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Semiclassical quantization for the spherically symmetric systems
under an Aharonov-Bohm magnetic flux

W. F. Kao,* P. G. Luan, and D. H. Lin†

Institute of Physics, Chiao Tung University, Hsin Chu 30043, Taiwan
~Received 1 January 2002; published 17 April 2002!

The semiclassical quantization rule is derived for a system with a spherically symmetric potentialV(r )
;r n(22,n,`) and an Aharonov-Bohm magnetic flux. Numerical results are presented and compared with
known results for models withn521,0,2,̀ . It is shown that the results provided by our method are in good
agreement with previous results. One expects that the semiclassical quantization rule shown in this paper will
provide a good approximation for all principle quantum numbers, including the large principle quantum
numbern@1. The rule is even derived in the large principal quantum number limitn@1. We also discuss the
power parametern dependence of the energy spectra pattern in this paper.
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I. INTRODUCTION

In the past 20 years, the Aharonov-Bohm~AB! effect, a
topological nonlocal physical effect at the quantum level, h
been of much interest in the studies of cosmic string@1#,
(211)-dimensional gravity theories@2#, and especially in
the context of anyon@3#, which has shed light on the unde
standing of the phenomenon of the fractional quantum H
effect @4–7#, superconductivity@7,8#, repulsive Bose gase
@9#, and so forth. There are only a few models coupled
different potentials along with an AB magnetic flux that c
be solved exactly. For the system with both an AB magne
flux and a spherically symmetric potential of the formV(r )
5lr n(22,n,`), the solvable models known to us in
clude the cases with the parametern521,0,2,̀ @10–12,16#.
Herel is a constant parameter. Note that whenn521, it is
a system with both an AB magnetic flux and a Coulom
potential (ABC) @10–12#. This system describes the relativ
motion of two charged particles, with one of them carryi
electric charge and magnetic flux (2q,2F/Z), while the
other one carries (Zq,F). Here Z(Þ0) is a nonvanishing
real number. This system is of much interest in many diff
ent areas@12#.

In the past three decades, much progress has been ma
the semiclassical methods toward the understanding of t
systems. These kinds of semiclassical methods provide
with a powerful approximation tool in different areas in o
der to extract useful information from various unsolv
problems including the quantization of the classical chao
systems@13#, deformed atomic nuclei, asymmetric fissio
nuclei @14#, semiclassical quantum dots, and weak locali
tion in mesoscopic systems@15#. In this paper, we will con-
sider a generalized system with both an AB magnetic fl
and a spherically symmetric potential of the form mention
above. The set of the parameters (l,n) will be discussed in
the following ranges~i! (l,0,22,n,0) and ~ii ! (l
.0,n.0). We will derive a semiclassical quantization ru
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of the approximated energy spectra for this set of parame
The distribution tendency of the energy spectra on differ
values of the parametern will also be given. By comparing
with the known results, including the models withn5
21,0,2, we find that our method agrees with these ex
results. In addition, for the exactly solvable model withn
5`, the difference between the exact and semiclassica
sults will be shown to be very small from a numerical com
putation. Therefore, we are confident in that our formu
will also provide a good approximation for the two ranges
parameters mentioned above wherenÞ21,0,2,̀ .

This paper is organized as follows. In Sec. II, we w
derive the semiclassical quantization rule of the AB effe
under a spherically symmetric potential. In particular, w
will first derive the nonintegrable phase factor of the Gree
function due to the AB effect in a spherically symmetr
system. The corresponding radial Schro¨dinger equation will
also be derived accordingly. The semiclassical wave fu
tions will also be derived according to the semiclassical c
sideration of the Bohr’s corresponding principle. Cons
quently, the quantization rule can thus be obtained
comparing with the well-known WKB phase. We will als
study the distribution dependence of energy spectra in v
ous models in Sec. III. The effect of magnetic flux will als
be discussed and emphasized in this section. Finally, in S
IV, some conclusions will be drawn. In order to provide
self-contained information, we will show the WKB matchin
condition of the semiclassical wave functions in the Appe
dix.

