice

(3) Mask size for the neural paradigm and a fine-tuning of the network

decision topology to find a suitable compromise between performance

and computational complexity. Three types of supervised

Fig. 2. Proposed approach. neural networks are applied to the proposed problem and are

discussed as follows.

. The BP network has input, hidden, and output layers. Usually,
This research proposed a neural-network approach {ﬂr hidden | h
ost-sawing inspection. There are several advantages for us g C are one 1o two hi jen layers [10]. There are two user-
P ) - Jefined parameters: learning rate and momentum, the selections
a neural network to solve a complex manufacturing syste

roblem. They are: 1) processing speed through masscr)\?ewhich have effects on computation efficiency. General rules
P o Y ’ P 9 sp 9 ASSN&ve been reported by Lippmann [11]. Readers are referred to
parallelism; 2) learning and adapting by means of efﬂmerlgao [12] and Howet al.[13] for more background reviews for
knowledge acquisition; 3) robustness with respect to fabricati%l BP network '

and different failures; and 4) compact processors for space- an he RBE network has the same basic structure as the BP net-

power-constrained applications, etc. [9]. K herei | hidden| In additi h
For the proposed approach, images were gathered from avg%[c ,exceptt ere 1S only one hidden layer. in a ition, t ereare
! no, connection weights between the input layer and the hidden

of sample dies by using SEM. These images were then digitizled . : : )
; L ayer. Its learning process iteratively adjusts the center and shape
using gray levels, and were used for neural-network training aBFY

. . the receptive field functions. Learning rate and momentum
testing samples. Three neural learning methods were propose .
. . . ~Values are also user inputs. The RBF network features both a
and tested. They are backpropagation (BP), radial basis func- . ) .
. : o simple structure and fast learning. Accordingly, it becomes one
tion (RBF), and learning vector quantization (LVQ) networks. . . .
. . . : of the candidates for the proposed problem. Further information
Their respective pros and cons in solving the proposed problem .
: . : . may be found in Jangt al. [14].
are discussed. Empirical results illustrate the effectiveness an . . e
VQ is an adaptive data classification method based on

efficiency Of.the propqsed app_roach. . . tha\ining data with desired class information. Although it is
The remainder of this paper is organized as follows. Section . - .
a, supervised training method, LVQ employs unsupervised

provides the detailed discussions for the proposed approa&Qta—clustering techniques to process the data set and obtain

Empirical illustrations are discussed in Section Il1. Conclusion:? ) i
. . . Cluster centers. There are two user-defined parameters: the
are then given in Section IV.

number of Kohonen nodes for the output layer and the learning
rate. Readers can find additional information for the LVQ

Il. PROPOSEDAPPROACH network in Gupteet al. [15].
There are five major steps for the proposed neural-networkModel validation uses testing samples to calculate model ac-
approach as shown in Fig. 2. curacy. When a validated model is available, it is ready to be

1) Sample images collectiokalid input data are essential inlaunched for the in-line implementation.
knowledge learning for an artificial intelligence approach. The
sample images are collected from both good and defective dies. lll. EMPIRICAL ILLUSTRATION
The defective ones should include the most commonly seen gt_a—
fects for the neural-network training purpose. . )
2) Image digitization and 3) mask size decisidime image For the purpose of an empirical |Ilustra_1t|on, we collected
digitization converts the brightness of each pixel to a gray lev&at@ from an integrated IC back-end service provider located
When one pixel represents one neural-network input node, tReHSinchu, Taiwan. Our study was conducted in one of its
number of input nodes becomes intractable in addition to the ffeduction lines, which is dedicated to the inspection of the
fluences of image noises. To alleviate the network size probleflie Size of 1.71x 1.89 mnt. An in-line SEM(x50) was used
a proper mask size is defined to represent a neural-network infuxtract the die image. In order to collect enough training
node. Mask size is a rectangular area comprisedof No patter_ns, we deliberately collected thirty defgctlve _o_lles that
pixels, whereV, and N, are the number of pixels for reCt(,m_contaln_ed those_commonly seen defect types in addition tp _ten
gular width and length, respectively. The average value of t§9°d dies. The image processing and neural-network training
gray levels of the pixels inside the same mask is used to r%b‘?re performed by Ulead Photolmpact v5.0 and Neural Works
resent one input node. When bath and N, equal one, each Professional II/PLUS v5.3, respectively.
pixel represents one node, which represents an extreme case. In .
general, the larger the mask size is, the fewer the neural-netwBrkIMage Digitization
input nodes will be. Fewer input nodes may reduce model effec-The SEM took a die image by placing it on the top of a piece
tiveness. The determination of the number of input nodes ioablack paper. The procedure for image process started by ad-

