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TECHNICAL NOTE

Universal Alignment Probability Revisited1

S. Y. LIN
2

AND Y. C. HO
3

Abstract. In this note, we quantify and validate the representativeness
of the uniformly sampled set N for the search space Θ and the use of
universal alignment probability (UAP) curves.
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1. Introduction

One of the major claims of the ordinal optimization (OO) approach is
this: By using a crude model to quickly and roughly estimate the perform-
ance of a set of choices, one can under some fairly general conditions deter-
mine good enough choices with high probability. This probability, defined
as alignment probability, gives the chance that the estimated good enough
choices are indeed truly good enough choices. The main application of OO
is to quantify various quick-and-dirty or back of the envelope schemes for
computationally complex design problems. Mathematically, we use the fol-
lowing definitions:

ΘGsearch space for optimization;
θGelements of Θ;
NGset of uniformly samples elements of Θ, usually of size suffi-

ciently large, say 1000;
GSNGgood enough subset of N, typically the top n%;

1The work in this paper was partially supported by Army Contracts DAAL03-92-G-0115 and
DAAH04-95-0148, by Air Force Grant F49620-98-1-0387, by Electric Power Research Insti-
tute Contract WO8333-03, and by National Science Council in Taiwan, ROC.

2Professor, Department of Electrical and Control Engineering, National Chiao Tung Univer-
sity, Hsinchu, Taiwan, ROC.

3Research Professor, Division of Engineering and Applied Sciences, Harvard University, Cam-
bridge, Massachusetts.

399
0022-3239�02�0500-0399�0  2002 Plenum Publishing Corporation



JOTA: VOL. 113, NO. 2, MAY 2002400

GSΘGgood enough subset of Θ, unless otherwise specified, we use the
same top n% as definition;

SSGselected subset of N (estimated top n% by using a crude model).

Then, we define

alignment probability ≡PA ≡ Prob{�SS∩GSN �¤k}. (1)

The PA are usually referred to as universal alignment probabilities (UAP),
since they are applicable to all optimization problems within five broad
categories (Ref. 1) and have been used successfully in many practical com-
plex optimization problems (Refs. 2–5).

One implicit assumption in OO theory is that, for sufficiently large N,
the set N is more or less representative of the search space Θ, i.e., GSN is
representative of GSΘ . But representativeness does not necessarily imply,
for example, GSN⊆GSΘ , even though the probability that this is true can
be high. In this note, we answer the following question: what is the relation
between the definition (1) and the definition (2) below,

Alignment Probability* ≡P*A ≡ Prob{�SS∩GSΘ �¤k*}. (2)

Intuitively,

P*AFPA , for k*Gk,

since GSN⊆GSΘ is not always true. Alternatively, we can define

GS r
NGreduced good enough subset of N, i.e., the top m%, where mFn.

The idea is that, by requiring a more stringent definition of what is
good enough in N, we guarantee with high probability that GS r

N⊆GSΘ .
Consequently, using the tabulated value of PA of (1) in Ref. 1, we can in
fact lower bound P*A in (2) with little extra work. The purpose of this note
is to establish this bound and quantify what heretofore has been only
empirical evidence of successful uses of the OO approach.

2. Analysis and Results

In this section, we will derive a lower bound of P*A and determine the
size of SS for the desired alignments k* with a high alignment probability
P*A .

2.1. Lower Bound of P*A . First, we define the notations for the follow-
ing events:

E1 ≡ {�SS∩GSN �¤k},

E2 ≡ {GS r
N⊆GSΘ},
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E3 ≡ {�{k}∩GS r
N �¤k*},

E4G{�SS∩GS r
N�¤k*},

E5 ≡ {�SS∩GSΘ �¤k*},

where the set {k} in E3 is composed of the top k designs of SS∩GSN in E1 .
Clearly,

PAGProb{E1}, P*AGProb{E5},

and the following inequality holds:

P*A¤Prob{E1 and E2 and E5}. (3)