II. SEMICLASSICAL QUANTIZATION RULE OF THE AB
EFFECT WITH A SPHERICALLY SYMMETRIC

POTENTIAL

The fixed-energy Green’s functionG0(r,r 8;E) for a
charged particle with massm propagating fromr to r 8 satis-
fies the Schro¨dinger equation

FE2H0S r ,
\

i
“ D GG0~r,r 8;E!5d3~rÀr 8!, ~1!
©2002 The American Physical Society08-1
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where the system Hamiltonian is given byH052\2¹2/2m
1V(r ) as usual. In the spherically symmetric cases, the
gular decomposition of the Green’s function can be writ
as

G0~r,r 8;E!5(
l 50

`

(
k52 l

l

Gl
0~r ,r 8;E!Ylk~u,w!Ylk* ~u8,w8!,

~2!

with Ylk the well-known spherical harmonics. As a result, t
left- hand side of the Eq.~1! can be brought to the following
form:

H E2(
l 50

`

(
k52 l

l F2
\2

2m S d2

dr2
1

2

r

d

dr D 1
l ~ l 11!\2

2mr2 G2V~r !J
3Gl

0~r ,r 8;E!Ylk~u,w!Ylk* ~u8,w8!. ~3!

For a charged particle in a magnetic field, the Green’s fu
tion G is related toG0 by the following equation:

G~r,r 8;E!5G0~r,r 8;E!expF ie

\cEr8

r
A~ r̃ !•dr̃ G , ~4!

with a globally path-dependent nonintegrable phase fa
@17,18# given above. Here we have used the vector poten
A( r̃ … to represent the magnetic field. For the Aharono
Bohm magnetic flux under consideration, the vector poten
can be written as

A„x…ÄH 1

2
Brêw ~r,e!

1

2
B

e2

r
êw5

F

2pr
êw ~r.e!,

~5!

where the two-dimensional radial length is defined asr2

5x21y2 as usual. Moreover,êw is the unit vector of coor-
dinatew ande is the radius of region where magnetic fie
exists. Hence the total magnetic flux is given byF5pe2B.
Note that the associated magnetic field lines are confi
inside a tube, with radiuse, along thez axis. Along the
region without magnetic field, the path-dependent nonin
grable phase factor is given by

expF2 im0E
P

l

dl8ẇ~l8!G , ~6!

where we have used the subscriptP to represent the path
dependent nature of phase factor and we have den
ẇ(l8)5dw/dl8. Also, m0522eg/\c is a dimensionless
number defined byF54pg. The minus sign is a matter o
convention. According to the discussion in Ref.@18#, only
phase factors with closed-loop contour are considered w
the description of electromagnetic phenomenon are c
plete. Hence, we have

n5
1

2pEP

l

dl8ẇ~l8!, ~7!
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with integer valuesn corresponding the winding numbe
The magnetic interaction is therefore purely topologic
Therefore the nonintegrable phase factor becomes

e2 im0(2np). ~8!

With the help of the equality between the associated L
endre polynomialPn

m(z) and the Jacobi functionPn
(a,b)(z)

@19,20#, we find that

Pl
k~cosu!5~21!k

G~ l 1k11!

G~ l 11! S cos
u

2
sin

u

2D k

Pl 2k
(k,k)~cosu!.

~9!

Therefore the angular part of the Green’s function in t
expression~3! can be turned into the following form:

(
k52 l

l

Ylk~u,w!Ylk* ~u8,w8!

5 (
k52 l

l
2l 11

4p

G~ l 2k11!

G~ l 1k11!

3Pl
k~cosu!Pl

k~cosu8!eik(w2w8)

5 (
k52 l

l F2l 11

4p

G~ l 2k11!G~ l 1k11!

G2~ l 11!
G

3S cos
u

2
cos

u8

2
sin

u

2
sin

u8

2 D k

3Pl 2k
(k,k)~cosu!Pl 2k

(k,k)~cosu8!eik~w2w8!. ~10!

In order to include the nonintegrable phase factor due to
AB effect, we will change the indexl into q related by the
definition l 2k5q. As a result one can rewrite the Eq.~3! as

H E2 (
q50

`

(
k52`

` F2
\2

2m S d2

dr2
1

2

r

d

dr D
1

~q1k!~q1k11!\2

2mr2 G2V~r !J Gq1k
0 ~r ,r 8;E!

