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Optimal Biorthogonal Transform for Colored Noise
Suppression With Subband Wiener Filtering

See-May Phoong and Yuan-Pei Lin

Abstract—t is well-known that the Karhunen-Loeve trans- x(n) ) Analvsis Synthesis [
form (KLT) is optimal for white noise suppression. Recently, { Pol iase §(n) Pglnyphase L,
Akkarakaran and Vaidyanathan showed that for the case of s(n) 7 M);ptrix S -_ ’ Matrix . Yo
colored noise, if both the noise and signal have a common KLT, T . 0 vy e H
then the KLT is optimal for subband noise suppression. In this v T ——> T (—

paper, we will derive the optimal transform (not restricting to the
class of unitary transforms) for the noise suppression problem

. . ; Fig. 1. Filter bank based noise suppression scheme.
when the signal and noise have arbitrary spectrum. 9 PP

Index Terms—bPenoising, filter bank, noise suppression, subband

\ i to the well-known KLT. If the additive noise is colored, the only
Wiener filter, transform.

solution known is for the case when the autocorrelation matrices
of s(n) andr(n) have a common KLT. For this restrictive case,

|. INTRODUCTION the common KLT is shown [1] to be the optimal memoryless
@tnsform when zeroth-order Wiener filter is applied in the sub-
ands. In this paper, we consider the more general case of ar-
'grary signal and noise spectrum. We will derive the optimal
moryless transform (not restricting to unitary transform) for
ored noise suppression.

N RECENT years, there has been considerable inter

in the application of filter bank (FB) to noise suppressio
(denoising) (see [1], [2], and references therein). Fig. 1 sho
such a FB-based noise reduction scheme. The black boX&
in the figure denote the subband denoising operations. ThéR
are various subband denoising schemes such as the Wiener
filtering, soft thresholding, hard thresholding, input adaptive
thresholding, etc. In [2], a practical thresholding scheme that isLet the inputx(n) = s(n) + v(n), wheres(n) is the de-
applied to each subband sample was proposed. It was shaived signal ane(n) is the additive noise. Assume thh ) and
[2] that the proposed thresholding scheme, which threshold&:.) are real zero-mean WSS uncorrelated vector processes.
the coefficients to a specific level, provides a quasi optimahe A/ x M autocorrelation matrices of(n), s(n) andw(n)
min-max estimator of a noisy piecewise-smooth signals.  are denoted bR, R, andR,, respectively. As(n) andv(n)

Unlike [2], our goal is to design the FB-based denoisingre uncorrelated, we have
scheme to minimize the output error variance

&.=E - ¥ - 1
{3 (n) = s(m) (y(n) = s(n)} @) Without much loss of generality, we assume that the m&rjix

wheres(n) is the desired signal ang(n) is the output signal, is invertible. HenceR., is positive definite. LeR'* be the
as shown in Fig. 1. We will consider the case when the subbatique positive definite matrix that satisfiBs/ *RY/* = R,.
denoising scheme is Wiener filtering. Recently, Akkarakaran We consider only the class of FB with constant polyphase
and Vaidyanathan [1] showed that for the white noise case th@trices. That s, the matrik is a nonsingular constant matrix.
principle component FB (PCFB) (if exists) is the optimal orAssume that the subband operation is carried out by multiplica-
thonormal FB that minimize§,,. Moreover, the optimality of tion with a set of constants. Therefore the subband operations
PCFB holds even when any combination of Wiener filter or ha@denoted by the black boxes can be written as the diagonal matrix
threshold is used in the subband. For the special case of mem-

. . ko 0O --- 0
oryless transform wher® is a constant matrix, PCFB reduces 0 k.- 0

II. OPTIMAL TRANSFORM

R.=R,+R,.

K= (2
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1) columns ofT are chosen as the eigenvectors of the matrbollowing a similar approach, one can verify that the optimal
R.R.!; transform can be expressed as

2) scalarg:; are the corresponding eigenvalues. 12

Moreover the optimal transform can be expresse@gs = Tope =R,/“Qu ()

1/2 . . . . .
R,/ “Q, whereQ is a unitary matrix that diagonalizes the may, here Q. is a unitary matrix such thaR;l/QRSR;l/Q _

. —1/2 —1/2 L . .
trix (R ' "R;Rs 7). The minimized output error variance ISQ, D, Q] for some diagonal matriD; . In this case, one can

given by&.,;n = t_r[Rs - R.R;'R,]. _ show that the optimal subband operation is the Wiener filter for
Proof: Consider Fig. 1. The transfer function from theg input and it is given byK oy, = D1 (D + 1)~}
opt — .

input to the outpuy (n) is the constant matrix Three Interpretations of the Optimal TransformBrom
Theorem 1, (4) and (5), we obtain three different expressions
for the optimalT-L: (1) Q'R; Y2, where Q' diagonalizes

opt*
From Wiener theory, we know that the output error varianc(éi;l/QRsR;l/Q); the optimal transform is a cascade of
&, is lower bounded by that obtained by the Wiener filter. Thign input (signal plus noise) whitener followed by a signal
lower bound is achieved if and only if the matikis the Wiener decorrelator. The matrixR. /% whitens the inputx(n)
filter. For an input with desired signa{n) and noise/(n), itis while Q' decorrelates the filtered SignER;l/Qs(n). 2