By the definition of conditional probability, we have

Prob{E1 and E2 and E5}GProb{E1 and E2}BProb{E5 �E1 and E2}. (4)

Since the alignments between SS and GSN have nothing to do with the
containment of GS r

N in GSΘ , the events E1 and E2 are independent of each
other. Thus, (4) becomes

Prob{E1 and E2 and E5}

GProb{E1}BProb{E2}BProb{E5 �E1 and E2}. (5)

Suppose that the events E1 and E2 are given; then, event E3 implies E4 ,
because

{k}∩GS r
N⊆ (SS∩GSN )∩GS r

NGSS∩GS r
N ,

and event E4 implies E5 , because

SS∩GS r
N⊆ SS∩GSΘ .

Hence, we have

Prob{E4 �E1 and E2}¤Prob{E3 �E1 and E2}, (6)

Prob{E5 �E1 and E2}¤Prob{E4 �E1 and E2}. (7)

From (5)–(7), we can obtain

Prob{E1 and E2 and E5}

¤Prob{E1}BProb{E2}BProb{E3 �E1 and E2}. (8)

Since E3 is independent of E2 , we have

Prob{E3 �E1 and E2}GProb{E3 �E1}. (9)

Then, from (3), (8), and (9), we can obtain a lower bound of P*A as follows:

P*A¤Prob{E1}BProb{E2}BProb{E3 �E1}. (10)
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By the definition of E1 , E2 , and E3 , the result (10) says that, if the following
three events occur:

{�SS∩GSN �¤k}, {GS r
N⊆GSΘ}, and {�{k}∩GS r

N �¤k*��SS∩GSN �¤k},

then the event {�SS∩GSΘ �¤k*} must occur. This is of course intuitively
true. Now, since the tabulated value of Prob{E1}GPA has been given
already in Ref. 1, to calculate the lower bound for P*A , we still need to
calculate Prob{GS r

N⊆GSΘ} and Prob{�{k}∩GS r
N �¤k*� �SS∩GSN �¤k}) in

the following subsections.

2.2. Calculation of Prob{GS r
N⊆GSΘ}. Denoting Prob(i) as the prob-

ability that i designs in N are contained in GSΘ , then

Prob{GS r
N⊆GSΘ}G1A ∑

�GS
r
N�A1

iG0

Prob(i). (11)

The formula for Prob(i) under the assumption of uniform selection for N
can be derived as follows.

Since there are C (�N�, i) possible combinations for i designs of N con-
tained in GSΘ , and since each combination has the same probability, thus
Prob(i) can be calculated by C (�N�, i) times the probability that the first i
designs of N are contained in GSΘ . Hence, we have

Prob(i)GC (�N�, i)B
�GSΘ�

�Θ�
B

�GSΘ�A1

�Θ�A1
B· · ·B

�GSΘ�A(iA1)

�Θ�A(iA1)

B
�GSΘ�
�Θ�Ai

B
�GSΘ�A1

�Θ�A(iC1)
B· · ·B

�GSΘ�A(�N�Ai)

�Θ�A�N�
, (12)

where GSΘ denote the complement of GSΘ in the set Θ. Since �GSΘ�,
�GSΘ�, and �Θ� are very large, the subtracted terms in (12) are negligible.
Consequently, (12) can be approximated as

Prob(i)�C (�N�, i)B��GSΘ�
�Θ� �

i

B��GSΘ�
�Θ� �

�N�Ai

. (13)

Remark 2.1. Consider a standard optimization problem,

minθ∈ΘJ(θ ),

where Θ is the design space and J( · ) is a performance measure defined on
the design space. The ordinal performance curve (OPC) of a collection of
ordered designs {θ1 ,θ2 , . . . , θ I} selected from Θ defined in Ref. 1 is deter-
mined by the spread of the order performance J[1] , J[2] , . . . , J[I], J[i ] denotes
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J(θ i ). Without loss of generality, the J[i ] can be normalized into the range
[0, 1]; i.e., for iG1, . . . , 1,

yiG(J[i ]AJ[1] )�(J[I]AJ[1] ).