3F2~q1k!11

4p

G~q11!G~q12k11!

G2~q1k11!
G

3S cos
u

2
cos

u08

2
sin

u

2
sin

u8

2 D k

3Pq
(k,k) ~cosu!Pq

(k,k) ~cosu8!eik (w2w8). ~11!

In addition, the nonintegrable phase in Eq.~8! can now be
included with the help of the Poisson’s summation formu
~p. 124,@21#!

(
k52`

`

f ~k!5E
2`

`

dy (
n52`

`

e2pnyif ~y!. ~12!

Therefore, the expression~11! can be written as
8-2
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H E2 (
q50

` E dz (
k52`

` F2
\2

2m S d2

dr2
1

2

r

d

dr D 1
~q1z!~q1z11!\2

2mr2 G2V~r !J
3Gq1z~r ,r 8;E!F2~q1z!11

4p

G~q11!G~q12z11!

G2~q1z11!
G S cos

u

2
cos

u8

2
sin

u

2
sin

u8

2 D z

Pq
(z,z)

3~cosu!Pq
(z,z)~cosu8!exp@ i ~z2m0!~w12kp2w8!#, ~13!

where the superscript 0 inGq1k
0 has been suppressed to reflect the inclusion of the AB effect. The summation over all i

k forcesz5m0 modulo an arbitrary integer number. Therefore, one has

H E2 (
q50

`

(
k52`

` F2
\2

2m S d2

dr2
1

2

r

d

dr D 1
~q1uk1m0u!~q1uk1m0u11!\2

2mr2 G2V~r !J
3Gq1uk1m0u~r ,r 8;E!H @2~q1uk1m0u!11#

4p

G~q11!G~2uk1m0u1q11!

G2~ uk1m0u1q11!
J eik(w2w8)

3~cosu/2 cosu8/2 sinu/2 sinu8/2! uk1m0uPq
(uk1m0u,uk1m0u)

~cosu!Pq
(uk1m0u,uk1m0u)

~cosu8!. ~14!
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Note that the influence of the AB effect to the radial Gree
function is to replace the integer quantum numberl with a
fractional quantum numberq1uk1m0u. Analogously the
same procedure can be applied to the delta func
d3(rÀr 8) in the rhs of the Eq.~1! with the help of the fol-
lowing solid angle representation of thed function:

d~V2V8!5(
l 50

`

(
k52 l

l

Ylk~u,w!Ylk* ~u8,w8!. ~15!

Therefore, for the set of the fixed quantum numbers (q,k)
one can show that the radial Green’s function satisfies

H E2F2
\2

2m S d2

dr2
1

2

r

d

dr D
1

~q1uk1m0u!~q1uk1m0u11!\2

2mr2 G2V~r !J
3Gq1uk1m0u~r ,r 8;E!5d~r 2r 8!. ~16!

As a result, the corresponding radial wave equation read

\2

2m

d2

dr2
ug~r !1FE2S V~r !1

\2

2m

g~g11!

r 2 D Gug~r !50,

~17!

where we have setg5q1uk1m0u, and ug(r )[rRñg(r ).
Obviously,Rñg satisfies the spherical Bessel equation

F d2

dr2
1

2

r

d

dr
1S k22U~r !2

g~g11!

r 2 D GRñg~r !50

~18!
05210
s

n

with the definitionsk5A2mE/\2 and the reduced potentia
U(r )52mV(r )/\2. For simplicity, we have writtenRñg(r )
instead ofRñ,q,k(r ) in which each set (ñ,q,k) denotes a
quantum state. Hence the AB effect reflects itself by the c
pling to the angular momentum in radial Green’s functio
which turns the integer quantum number into a fractio
one.

To find the semiclassical quantization rule, let us first co
sider the asymptotic form of the bound-state wave functio
of a charged particle moving in a spherically symmetric p
tential of the formV(r )5lr n(l,0,22,n,0) under an
AB magnetic flux for the energy limitE→0. Due to the
Bohr corresponding principle, this stands for the semicla
cal approximation since there are infinitely densed ene
levels nearE→02. According to Eq.~17!, the asymptotic
wave equation reads, in theE→02 limit,

\2

2m

d2

dr2
ug~r !2S lr n1

\2

2m

g~g11!

r 2 D ug~r !50. ~19!