Sample Images Collection
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Fig. 3. Image processing.

justing the image’s orientation, then its background is removed TABLE |
as shown in Fig. 3. For experimental purpose, orientation ad- Mask Sizes
justment is performed manually while background removal is Mask size () Number of input nodes
done by Photolmpact. Currently, this manual process is time 896 (32x28) 90
consuming, e.g., tens of seconds to a few minutes. For future 672 (24x28) 120
TG : ; 480 (24x20) 168
in-line implementation, we can automate this process by cus- 360 (18:20) 7
tomized computing codes such as C programming language. 320 (16x20) 552

The original images from the single-product production line 224 (16x14) 360

were 24-bit colored and contained 29284 pixels. When there
are more than one product types, e.g., different die sizes, an
additional neural-network input node is required to represent
product types for model training. For this instance, we need to
collect samples from all product types, and then train the model
with a product-type input node in addition to the previous net-
work structure. The image was converted to 8-bit gray levels
(0—255) by Matlab v5.3 to simplify the neural-network learning
complexity. For the convenience of the mask size decision dis-
cussed in the following section, a minor border cut was applied
to produce a 28& 280 pixels image. Preliminary studies by ob-
servations and by interviews with quality assurance engineers

showed that this minor cut would not affect the inspection re-
sult. e g border crack defect Fig. 4. Mapping address for a die with 90 masks.

90.i..89.:.88....87

TABLE 1l

C. Mask Size Decision NEURAL-NETWORK DATA GROUPING

The case study used six different mask sizes, which det Training group Testing group
mined their corresponding neural-network input nodes as sho No. of good dies | No. of defective dies | No. of good dies | No. of defective dies
in Table I. The number of input nodes was the division of di—— L 3 7
size to its mask size. For example, when mask size ix(32)
pixels, the number of input nodes {88 x 280)/(32 x 28) = a5 obtained. The RMSE is defined as shown in (1) for mea-

90. The resulting mapping address (input node number) is "|U§uring the neural-network modeling errors.
trated as Fig. 4.

D. Neural-Network Modeling and Model Validation 1)

The forty sample dies were randomly separated into two
groups: training and testing as shown in Table II. wheres, Y;, andY; are the number of samples, actual response

One hidden layer is usually adopted for modeling trainingf samplei, and predicted response of sampleespectively.
unless we cannot achieve an acceptable result. Learning itérais either O or 1 to represent a bad or a good die, respectively.
tion, learning rate, momentum and the number of nodes in theis a real number between 0 and 1 from the neural-network
hidden layer are the four parameters for neural-network modebdel. The RMSE decreases as the number of iterations in-
training. LVQ has no momentum parameters. For the learniogease. Experimental results also showed that the decision of
iteration decision, we first fixed the momentum and the learnirigeration number is not sensitive to momentum and learning
rate at a predetermined level. Then, the model training continuede. Therefore, we chose values from commonly seen rates
until a stable and acceptable root-mean-square error (RMS&) the learning rate, momentum, and the number of hidden