P=TKT'.

known that the Wiener filter is given by T;plt _ Q(T)Rs_l/2, whereQ} diagonalizeR; />R, R; /%
. the optimal transform is a cascade of a signal whitener followed
Priener = R R, ®) by a noise decorrelator. The matik; '/? whitens the signal

s(n) while Q decorrelates the filtered noid; */v(n). (3)

f T = QIR;?, whereQ] diagonalizesR; */*R,R; /%,
the optimal transform is a cascade of a noise whitener followed
by a signal decorrelator. The mati; /% whitens the noise

v(n) while Q] decorrelates the filtered sigril; */*s(n).

Observe that iPiepne; is diagonalizable, then we can hde=
Piener DYy choosing the columns &F be the eigenvectors o
P iener andk; to be the eigenvalue @ ;e - TO ShOWP iener
is always diagonalizable, we rewrii® e, as

Poionee = RY/2 [R;I/QRSR;W} R-1/2 Remarks and Discussions:
- 1) Inthe case thak, andR., have a common KLT, botR,
A andR, can be simultaneously diagonalized by the same
=R;/’QDQ'R;"/”. unitary matrixQ. The optimal transform can simply be

. ) . . . . chosen a). Thus, our solution reduces to that given in
As the matrixA in this equation is symmetric, there exists a Theorem 7 of [1].

unitary matrixQ such thatA = QDQF for some diagonal 2) When the noise (or the desired signal) is white, tRgn=

matrixD. Hence, one choice of the optimal transforrlis,; = I (or R, = T). This becomes a special case of common

RY/?Q. From Wiener theory, we know that the minimized the k[ T.

output error variance is given #,in = tr[R, — R;R;'R,]. 3) The above results can be generalized to the case of uncon-

AAA _ _ strained filter length, where the transform and the sub-
The optimal transformd',,. andK consist of the eigenvec- band Wiener filters are allowed to be ideal filters. The

tors and eigenvalues of the Wiener filter. From matrix theory, we  entire proof and derivations carry through by simply re-
know that the eigenvalues are unique and the eigenvectors are p|acing the correlation matrices by the power spectral ma-

unigue up to a scaling factor. Therefore the optilareunique trices.

and the optimal transforrT’.,,; is uniqueup to a nonsingular 4y For the case of FIR matriX(z), the optimal solution is
diagonal matrix. The subband signal is given By, x(n) = still an open problem.

QTR;I/Qx(n). The optimaIT;plt performs two tasks: the ma-

trix R/ whitens the inpuk(n) while the unitary matrixQ IIl. SIMULATION

decorrelates the filtered desired sigial */*s(n). In this section, we compare the performance of the optimal

Cases WheiRk, or R, is Nonsingular: Assume thaR.. is  transform and the KLT for colored noise suppression. The di-
nonsingular. We can rewrite the Wiener solution in (3) as  mension of the transform i3/ = 8. The vectorss(n) and
_ o e v(n) are respectively the blocked versions of scalar uncorre-
Pryiener = R/ 2L+ ROVIR, RV IR, Ia(ter WSS processe§r) andr(n). The signak(n) isan AR(1)
process with correlation coefficiept*!. The noiser(n) is an
AR(1) process with correlation coefficient pkk | we compare
the output error variances of the following two case< i),
in Theorem 1 and ii¥y,;: the output error variance whéh is
Topt = R/2Qq. (4) the KLT for s(n) andk; is taken as the zeroth order Wiener
filter for its input (this is the optimal transform if the noise were
The optimalK is given byK,; = (I+Dy) L. Itis not difficult ~ white). Fig. 2 shows the results for7 < p, < 0.99 and and
to verify thatK,, is the Wiener filter for the subband signalp, = —0.7. As we can seef,i, is smaller tharty;, and the
§(n) plus noise(n). On the other hand, IR, is nonsingular. gain decreases when increases. This is because whenis

Let Qg be a unitary matrix such thd{S_I/QR,,RS_I/2
QODoQ(T) for some diagonal matrif),. One can verify that
the optimal transform can also be expressed as
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Fig. 2. Output error variances whérv < p, < 0.99 andp, = —0.7. Fig. 3. Output error variances when = 0.7 and—0.7 < p, < 0.

nearly 1, a large portion of the noise reduction can be obtainggcyssion and suggestions that give rise to this simpler deriva-
by exploiting the correlation of the signal alone. Fig. 3 showgyn, of the results and the generalization to the unconstrained
the results for-0.7 < p, < 0 andp, = 0.7. From the figure, case. We would also like to thank the reviewers for their com-
we see that as, decreases to 0, the two curves converge. Whekants that have greatly improved the presentation.

p» = 0, the noise is white and in this case the optimal transform

reduces to the KLT of(n). REFERENCES
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