We can also perform the following transformations:

r5r S 2mulu

\2 D 1/(n12)

, u~r !5W~r!. ~20!

Consequently, Eq.~19! yields

d2W

dr2
1Frn2

g~g11!

r2 GW50, ~21!

which can be further reduced with the help of the followin
change of variables:

z5
2

n12
r (n12)/2, W~r!5z1/(n12)v~z!. ~22!
8-3
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As a result, Eq.~21! becomes

d2v

dz2
1

1

z

dv
dz

1F12S 2g11

n12 D 2 1

z2Gv50. ~23!

This is exactly the Bessel’s equation of integral ordern1
[(2g11)/(n12). The boundary condition~BC! of the
function u(r ) in the Eq.~17! is simply u(0)50. Therefore,
the corresponding BC ofv(z) in the Eq. ~23! is v(0)50.
The Bessel function of the first kind is known to be t
solution of the Bessel’s equation. Therefore, by imposing
BC appropriately, one can show that

v~z!5Jn1
~z! ~24!

is the solution of the Eq.~23! with the prescribed boundar
condition. Therefore, the solution of the radial wave equat
nearE→0 becomes

u~r !5W~r!5z1/(n12)Jn1
~z!. ~25!

From the asymptotic behavior of the Bessel function near
→0, or equivalentlyr→0 andz→0, one can show that

u~r !;z1/(n12)z(2g11)/(n12);z(2g12)/(n12);r g11.
~26!

On the other hand, from the asymptotic behavior of
Bessel function approachingr→`,

Ja~z!→A 2

pz
cosS z2

ap

2
2

p

4 D , ~27!

one can show that

u~r !;z1/(n12)A 2

pz
cosS z2n1

p

2
2

p

4 D
;r2n/4 cosS 2

n12
r (n12)/22n1

p

2
2

p

4 D . ~28!

Note that one can also compute the following integral, n
the limit E→0, and show that the following identities hold

E
0

rA2m

\2
@E2V~r !#dr5S 2mulu

\2 D 1/2E
0

r

r n/2dr

5S 2mulu

\2 D 1/2
2

n12
r (n12)/2

5
2

n12
r (n12)/2. ~29!

It follows that, in the limitE→0 andr→`,
05210
e

n

e

r

u~r !;r 2n/4 cosS E
0

rA2m

\2
@E2V~r !#2n1

p

2
2

p

4 D
;r 2n/4 sinS E

0

rA2m

\2
@E2V~r !#2n1

p

2
1

p

4 D ,

~30!

whereV(r )5lr n(l,0,22,n,0). If we take the integra-
tion upper boundr as the classical turning pointr c , where
V(r c)5E , the phase ofu(r ) can be shown to be the WKB
phase~see the Appendix for details!

u~r c!} sinF S n1
3

4DpG . ~31!

Consequently, from comparing the Eqs.~30! and ~31!, one
can extract the following quantization condition

E
0

r cA2m@E2V~r !#5Fn1
2g1n13

2~n12! Gp\,

for n50,1,2,3 . . . . ~32!

Here n is the radial quantum number. Although Eq.~30! is
obtained in the limitE→0, or equivalently in the large quan
tum number wheren@1, above result can still be extende
to all possible values ofn. In fact, the integral in Eq.~32! can
be written in an analytic form. Indeed, with the help of th
following change of variables:

l

E
r n5csc2j, ~33!

one can rewrite the above integral as

E
0

r cA2m~E2V~r !!52
2

n S E

l D 1/n

A2muEu E
0

p/2

3cos2j~sinj!22/n22dj. ~34!

In addition, with the help of the following formula~see, for
example, Ref.@23#, p. 8!:

E
0

p/2

cos2q21z sin2p21zdz5
G~p!G~q!

2G~p1q!
, ~35!

one has

E
0

r cA2m@E2V~r !#52
2

n S E

l D 1/n

A2muEu

3
Ap

4

GS 2
1

n
2

1

2D
GS 12

1

n D . ~36!

