
154 IEEE SIGNAL PROCESSING LETTERS, VOL. 9, NO. 5, MAY 2002

Optimal Biorthogonal Transform for Colored Noise
Suppression With Subband Wiener Filtering

See-May Phoong and Yuan-Pei Lin

Abstract—It is well-known that the Karhunen–Loeve trans-
form (KLT) is optimal for white noise suppression. Recently,
Akkarakaran and Vaidyanathan showed that for the case of
colored noise, if both the noise and signal have a common KLT,
then the KLT is optimal for subband noise suppression. In this
paper, we will derive the optimal transform (not restricting to the
class of unitary transforms) for the noise suppression problem
when the signal and noise have arbitrary spectrum.

Index Terms—Denoising, filter bank, noise suppression, subband
Wiener filter, transform.

I. INTRODUCTION

I N RECENT years, there has been considerable interest
in the application of filter bank (FB) to noise suppression

(denoising) (see [1], [2], and references therein). Fig. 1 shows
such a FB-based noise reduction scheme. The black boxes
in the figure denote the subband denoising operations. There
are various subband denoising schemes such as the Wiener
filtering, soft thresholding, hard thresholding, input adaptive
thresholding, etc. In [2], a practical thresholding scheme that is
applied to each subband sample was proposed. It was shown
[2] that the proposed thresholding scheme, which thresholds
the coefficients to a specific level, provides a quasi optimal
min-max estimator of a noisy piecewise-smooth signals.

Unlike [2], our goal is to design the FB-based denoising
scheme to minimize the output error variance

(1)

where is the desired signal and is the output signal,
as shown in Fig. 1. We will consider the case when the subband
denoising scheme is Wiener filtering. Recently, Akkarakaran
and Vaidyanathan [1] showed that for the white noise case the
principle component FB (PCFB) (if exists) is the optimal or-
thonormal FB that minimizes . Moreover, the optimality of
PCFB holds even when any combination of Wiener filter or hard
threshold is used in the subband. For the special case of mem-
oryless transform where is a constant matrix, PCFB reduces
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Fig. 1. Filter bank based noise suppression scheme.

to the well-known KLT. If the additive noise is colored, the only
solution known is for the case when the autocorrelation matrices
of and have a common KLT. For this restrictive case,
the common KLT is shown [1] to be the optimal memoryless
transform when zeroth-order Wiener filter is applied in the sub-
bands. In this paper, we consider the more general case of ar-
bitrary signal and noise spectrum. We will derive the optimal
memoryless transform (not restricting to unitary transform) for
colored noise suppression.

II. OPTIMAL TRANSFORM

Let the input , where is the de-
sired signal and is the additive noise. Assume that and

are real zero-mean WSS uncorrelated vector processes.
The autocorrelation matrices of and
are denoted by and respectively. As and
are uncorrelated, we have

Without much loss of generality, we assume that the matrix
is invertible. Hence is positive definite. Let be the
unique positive definite matrix that satisfies .

We consider only the class of FB with constant polyphase
matrices. That is, the matrix is a nonsingular constant matrix.
Assume that the subband operation is carried out by multiplica-
tion with a set of constants. Therefore the subband operations
denoted by the black boxes can be written as the diagonal matrix

...
...

. . .
...

(2)

Our aim is to find the best transform and the optimal such
that the output error variance in (1) is minimized. The op-
timal solution is given by the following theorem.

