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7-n' mixing and the next-to-leading-order power correction
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The next-to-leading-orde®(1/Q*) power corrections forpy and 'y form factors are evaluated and
employed to explore the-»" mixing. The parameters of the two-mixing-angle scheme are extracted from the
data for form factors, two-photon decay widths, and radiafit# decays. They? analysis gives the result
f,71=(1.16¢ 0.06)f ,f,,8=(1.33i 0.23)f ,,0,=—9°%=3°,0g=—21.3°:2.3°, wheref,,l(s) and 60, s, are the
decay constants and the mixing angles for the singlete) state. In addition, we arrive at a stringent range for
f, ;=10 Mev=f{, <-4 MeV.
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[. INTRODUCTION tation. The mixing is controlled by the mixing angle. In the
one-mixing-angle scheme, in which the octet and singlet me-

Recently, the next-to-leading-ordé@dLO) power correc- son states have different decay constdn;g and f,71 and
tion has been shown to have an important role in understanghare a common mixing anglg = 6, = 6, the mixing angle
ing the exclusive processeg w— vy [1] and y* m— m [2]. 0 is in the range of-20°< #<—10° [12]. In recent years,
The method for calculating the NLO power correction ismuch evidencd13,14,1§ has indicated that a two-mixing-
called the collinear expansi¢t,3—§. This power expansion angle scheme, in which the octet and singlet mixing angles
method is compatible with perturbative QGPQCD) factor- g and 8, can take different values, is more general than the
ization[1,2], which gives the amplitude as a convolution of one-mixing-angle scheme. Thgy and 7'y form factors
perturbatively calculable hard scattering amplituttee hard have been investigated by both the one-mixing-angle scheme
function) and nonperturbative hadronic wave functigtise ~ [15—17 and two-mixing-angle schen{é4]. We would like
soft function. Furthermore, it is a Feynman diagram ap- {0 make a more refined analysis of these form factors by
proach such that the partonic interpretation for the NLOiNcluding the NLO power correction.
power correction can be preserved. In this paper, w.e.shall investigate they and 'y form

The asymptotic limit of thery transition form factor as factors and the mixing pattern of thg-»" system by em-
2f_/Q? with f.=93 MeV, is about 15% higher than the ploying the PQCD formul_a with NLO power correction in
upper end of the CLEO daf&]. This deviation can be suc- the.standard hafd scatter_mg approach. V,Vf shall employ the
cessfully explained by the NLO power correction. In addi-COIIInear expansion to derive the NLI@(Q ™) ] power cor-

. , .
tion, the NLO power correction can well describe the low rection forzy and 7 y form factors in Sec. Il In Sec. Ill we

. R shall analyze the high momentum transfer data for form fac-
energy portion of the CLEO data. Our purpose in this pape

fors, the two-photon decay widths, and the rd®ig,. The
. . 3 3 w
IS to gen(/arallze the approach for they form factor to the . values of the mixing parameters are determined frow?a
ny and 5’y form factors. The first problem we shall face is

. analysis of the data. Section IV is devoted to conclusions.
that there are many independent degrees of freedom associ- y

ated with then and ' lowest valence Fock states. The
and " mesons are admixtures of the SU£3)ctet and sin-
glet states; this gives eight quantities: four wave functions

and four related decay constants. Th@nd »’ mesons can Our strategy in calculating the power corrections to the
also receive contributions from the U(danomaly which  5nq " meson-photon transition form factor is to invoke the
gives intrinsic heavy quark and gluon content. To reduce the|jinear expansiorf1,4—6. For simplicity, we shall first
number of independent degrees of freedom, we invoke phgnore the meson mass effects. That is, we choose the mo-

nomenological constraints and physical assumptions aboyfentym of the initial state mesoR,, and that of the final
the wave functions and decay constants. state photonP,, as

For the phenomenological constraints, we shall employ
the large momentum transfer data for the and »’ y tran-
sition form factorg[7—11], the two-photon decay widths of P4 = ( Q,
the » and»' mesons, and the ratRy,,, of the J/y— »y and
J/y— 7' v decay widths. As for the physical assumptions we
shall invoke the SU(3) octet-singlet mixing scheme. In this pA— ( 09 0
mixing scheme, botly and %’ are linear combinations ofg 2 i
and 7,, the octet and singlet states in the SU{3&presen-