Inserting the result of the Eq.~36! into Eq. ~32!, one has
8-4



is

a
e

e
pu

si

-

k

s

gen

-
s-
del

ly

SEMICLASSICAL QUANTIZATION FOR THE . . . PHYSICAL REVIEW A 65 052108
E52ulu2/(n12)S \2

2mD n/(n12)

3F 2unuApS n1
2~q1uk1m0u!1n13

2n14 D

3

GS 12
1

n D
GS 2

1

n
2

1

2D G
2n/(n12)

, ~37!

where the ranges of the parameters arel,E,0,22,n
,0,n,q50,1,2, . . . , and2`,k,`. For example, with the
potential of the formV(r )52e2/r , one has

En,q,k52mc2
a2

2@n1q1uk1m0u11#2
. ~38!

Here a5e2/\c denotes the fine structure constant. Th
agrees with the exact result given in Ref.@11#. We see that
the AB effect has changed the splitting of energy levels
though the electron moves in the absence of the magn
field. In addition, when the flux is quantized, namely, 4pg
5(2p\c/e)3 integer,uk1m0u is an integer and hence th
spectrum is the same as the energy spectrum of the
hydrogen atom.

To obtain the semiclassical quantization rule for all po
tive powersn.0 of the potentialV(r )5lr n, one can per-
form the following change of variable:

r5r a, u~r !5rbv~r! ~39!

and can show that Eq.~17! becomes

d2u

dr2
5a2r21b22/a

d2v~r!

dr2
1a2S 2b112

1

a D
3r11b22/a

dv~r!

dr
1a2bS b2

1

a D rb22/av~r!.

~40!

Note that the different rangesn.0 andn,0 can be properly
adjusted when the parametersa andb are chosen appropri
ately @22#. In addition, if we set

a52
n

n8
, b52

1

2 S 11
n8

n D , ~41!

the termdv/dr in Eq. ~40! disappears. Inserting this bac
into Eq. ~39! and then Eq.~17!, one has
05210
l-
tic
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\2

2m
r21n812n8/n

d2v

dr2
1F2lS n8

n D 2

1ES n8

n D 2

rn8Gv
2

\2

2m
r22Fg~g11!S n8

n D 2

1
1

4 S n8

n D 2

2
1

4G
3r21n812n8/nv50. ~42!

If we choosen8522n/(21n), the above equation reduce
to

\2

2m

d2v

dr2
1FE82l8rn82g8~g811!

\2

2mr2Gv50, ~43!

with the following relations linking different parameters:

n852
2n

~21n!
,

E852lS n8

n D 2

,

l852ES n8

n D 2

,

g852S g1
1

2D n8

n
2

1

2
5

2g11

n12
2

1

2
. ~44!

Note that the structure of the Eqs.~17! and ~43! is similar
except the signs of the parameters. Accordingly, the ei
solutions forl,n,E.0 can be found froml8,n8,E8,0. In-
serting the relations~44! into Eq. ~37!, one thus finds that

E5l2/(n12)S \2

2mD n/(n12)F 2nApS n1
~q1uk1m0u!

2
1

3

4D

3

GS 1

n
1

3

2D
GS 1

n D G 2n/(n12)

, ~45!

with the ranges of the parametersl,n,E.0,n,q
50,1,2, . . . , and2`,k,`. As a realization, the three
dimensional simple harmonic oscillator moving in the pre
ence of the AB magnetic flux can be described by the mo
with the parametersn52 andl5mv2/2. Hence we can cal-
culate the energy eigenvalue from the Eq.~45! that gives us
the following result:

En,q,k5@2n1~q1uk1m0u!1 3
2 #\v. ~46!

Another example is given by the model with an infinite
deep potential
8-5
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FIG. 1. Comparison of the ex
act and approximate energy eige
value as a function of the radia
quantum numbern. ~a! The exact
and approximate energy eigenva
ues are shown in~a!. Their differ-
ence is shown in~b!. Here we
have set q1uk1m0u52.5. See
Eqs.~48! and ~49! for details.
a

i

to

rgy

y
n

V~r !5lr n5H ` for r>a

0 for r ,a.
. ~47!

Similarly, Eq. ~45! implies the following energy spectra:

En,q,k5
\2p2

2ma2 Fn1
q1uk1m0u

2
11G2

. ~48!