SU et al. A NEURAL-NETWORK APPROACH FOR SEMICONDUCTOR WAFER POST-SAWING INSPECTION

0.4000 | ; TABLE IV
| : BACKPROPAGATION NEURAL-NETWORK TRAINING EXAMPLE
0.3000 i i i
| No. of nodes in RMSE from RMSE from testing Accuracy
% hidden layer training samples samples
S 0.2000 10 0.0377 0.0419 100.00%
o 12 0.0342 0.0392 100.00%
\ 14 0.0389 0.0426 100.00%
0.1000 - ! 16 0.0388 0.0411 100.00%
| 18 0.0398 0.0402 100.00%
‘ — 20¥ 0.0356 0.0380 100.00%
0.0000 - 22 0.0367 0.0416 100.00%
0 100 200 300 400 500 600 24 0.0375 0.0411 100.00%
Iterations 26 0.0398 0.0421 100.00%
28 0.0376 0.0475 100.00%
Fig. 5. RMSE versus number of iterations example. 30 0.0399 0.0455 100.00%
*Best number of nodes
TABLE Il TABLE V
NEURAL-NETWORK PARAMETERS SETUPS NEURAL-NETWORK PARAMETERS SETUP
Mask size | No. of input | Learning Learning | Momentum Mask size | No. of input Best No. of Accuracy
nodes iterations rate nodes nodes in hidden
BP 896 90 400 0.8 0.2 layer
672 120 400 0.8 0.2 BP 896 90 26 50.00%
480 168 400 0.8 0.2 672 120 20 60.00%
360 224 400 0.8 0.2 480 168 22 90.00%
320 252 400 0.8 0.2 360* 224 20 100.00%
224 360 400 0.8 0.2 320 252 26 80.00%
RBF 896 90 150 0.4 0.05 224 360 12 70.00%
672 120 150 0.4 0.1 RBF 896 90 10 60.00%
480 168 150 0.4 0.1 672 120 18 60.00%
360 224 150 0.4 0.1 480 168 14 70.00%
320 252 150 0.4 0.1 360* 224 15 90.00%
224 360 150 0.4 0.05 320 252 17 80.00%
LVQ 896 90 100 0.01 N/A 224 360 23 50.00%
672 120 100 0.05 N/A LVQ 896 90 24 70.00%
480 168 100 0.05 N/A 672 120 30 80.00%
360 224 100 0.05 N/A 480 168 24 90.00%
320 252 100 0.05 N/A 360* 224 18 100.00%
224 360 100 0.05 N/A 320 252 24 80.00%
224 360 18 70.00%
*Best setup
layer nodes of [0.6-0.9], [0.1-0.4], and [10-30], respectively.
Through several trial-and-error iterations, we chose 0.8,0.2, ar 190 /"\
20 for learning rate, momentum, and number of hidden nodes 9 —#—BP
respectively, for iteration number decision. ) \ ~=— RBF
For example, the relationship between the RMSE and th o ——LVQ
number of iterations for a BP neural-network model with 90, &

e

0.8, 0.2, and 20, as the values of input nodes, learning ratig % 4/

momentum, and number of hidden layer nodes, respectively, < 50
shown as Fig. 5. When number of iterations is greater than 40( 4

a stable and low RMSE is obtained. We can then conservativel

30

determine 400 as the terminating iteration number for the BF
network training.
Next, we fixed the number of hidden layer nodes at 20

500 600
Mask size

in addition to the terminating iteration decision from th&i9. 6. Accuracy comparisons.

earlier step. For learning rate and momentum parameters,

263

we divided each parameter's common range into four equgod dies, we conservatively determined two threshold points

intervals of 0.1. It then resulted in sixteen combinationsf 0.2 and 0.8 for a bad and a good dies, respectively. In other
from different learning rates and momentum levels awords, when the model output value is less (greater) than 0.2

(0.6,0.1), (0.6,0.2), (0.6,0.3),(0.6,0.4),(0.7,0.1),(0.7,0.2),  (0.8), the predicted result is a bad (good) die. We then defined
...,(0.9,0.4). The best combination is then chosen as the finplediction accuracy as division of the number of correctly pre-

parameters value. We repeated the parameters setting procedigsted samples to the total number of samples.
for different mask sizes associated with each type of neuralFor each setup in Table IIl, we trained a neural network by
network. The results were summarized as shown in Table lll.using different number of nodes in the hidden layer (or Kohonen

Finally, we redefine the number of nodes in the hidden laydayer), then the best one was chosen based on the following

Since the model output is to distinguish between a bad andariteria:
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Fig. 7. A neural-network-based automatic inspection system.
TABLE VI
SUMMARY OF DIFFERENT INSPECTIONMETHODS
Methods
Items Visual Neural network Feature extraction
Inspection area Whole die area ‘Whole die area Partial die area