Meanwhile, the ordered designs, spaced equally, are also mapped into the
range [0, 1] such that, for all iG1, . . . , I,

x(θ [i ] ) ≡ xiG(iA1)�(IA1).

There are five broad categories of OPC models:

(i) lots of good designs;
(ii) lots of intermediate but few good and bad designs;
(iii) equally distributed good, bad, and intermediate designs;
(iv) lots of good and lots of bad designs but few intermediate ones;
(v) lots of bad designs.

A graphical expression for these five OPC models is shown in Fig. 1.

2.3. Calculation of Prob{�{k}∩GS r
N �≥k*� �SS∩GSN�≥k}. Under the

condition

�SS∩GSN�¤k,

the probability for �{k}∩GS r
N�¤k* will be higher if k*⁄k is smaller. Thus,

it would be interesting to know what is the least value of k such that

Prob{�k}∩GS r
N¤�k*� �SS∩GSN�¤k}

can be equal or close to 1. The advantage for having a smaller k is that we
can achieve

�SS∩GSΘ�¤k*

Fig. 1. The five OPC models.
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with a high P*A by a smaller �SS� as can be observed from the term
Prob{E1}GPA in the lower bound of (10). Smaller �SS� for achieving the
same P*A is of course favorable in the aspect of reducing computational
complexity using the OO approach.

Unlike Prob{GS r
N⊆GSΘ}, it is not suitable to use the assumption of

uniform selection here, because {k} is composed of the top k designs of
SS∩GSN . Therefore, the performance values of the designs in {k} are
crucial in determining their order within GSN and their intersection with
GS r

N .
Since both {k} and GS r

N are subsets of GSN , without loss of generality
we can employ a neutral-type OPC (Remark 2.1 and Ref. 1) to represent the
normalized ordered performance of the equally spaced normalized ordered
designs of GSN and serve as the reference for placing the order of the designs
of GS r

N and {k} within GSN . Clearly, GS r
N is composed of the top

(m�n)B100% designs in GSN . As shown in Fig. 2, the 45° straight-line rep-
resents the OPC of GSN , and any design of GSN with normalized perform-
ance less than m�n belongs to GS r

N . To determine the order of the designs
of {k} within the set GSN , we have to consider wider possibilities of the
performances of the designs in {k} within GSN . Since the designs in {k} are
the top k designs of SS∩GSN , they are ranked higher in GSN; therefore,
their performances within GSN should be categorized to the OPC classes of

Fig. 2. Order adjustment for a sample x in {k}.
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designs (i), (ii), and at least (iii). To cover a wider range of OPCs, we choose
37 different standardized OPCs belonging to the classes (i), (ii), (iii) formed
from the combinations of the following parameters:4

αG{0.15, 0.25, 0.4, 0.55, 0.7, 0.85, 1.0, 1.5, 2.0, 3.0, 4.0},

βG{1.0, 2.0, 3.0, 4.0},

as the domain of the OPCs of the set {k}. Now, for the designs of the set
{k} with a given OPC, we will determine their order within GSN by two
steps.

We first uniformly place them in the normalized ordered interval [0, 1]
by the following manner: dividing [0, 1] into k subintervals and placing one
design in the middle of a subinterval for all k designs. Then, we will adjust
the order of these k designs based on their performances within the set GSN .
For example, if the given OPC of {k} is a rather flat one, which corresponds
to the class (i) of lots of good designs, as shown in Fig. 2, and if x, in the
same figure, represents one of the uniformly placed k designs in [0, 1], then
the order of the design x will be adjusted to that of xa in GSN , which has
the same performance as x in {k} as shown in Fig. 2.