Il. 7y AND 7’y FORM FACTORS AND COLLINEAR
EXPANSION

2 2
M
_P,OL) = pﬂ«+ TPnlUd% p:U~1

Q2

ETHM, 1)

such that the virtual photon has momentgm P,— P with
virtuality %= — Q? to make PQCD applicable. The vectqrs
*Electronic address: twyeh@cc.nctu.edu.tw andn are in the+ and — directions in the light-cone refer-
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.~ dH(k) A
(P}awm (p}amm H(k)=H(k=k)+ (k—k)*+---. 7)
@ aK® k=k

(@) (b) © ) With the help ofk, andkg, we can factorize the loop parton
propagatorF(k)=—i/(k—i€) into its long distance part
FIG. 1. The leading order diagrams fef (') —y. The cross  F| (k) and short distance pafthe special propagator defined

symbol represents the vertex of the virtual photon. in [6]) F5(k), which are expressed as

ence frame and have the propertigd=n?=0 and p-n —ik, —ith

=1. Mp denotes the mass of the initial state meson. For the FL(k)= I Fg(k)= Knoie (8)
—le

Feynman diagrams displayed in Fig$a)land 1b), the am-

plitudes are written as The propagators- (k) and Fg(k) have different physical

meanings. To see this, let us consider their propagation on

. . +
4Tr[H(k,PZ,QZ)CD(k,Pl,QZ)] 2) ii.l;]gg'itvzone. The integrals df (k) and Fg(k) over k

d*k
)

A(P11P2):J' (271_

where the trace is taken over the color and spin indices and B en(n )
the meson distribution amplitud®A) & (k,P;,Q?) for the fLlm.N)= 2m ¢ FL(k)=0(n—N),
P(=#,7') meson is expressed

d*k
(2m)*

dk-n .
fs<n,x)=fﬁe‘k'“”*“&(k)«&w—x), (€)

(kPy,0Y = [ [ aze H0q0aIP). @

where » and X mean the light-cone distances in the di-
We assign the loop momentuknfor the valence antiquark rection. It is obvious thafg(k) is not propagating on the
and let it flow into the hard function. The hard function light cone. This means th&g(k) should be included in the
H(k,P,,Q?) contains two parton-photon interaction verticeshard function. By dimensional counting.s(k) is of order
and one virtual internal parton propagator. The amplitade O(Q™'). Therefore, including on€&s(k) in the hard func-
contains leading, next-to-leading and higher twist contribution causes an increase of one twist order for the hard func-
tions. The quantity twist is understood as an effective twistion.
for nonlocal operators and is not exactly the same as the There are different effects &5 (k) andFg(k) act on the
usual twist defined for local operators. The twist has differenspin structures of the hard function, the terms proportional to
meanings for the hard and soft functions. For the hard funcp or h. As F (k) acts onp, its collinear part vanishes and
tion, the twist is defined as the power of the inverse of thenoncollinear parts are retained:
photon virtualityQ, and, for the soft function, the twist rep- R
resents the power of the small scalewith magnitude of FLKp=—F(k)(k=Kk)*(iy,)Fs(k)p (10
orderAqcp. By employing collinear expansion, we can sys- ) ) o
tematically separate the leading-twigtT) contributions where the minus sign comes from the antiparticle propagator.
from the next-to-leading-twistNLT) contributions. The LT ~ The vertexiy, and short distance propagafeg(k) are then
contributions are from collinear loop momentiks xp. Itis ~ absorbed into the hard function. The factdr—(k)* is in-
therefore convenient to parametrize the loop momenkum cluded in the soft function to become a coordinate derivative
into of the quark fields. As=| (k) acts ond, its collinear part

contributes to leading order. The short distance propagator

Fs(k) only serves to introduce the interaction tegAq for
the p vertex, whereA® denote the gluon fields. The total
effects of F| (k) and Fg(k) acting onp are to include one
wherek contains the on-shell part iy, and oneFg(k) into the hard function and to absorb the

factor (k—k)* and gauge field&* into the soft function to
become a covariant derivativ®“=i9*—gA® with g the
strong coupling.