Theorem 1: Consider the denoising scheme in Fig. 1. Sup-
pose that the subband operation is taken as (2). Assume that
is nonsingular. Then the output error variancein (1) is mini-
mized if and only if the following conditions hold:
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1) columns of are chosen as the eigenvectors of the matrix
;

2) scalars are the corresponding eigenvalues.
Moreover the optimal transform can be expressed as

, where is a unitary matrix that diagonalizes the ma-
trix . The minimized output error variance is
given by

Proof: Consider Fig. 1. The transfer function from the
input to the output is the constant matrix

From Wiener theory, we know that the output error variance
is lower bounded by that obtained by the Wiener filter. This

lower bound is achieved if and only if the matrixis the Wiener
filter. For an input with desired signal and noise , it is
known that the Wiener filter is given by

(3)

Observe that if is diagonalizable, then we can have
by choosing the columns of be the eigenvectors of
and to be the eigenvalue of . To show

is always diagonalizable, we rewrite as

As the matrix in this equation is symmetric, there exists a
unitary matrix such that for some diagonal
matrix . Hence, one choice of the optimal transform is

. From Wiener theory, we know that the minimized the
output error variance is given by .

The optimal transforms and consist of the eigenvec-
tors and eigenvalues of the Wiener filter. From matrix theory, we
know that the eigenvalues are unique and the eigenvectors are
unique up to a scaling factor. Therefore the optimalareunique
and the optimal transform is uniqueup to a nonsingular
diagonal matrix. The subband signal is given by

. The optimal performs two tasks: the ma-

trix whitens the input while the unitary matrix
decorrelates the filtered desired signal .

Cases When or is Nonsingular: Assume that is
nonsingular. We can rewrite the Wiener solution in (3) as

Let be a unitary matrix such that
for some diagonal matrix . One can verify that

the optimal transform can also be expressed as

(4)

The optimal is given by It is not difficult
to verify that is the Wiener filter for the subband signal

plus noise . On the other hand, if is nonsingular.

Following a similar approach, one can verify that the optimal
transform can be expressed as

(5)

where is a unitary matrix such that
for some diagonal matrix . In this case, one can

show that the optimal subband operation is the Wiener filter for
its input and it is given by .

Three Interpretations of the Optimal Transforms:From
Theorem 1, (4) and (5), we obtain three different expressions
for the optimal : (1) , where diagonalizes

; the optimal transform is a cascade of
an input (signal plus noise) whitener followed by a signal
decorrelator. The matrix whitens the input
while decorrelates the filtered signal . (2)

, where diagonalizes ;
the optimal transform is a cascade of a signal whitener followed
by a noise decorrelator. The matrix whitens the signal

while decorrelates the filtered noise . (3)
, where diagonalizes ;

the optimal transform is a cascade of a noise whitener followed
by a signal decorrelator. The matrix whitens the noise

while decorrelates the filtered signal .
Remarks and Discussions:

1) In the case that and have a common KLT, both
and can be simultaneously diagonalized by the same
unitary matrix . The optimal transform can simply be
chosen as . Thus, our solution reduces to that given in
Theorem 7 of [1].

2) When the noise (or the desired signal) is white, then
(or ). This becomes a special case of common

KLT.
3) The above results can be generalized to the case of uncon-

strained filter length, where the transform and the sub-
band Wiener filters are allowed to be ideal filters. The
entire proof and derivations carry through by simply re-
placing the correlation matrices by the power spectral ma-
trices.

4) For the case of FIR matrix , the optimal solution is
still an open problem.

III. SIMULATION

In this section, we compare the performance of the optimal
transform and the KLT for colored noise suppression. The di-
mension of the transform is . The vectors and

are respectively the blocked versions of scalar uncorre-
lated WSS processes and . The signal is an AR(1)
process with correlation coefficient . The noise is an
AR(1) process with correlation coefficient of . We compare
the output error variances of the following two cases: i)
in Theorem 1 and ii) : the output error variance when is
the KLT for and is taken as the zeroth order Wiener
filter for its input (this is the optimal transform if the noise were
white). Fig. 2 shows the results for and and

. As we can see, is smaller than and the
gain decreases when increases. This is because whenis
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Fig. 2. Output error variances when0:7 � � � 0:99 and� = �0:7.

nearly 1, a large portion of the noise reduction can be obtained
by exploiting the correlation of the signal alone. Fig. 3 shows
the results for and . From the figure,
we see that as decreases to 0, the two curves converge. When

, the noise is white and in this case the optimal transform
reduces to the KLT of .
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