Here we have replaced (n1g/213/4) with (n1g/211) ac-
cording to the matching condition of the WKB approxim
tion given in the Appendix. The analytic energy spectra
this system are then given by the zeros of the modifi
Bessel function in Eq.~3.28! of the Ref.@16#

I q1uk1m0u11/2SA22mE

\
aD 50. ~49!

The numerical analysis shown in Fig. 1~a! ~for q1uk1m0u
52.5) indicates that the result~48! is in good agreement with
the exact result~49!. In addition, Fig. 1~b! exhibits the dif-
ference between the exact and approximate results.

III. THE n DEPENDENCE OF THE DISTRIBUTION OF
THE ENERGY SPECTRA

Note that Eq.~45! indicates that

En,q,k}S n1
q1uk1m0u

2
1

3

4D 2n/(n12)

. ~50!

For example, for the model with an infinitely deep potent
~i.e., n→`), one has
0521
-
of
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En,q,k}S n1
q1uk1m0u

2
11D 2

. ~51!

On the other hand, from Eq.~37! one has~when 22,n
,0)

En,q,k}2F S n1
2~q1uk1m0u!1n13

2n14 D G2n/(n12)

. ~52!

In addition, we can calculate their derivatives with respect
n and find that

]En,q,k

]n
.0 ~53!

for all considered models. Thus one expects that the ene
levels En,q,k will monotonically increase asn increases
monotonically. Theq and uk1m0u dependence of the energ
eigenvalueEn,q,k can be found by the Hellmann-Feynma
formula ~e.g.,@24#!

]En,q,k

]q
5 K Cn,q,kU]H

]q UCn,q,kL , ~54!

where the Hamiltonian is given by

H52
\2

2m

d2

dr2
1S lr n1

\2

2m

3
~q1uk1m0u!~q1uk1m0u11!

r 2 D . ~55!

Thus, we can derive the following results:
08-6
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FIG. 2. Energy as a function o
q and n for four different n ’s is
shown. Here we have chosenuk
1m0u50.5. The unit of the energy
eigenvalue is set asmc2a2/2,
(9p2l2\2/8m)1/3, \v, and
\2p2/2ma2 for ~a!, ~b!, ~c!, and
~d!, respectively.
a
y

e

th

a

lly
]En,q,k

]q
5K Cn,q,kU@2~q1uk1m0u!11#\2

2mr2 UCn,q,kL .0,

~56!

]En,q,k

]uk1m0u
5K Cn,q,kU @2~q1uk1m0u!11#\2

2mr2 UCn,q,kL .0.

~57!

This means that the energy spectraEn,q,k will monotonically
increase as any one of the quantum numbers in the
(n,q,k) increases monotonically. Therefore the ground st
will be given byn5q5k50. The details can be obtained b
analyzing the tendency ofEn,q,k with respect to the chang
of the parametern.

A. Distribution tendency of the energy spectra fornÄÀ1

The energy spectra for a charged particle moving in
Coulomb potential and an AB flux is given by Eq.~38!. Its
first- and second-order derivatives with respect to the par
eters (n,q,uk1m0u) are

]En,q,k

]n
5mc2a2

1

~n1q1uk1m0u11!3
.0,

]2En,q,k

]n2
5mc2a2

23

~n1q1uk1m0u11!4
,0, ~58!

]En,q,k

]q
5mc2a2

1

~n1q1uk1m0u11!3
.0,
0521
set
te

e

m-

]2En,q,k

]q2
5mc2a2

23

~n1q1uk1m0u11!4
,0, ~59!

]En,q,k

]uk1m0u
5mc2a2

1

~n1q1uk1m0u11!3
.0,

]2En,q,k

]uk1m0u2
5mc2a2

23

~n1q1uk1m0u11!4
,0. ~60!

Consequently,En,q,k tends to increase and saturate gradua
as anyone of the parameters in the set (n,q,uk1m0u) in-
creases. It implies the bending curve as shown in Fig. 2~a!.
The unit of the energy eigenvalue in Fig. 2~a! is chosen as
mc2a2/2.