The contributions from the second term of H@) and
and the off-shell part from Figs. 1c) and 1d) are of twist 6 or higher and will not
be considered in the discussion below. The reason is that the
possible nonvanishing components gf in dH (k)/ok* are
a=+ or —, but both vanish agH(k)/dk® contracts with
(k—k)® or (0|gA“q|P). We substitute the first term of Eq.
In the first step, we expand the hard functibitk) with  (7) into the integral with the soft function and apply the
respect tok as identity

K2+ K
k#=xp*+

n*+ki*, 4

2
k{*=xp*+ Z—;n“+kf (5)

k2

k=5 6)
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The factorization of the momentum integral is finished. To

complete the factorization, we still need to perform the fac-

torizations of the color and spin indices. To separate the color

indices, we take the convention that the color factors of the

hard function are extracted and absorbed into the soft func-

tion. As for the spin indices, we employ the expansion of the
FIG. 2. The neXt-tO-'eading-tWiSt(NLT) diagrams for soft functions into their Spin Components

v* 7(7n')— v. The propagator with one bar is the special propaga-

tor.

q>=; o',

f dxé(x—k-n)=1 (11
=3 Tl (17
r
to convert the loop momentum integral into the fractional
variable integral. The amplitude then becomes, approxiwherel’ denotes the gamma matrix agd ¢ is the related
mately, spin component of the distribution amplitude. For a given
order of 1Q?, we choose the componeat () with lowest
_ twist. The determination of the lowest twigt' ¢®) can be
A(Pl'PZ)Nf dXTTHOOP(X)] (12 done as follows. First, we notice that the tensor structure of

¢"C® can be expressed in terms mfn, d*#=g*¥—pn?,
which contains LT and NLT contributions. The meson DA and ei‘ﬁ: eaﬁ'}’)\pynx . The Vect0r$ andn have dimensions

®(x) has the expression [p]=1 and[n]=—1 with respect to the hard scaf@ Sec-
O ondly, note that the matrix element for the soft function is
d(x)= jo %eix)\<o|a(o)q()\n)||3>. (13) written as
®~(0|qalP),
We now discuss how to separate the LT from the NLT con- _
tributions for amplitudeA. Because the final state photon is ®*~(0|gD“q|P). (19
real and has transverse polarization, the hard fundtix) ) )
can have spin structures iy, , v, pA, v, hp, andy, py, , From the above facts, we can derive a power counting rule as

wherey, = y“ with @=1,2. The first spin structure leads to follows. Consider thatﬁﬂl-.-MF§a1"'a? has the fer-mion in-
the LT contribution, while the second and third result in thedeXF and the boson indeR. The fermion indest arise from

NLT contributions. The last spin structure would lead to athe Spin index factorization forf2 fermion lines connecting
next-to-next-to-leading-twist contribution and will not be the soft function and the hard function and the boson irilex
considered below. To calculate the NLT contributions, wed€notes the, power of momenta in the previous collinear
need to apply Eq(10) to extract the contributions from the €XPpansion and theg gluon lines aB=np+ng. We may
noncollinear loop momentum. As a result, we get the ampli\Vte

tude up to NLT as

¢/—L1"'ILF ;al"'aB=2 Arifleiul...,u,: ;al...aB¢i (19)

I
A%J dXTr[H(X)CI)(X)]'Fj der[Ha(x)wZ,(I)“'(x)]
(14) whereA denotes a small scale associated with DA. The spin

polarizerse; denote the combination of vectopg, n#, and
where the first term of the right-hand side of Efi4) comes Y1 - The variabler; represents the twist of DAS'. The re-
from the Feynman diagrams shown in Fig&)land Xb) and  Strictions over polarizerg{*""***“1"""“8 are
the second term from the diagrams shown in Fig. 2. The e
tensorw?, is defined asv®,=g%,—p®n,,. The NLT hard ng et MrtTaTe=0, (20)

functionH ,(x) is defined as ) _
which are due to the fact that the polarizexsare always

i projected byw?, . The dimension ofp#1 " "#F:*1""“8 is de-
—2(1_)() (15) termined by dimensional analysis,

. l .
Ha ()= (i ¥a) 5, HOO +HOO (1 7)
=3F+B-1.
and the NLT meson DAD*(x) is expressed d(¢)=3F+B-1 (21)
By equating the dimensions of both sides of Ef9), one

dY(x)= fldxlfOOd—)\fxd—nei(xlx)neix)\ can derive the minimum of;,
0 0 21 0 2

min_ 1
X(0[a(0)D“(n)a(A)[P). (16 Tr=2FeBr Rl (D7 (22

094019-3
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FIG. 3. The one-loop diagrams for the LT amplitude of process
Y n(n')—y.