Accuracy Medium High High

Speed Slow Fast Fast

Stability Low High High

Costs High Low Low

Ease of operation Difficult Easy Easy

System setup lead-time Short Long Long

Flexibility to product High Low High

complexity

1) the higher the accuracy, the better is the neural-netwarktworks reported inspection results with 100% accuracy. The
model; RBF showed inferior results.
2) minimal RMSE from testing samples; The processing time for the proposed approach to report the
3) minimal RMSE from training samples; inspection result for a die was less than one second. If there are
4) minimal discrepancy between RMSEs from training anti60 dies on a 200-mm wafer, then the inspection time is about
testing samples. thirteen minutes, which is significantly less than thirty minutes
For example, Table IV shows the results using one of tfigauired by a computer vision system developed by Zfetng
BP network setups (360 for mask size, 224 for input node@; [6]_. In.fact, some prellmlnary _experlments showed thgt itis
400 for learning iterations, 0.8 for learning rate, and 0_§1e die .plcker (see Fig. 7 for an illustration) that gongtrams the
for momentum) to test the different number of nodes in tHBSPection speed. For example, an automatic die picker takes

hidden layer. The best number of nodes in the hidden lay&out 1 second for a pick-and-place cycle.
was 20. To evaluate the efficiency and effectiveness of the proposed

i neural-network system for a practical application, itis compared
Table V. summarized the best number of nodes for each seliyn,inst two other methodologies, visual and feature extraction
and indicated the best setup for each type of neural netwogkaihags, with respect to eight key factors: inspection area, ac-
Fig. 6 compared the difference in performance for the thre@,cy speed, stability, costs, ease of operation, system setup
types of networks. lead-time, and flexibility. The stability factor is considered to
The best setup in terms of accuracy consistently had a mdmkhigh when the potential performance deterioration rate is low.
size of 360 for all three types of networks. Both BP and LVQ@he flexibility factor indicates the robustness of the system to
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product changes. The other factors are self-explanatory and are IV. CONCLUSION
not further explained. Table VI shows the pros and cons for the . L . . .
Post-sawing inspection is a relatively crude inspection step

three inspection approaches. . i
h q f the 200 dedi despemally compared to others for semiconductor manufac-
For the case-study company, 100 out of the 200 dedicate fﬂfing processes, however it requires full inspection to assure

spection operators are devoted to visual die-defect inspect{@aci-free outgoing dies. A defect problem is usually iden-
process. The inspection time for each die is usually ranging frqjfeq through visual judgment by the aid of a SEM. Potential

1 to 10 seconds. When the quality of a die can be easily idgRspection errors may be introduced into the inspection process
tified, the operator quickly pulls in the next die for inspectiogjye to human fatigue. In addition, the full inspection process
and takes about 1 second for this process. On the other hagih incur significant personnel costs. This research proposed
when a die seems to have a potential defect, the operator negarural-network approach for post-sawing inspection. Three
more time to perform a more detailed check and may take uptypes of neural networks were proposed and tested. The in-
10 seconds for this process. In addition to the longer inspectigpection time was less than one second per die by the proposed
time, physical fatigue will add inspection time as well as det@pproach. Empirical results showed promise for the proposed
rioration in inspection accuracy. approach to solve real-world applications. A conceptual inte-

The acquisition costs for an automatic die-pick is abo@fat€d, in-line, neural-network, post-sawing inspection system
$85 000. The addition of the neural-network model will Coé{ﬁers opportunities for future research. Although the proposed

about $15 000. Accordingly, the proposed automatic neural-n F_ural—network based computing process is not the bottleneck

work based inspection system will cost about $100 000. T Qran inspection cycle, improved computational efficiency will

feature extraction method has the similar cost. In consideratix?ﬁ?:ir:eallsrg%%r;agg t:1oe F]‘)Stfr”eelret:alrr:rﬁ) r(;)i\r/ee(tjdti(c)i:plcker speed.

of the significant manpower for the visual inspection process,
an automatic system is potentially efficient and effective in the
long run. ACKNOWLEDGMENT