B. Distribution tendency of the energy spectra fornÄ1

The energy levels for the model withn51 are given by
Eq. ~45!,

En,q,k5S l2\2

2m D 1/3F3p

2 S n1
~q1uk1m0u!

2
1

3

4D G2/3

.

~61!

Their derivatives with respect to the parameters (n,q,uk
1m0u) yield

]En,q,k

]n
5S l2\2

2m D 1/3

pF3p

2 S n1
~q1uk1m0u!

2
1

3

4D G21/3

.0,
08-7
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FIG. 3. Energy as a function o
q andn for four differentn ’s. Here
we chooseuk1m0u512.
e

th

the
is

th
]2En,q,k

]n2
52S l2\2

2m D 1/3S p2

2 D
3F3p

2 S n1
~q1uk1m0u!

2
1

3

4D G24/3

,0,

~62!

]En,q,k

]q
5S l2\2

2m D 1/3p

2 F3p

2 S n1
~q1uk1m0u!

2
1

3

4D G21/3

.0,

]2En,q,k

]q2
52S l2\2

2m D 1/3S p2

8 D
3F3p

2 S n1
~q1uk1m0u!

2
1

3

4D G24/3

,0,

~63!

and

]En,q,k

]uk1m0u
5S l2\2

2m D 1/3S p

2 D
3F3p

2 S n1
~q1uk1m0u!

2
1

3

4D G21/3

.0,
05210
]2En,q,k

]uk1m0u2
52S l2\2

2m D 1/3S p2

8 D
3F3p

2 S n1
~q1uk1m0u!

2
1

3

4D G24/3

,0 .

~64!

It is obvious thatEn,q,k will monotonically increase when th
value of any parameter of the set (n,q,uk1m0u) increases as
shown in Fig. 2~b!. Note that the slope is much more smoo
than the model withn521. The unit of energy in Fig.2~b! is
chosen as (9p2l2\2/8m)1/3.

C. Distribution tendency of the energy spectra fornÄ2

The energy spectra for a charged particle moving in
three-dimensional harmonic potential and an AB flux
given by Eq.~46!. Its first- and second-order derivatives wi
respect to the set of parameters (n,q,uk1m0u) read

]En,q,k

]n
52\v~const!,

]2En,q,k

]n2
50, ~65!

]En,q,k

]q
5\v~const!,

]2En,q,k

]q2
50, ~66!

and

]En,q,k

]uk1m0u
5\v ~const!,

]2En,q,k

]uk1m0u2
50. ~67!
8-8
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This means thatEn,q,k will linearly increase as any one of th
parameters in the set (n,q,uk1m0u) increases. The details i
shown in Fig. 2~c! with the unit of energy given by\v.

D. Distribution tendency of the energy spectra fornÄ`

According to Eq.~48!, we obtain the first- and second
order derivatives with respect toEn,q,k

]En,q,k

]n
5

p2\2

ma2 Fn1
~q1uk1m0u!

2
11G.0,

]2En,q,k

]n2
5

p2\2

ma2
.0, ~68!

]En,q,k

]q
5

p2\2

2ma2 Fn1
~q1uk1m0u!

2
11G.0,

]2En,q,k

]q2
5

p2\2

4ma2
.0, ~69!

and

]En,q,k

]uk1m0u
5

p2\2

2ma2 Fn1
~q1uk1m0u!

2
11G.0,

]2En,q,k

]uk1m0u2
5

p2\2

4ma2
.0 ~70!

for the model withn→`. Note that En,q,k will increase
monotonically when any one of the parameters in the
(n,q,uk1m0u) increases. The rate of increase is, howev
faster than the modeln52 since the curve climbs up a
shown in Fig. 2~d! with the unit chosen as\2p2/2ma2.

In summary, all these results imply the following rules f
a charged particle moving in the spherically symmetric p
tential V(r )5lr n(22,n,`) and an AB magnetic flux.

~a! The energy spectra of the bound states depend on
quantum number (n,q,k) and increase monotonically as an
one of the quantum numbers increases.

~b! Whenn52, the energy spectraEn,q,k depend linearly
on any parameter in the set (n,q,k); whenn.2, the energy
curve bends up as any one of the quantum numbers (n,q,k)
increases. On the other hand, whenn,2, the curve bends
down as any one of the quantum numbers increases.