Since all we care here is the intersection of {k} and GS r
N , thus if the

performance of design in {k} for a given OPC is less than m�n, this design
belongs to GS r

N . This means we do not need to execute the order adjustment
step for the design x in {k} described above. Based on this procedure for
determining the intersection between {k} and GS r

N , we carry out 50,000
realizations of the OPCs, which are randomly selected from the 37 OPCs
assigned to {k} and obtain the relationship between k, k*, and

Prob{�{k}∩GS r
N�¤k*� �SS∩GSN �¤k}

for m�nG0.7, nG5, �N�G1000 shown in Tables 1 and 2. Comparing Table
1 with Table 2, we see that Table 1 provides us the least value of k for a
given k* such that

Prob{�{k}∩GS r
N�¤k*��SS∩GSN�¤k}G1,

4To accommodate the five normalized OPC types described in Remark 2.1 using the smallest
number of parameters, the inverse mapping of the incomplete beta function, parametrized by
a pair of numbers α and β , is employed (Ref. 1). More precisely, the standardized OPC is
determined by a two-parameter smooth curve,

Λ(x �α , β )GF −1(x �α , β )GF (x �1�α , 1�β ),

where F (x � · , · ) is the incomplete beta function of the two parameters ( · , · ). In general,
αF1, βH1 correspond to the OPC of type (i); αH1, βH1 correspond to the OPC of type
(ii); αG1, βG1 correspond to the OPC of type (iii); αF1, βF1 correspond to the OPC of
type (iv); αH1, βF1 correspond to the OPC of type (v).
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Table 1. Relationship between k and k* for

Prob{�{k}∩GS r
N�¤k*��SS∪GSN �¤k}G1.

k 1 2 3 4 5 6 7 8 9 10

k* 1 1 2 3 4 4 5 6 7 7

PkGr 1 1 1 1 1 1 1 1 1 1

Notation: PkGr ≡ Prob{�{k}∩GS r
N�¤k*��SS∩GSN�¤k}.

Table 2. Relationship between k and k* for

Prob{�{k}∩GS r
N�¤k*��SS∩GSN�¤k}⁄1.

k 1 2 3 4 5 6 7 8 9 10

k* 1 2 3 4 5 5 6 7 8 8

PkGr 1 0.93 0.86 0.82 0.80 0.96 0.86 0.89 0.87 0.96

Notation: PkGr ≡ Prob{�{k}∩GS r
N�¤k*��SS∩GSN�¤k}.

and this is the answer to the question we posed at the beginning of this
subsection.

2.4. Numerical Value for the Lower Bound of P*A . From (11) and (13),
it can be computed easily that

Prob{GS r
N⊆GSΘ}G0.991

if

m�nG0.70, nG5, �N�G1000, �Θ�G108.

Thus, given that PAG0.95 and Prob{GS r
N⊆GSΘ}G0.991, we have from

(10) that

P*A¤0.942

if the values of k and k* are chosen having

Prob{�{k}∩GS r
N�¤k*��SS∩GSN�¤k}G1

as indicated in Table 1.

2.5. Determining the Size of SS for the Desired Alignment k* with a
High Alignment Probability P*A . Setting

m�nG0.70, nG5, �N�G1000, �Θ�G108,
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from Section 2.4, we have that

P*A¤0.942, if PAG0.95 and Prob{�{k}∩GS r
N�¤k*��SS∩GSN�¤k}G1.

Thus, to determine the size of SS for a desired k* with P*A¤0.942, we first
look up the corresponding smallest value of k with

Prob{�{k}∩GSr
N�¤k*��SS∩GSN�¤k}G1

from Table 1. Then, for this k and PAG0.95, we can compute the size of
SS by the function Z(k, g), where g is the size of GSN , given in (Ref. 1).
Similar simple calculations can be done for m�n equal to a ratio other than
0.7. The bottom line is: If we choose a more restricted definition of GSN

about 30% less than GSΘ , we can use the UAP curves as if they were
designed to predict

P*A ≡ Prob{�SS∩GSΘ�¤k}

in (2), rather than PA in (1).

3. Conclusions

This note quantifies and validates the notion that N is representative of Θ
and the use of the universal alignment curves (UAP curves) first reported
in Ref. 1.
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