. The proposed method is easier for model-building d-ue t0 itSThe authors would like to thank C. Chen, the Assembly Di-
simpler model training process and less required domain knoylsion Manager of King Yuan Electronics Co., Ltd., for all the

edge when itis compared with the feature extraction approagiypports during the data collection process leading to the results

In general, the proposed neural-network method embodigisthis research. They are also grateful to two anonymous re-
superior performance with respect to inspection area, accuraggwers for helpful suggestions that improved the presentation
speed, stability, costs, and operations. However, it shows intg-this paper.

rior setup lead-time performance than visual inspection method-
ology. In addition, it has the lowest product flexibility. The vi-
sual inspection method is more applicable to a high-variety and

_ ; ; 1] T. Yang, M. Rajasekharan, and B. Peters, “Semiconductor fabrication
low-volume manufacturing system, e.g., a research line, due td facilities design using a hybrid search methodologygmput. Indust.

its negligible setup time. When partial die area inspectionis ade-  gng, vol. 36, pp. 565-583, 1999.
guate to locate a defect problem, the feature extraction approacl?! [SO- TI-_ M]yefsl- ((128)0(2 lr]ldléftryhenﬂ/)/ys record yes?ml(l;?nductor Mag. .
. . . nline], vo . Available: http://www.semi.org/web/wmagazine.ns
may be the.beSt candidate. For a IOW'Va”ety and r?Igh'.VOI'“Ime[G}] C. Weber, B. Moslehi, and M. Dutta, “An integrated framework for
manufacturing system, e.g., a product manufacturing line, the  yield management and defect/fault reductiofEEE Trans. Semicon-
; i i ; duct. Manufact.vol. 8, pp. 110-120, May 1995.
proposed method is the most efficient and effective one. [4] W. Shindo, E. H. Wang, R. Akella, and A. J. Strojwas, “Effective excur-
sion detection by defect type grouping in in-line inspection and classi-
) fication,” IEEE Trans. Semiconduct. Manufagotol. 12, pp. 3-9, Feb.
E. System Implementation 1999.
[5] C. N. Berglund, “An unified yield model incorporating both defect and
When the proposed methodology is introduced into a manu- parametric defects,JEEE Transactions on Semiconductor Manufac-

. . . . . turing, vol. 9, pp. 447-454, 1996.
facturing line, it needs to combine with several hardware com-[g] j.-M. Zhang, R.-M. Lin, and M.-J. J. Wang, “The development of an

ponents including the SEM, conveyor, and die picker to auto-  automatic post-sawing igSpectiOln system using computer vision tech-
. . . nigues,”Computers in Industrywol. 40, pp. 51-60, 1999.
mate the InSpeF:tIF)n progess. Fig. 7 presents a-conceptual S_Che F.-L. Chen and S.-F. Liu, “A neural-network approach to recognize de-
for an automatic inspection system for future implementation. fect spatial pattern in semiconductor fabricatid&EE Trans. Semicon-
The conceptual automatic inspection system has a conveyor, duct. Manufact.vol. 13, pp. 366-373, Aug. 2000.

. . . K. K. Sreenivasan, M. Srinath, and A. Khotanzad, “Automated vision
to transfer a wafer from sawing process to the inspection sta- ~ system for inspection of IC pads and bond&€EE Trans. Comp., Hy-

tion. The SEM starts to extract a die image from the upper-right  brids, Manufact. Technalvol. 16, pp. 333-338, May 1993.

L . C e D. Barschdorff and L. Monostori, “Neural networks: Their applications
corner of the wafer. The die image is then digitized ‘f:.md pI’O'- and perspectives in intelligent machinin@;dmputers in Industryol.
cessed by the proposed neural-network-based defect inspection 17, pp. 101-119, 1991.

system. If the die is normal, then the die picker picks and place&0! H. Y. Liao, S.J. Liu, L. H. Chen, and H. R. Tyan, *A bar-code recog-
nition system using backpropagation neural networks§. Applicat.

it in a tray. Otherwise, the SEM moves forward to extract the  artificial Intell., vol. 8, pp. 81-90, 1995.
next die image along the scanning path. This process continuéd] R.P.Lippmann, “Anintroduction to computing with neural net&EE

. . . . . . Acoustics, Speech, and Signal Processing Mag. 4, pp. 4-22, 1987.
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