~c! When n52, we have ]E/]n:]E/]q52:1,
]E/]n:]E/]uk1m0u52:1, and ]E/]q:]E/]uk1m0u51:1,
which are related to the closeness of the classical orbits
whether the model is exactly solvable or not. For the c
with positive power ofn,

E;F S n1
~q1uk1m0u!

2
1

3

4D G2n/(n12)

.

Although we still have the same ratio of derivatives, t
above relation does not hold for the exact solution.
05210
et
r,

-

he

nd
e

~d! Whenn521, its energy spectra have the propertie
]E/]n:]E/]q51:1, ]E/]n:]E/]uk1m0u51:1, and
]E/]q:]E/]uk1m0u51:1. They are also related to th
closeness of the classical orbits. For models with nega
power ofn,(22,n,0), the WKB approximation given by
the Eq.~37! implies that

E;F S n1
2~q1uk1m0u!1n13

2n14 D G2n/(n12)

.

This hence implies that ]E/]n:]E/]q5n12,]E/
]n:]E/]uk1m0u5n12, and ]E/]q:]E/]uk1m0u5n12
are all equal. This relation does not hold for the exact res
for the same reason.

~e! The increase in the intensity of the magnetic flux w
change the slope of the energy distribution in both the m
els with 22,n,0 and the models with 0,n,`. More
explicitly, when n,2, increasing the flux will depress th
slope; whereas whenn.2, increasing the flux will lead to
the increase in the slope. In addition, the model withn52 is
marginal in the sense that the slope of the energy distribu
will not be affected by the change of the flux. For details, s
the difference shown in the Figs. 2 and 3. Note thatuk
1m0u is set as 0.5 and 12 in Figs. 2 and 3, respectively.

IV. CONCLUSION

The semiclassical quantization rule is presented fo
charged particle moving in a system with a general cen
force described by the potentialV(r )5lr n, with 22,n
,`, and an AB magnetic flux. The formulas obtained in th
paper are in good agreement with the energy levels with
known exactly solvable models with some specific values
n. Furthermore, we have presented numerical results fon
5`, which are also in good agreement with the exact res
Therefore, one expects that the semiclassical quantiza
rules will also be in good agreement with the models p
scribed by a large ranges ofn even the results shown in thi
paper are more reliable for the case with large princi
quantum numbern.

APPENDIX

The WKB wave function for a charged particle moving
a smooth potential well near the neighborhoodx;a(x.a),
wherex5a,b are the intersection points of the horizonal lin
y5E and the curvey5V(x) as shown in Fig. 4~a!, can be

FIG. 4. WKB wave function matching boundary conditions f
three cases of potentials.
8-9



a

es
ep

eral
the

W. F. KAO, P. G. LUAN, AND D. H. LIN PHYSICAL REVIEW A65 052108
expressed in terms of the classical momentump as ~see, for
example, Ref.@24# for details!

C~x!5
C

Ap
sinF 1

\Ea

x

pdx1
p

4 G[ C

Ap
sina~x!, ~A1!

whereC is constant. Analogously, near the neighborhoodx
;b (x,b) we have

C~x!5
C8

Ap
sinF 1

\Ex

b

pdx1
p

4 G[ C8

Ap
sinb~x!. ~A2!

These two wave functions must be consistent. This me
that near the neighborhoodsa,b of x,

a~x!1b~x!5
1

\Ea

b

pdx1
p

2
5~n11!p,n50,1,2,3, . . . .

~A3!

Or equivalently,
ys

05210
ns

R pdx5S n1
1

2Dh,n50,1,2,3, . . . . ~A4!

For the half-infinite potential well as shown in Fig. 4~b!, one
has

R pdx5S n1
3

4Dh,n50,1,2,3, . . . . ~A5!

Analogously, the matching rule of the wave functions giv
the quantization rule for the system with an infinitely de
square-well potential as illustrated in Fig. 4~c!. Indeed, one
has

R pdx5~n11!h,n50,1,2,3, . . . . ~A6!

The argument leading to the same result for a more gen
condition beyond the above examples can be found with
help of the Maslov index shown in Ref.@25#.
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