It is obvious from Eq(22) that there are only finite numbers
of fermion lines, gluon lines and derivatives contributing to a
given power of 1D?. ®

We now demonstrate that the collinear expansion is com-
patible with the conventional approach for proving the . X
PQCD factorization at one-loop order of the radiative correcSeSSY” 7(7') = -
tion. To show this, we consider the radiative correction for

FIG. 4. The one-loop diagrams for the NLT amplitude of pro-

H(x) as displayed in Fig. @). If the radiative gluon in Fig. dA d*l iN(E+x—1-n)
3@ is collinear with momentum *=(1",1",1') P3alé)= f (2m) (2m)*
=(Q,\%/Q,\), wherex<Q, the lower virtual antiquark has

the momentumK—1)~ (£€Q,\?/Q,\) with k=xP;. It is ob- ig2TAN(1)

vious that the virtual antiquark in the collinear region be- X I—ZVBF(|1)F(|2)% ,

haves similarly to the loop antiquark in the tree amplitude.
The collinear expansion for Fig(& in the collinear region

is the same as the expansion for the tree diagram fag.irl o' da d*l iN(E+x—1-n)
the leading configuration. To demonstrate this, we write the P3a(8)= f (2_77)[ (2m)*

integrand for Fig. 8a) as

ig”TP\(1) :
J d¥l g% TAN1) X |—27BF(|1)Ia Fl)n | @7
) emr 12
ST vaE (1) £F (1) Y“E (I It is obvious that bothb,(¢) andtbg'f;(g) are collinear di-
LraF(l)EF(la) ¥ Fl2)n] vergent for collineat. We introduce corresponding soft func-
44 tions ®§Y and ®{ to absorbd,,(£) and L. (£). The cor-
Ef (2—)4Tr[H3a(I)<D3a(I)], (23)  responding tree level hard functions are denoteti §% and
au

H(lo), respectively. If the radiative gluons in Fig(a3 are
soft, i.e., the gluons have momenturt=(1",17,1,)
~(N,\,\), there are no effects on power expansion. This is
because the eikonal approximation up @§1/Q®) can be
applied to factorize the soft gluons from the valence quark
propagator. The other two particle reducible diagrams Figs.
P 3(b) and 3c) can be dealt with similarly. It is noted that the
D)= ig°l’ (l)[ FIDF() 7] (24) double logarithms in Figs.(8—3(c) arising from the mixing
3a 2 YerdrU2I N contributions from the soft and collinear divergences cancel
each other. In the light-cone gaugeA=0, Figs. 3d) and
andF(l;)=14;. We first expandH,,(1): 3(e) in the collinear region are more suppressed than Figs.
3(a)-3(c) in the collinear region by, at least, Q7. After
5H3a(|)‘ subtracting the soft contributiorighe soft and collinear di-
| =

where we have defineti=k—I,l,=(P;—k+I), 13=P,
—k+1,

Haa(l) = —i€’[£F (15)y*],

Haa(1)=Hay(l =0+ — (=T (25  vergencesfrom the one-loop radiative correction diagrams
dl i Figs. 3a—3(c), we can obtain the one-loop corrected hard
functions (LO and NLO H{Y and H{Y), separately. The
with T = (x— &) P,. Repeating the same considerations for theanalysis for the radiative corrections t,(x) is simple,
expansion of the tree amplitude, we can red¢agtinto since it involves only radiative corrections and has no need
to consider collinear expansion. The diagrams for the radia-

) tive corrections td4 ,(x) are shown in Fig. 4. As a result, up
lsa= | dé[Hg"(§)P3za(£)] to first order in radiative and power corrections, we can ar-
rive at the factorized amplitudes as
(0 @ pe .
+f dg[Ha (f)Wa,q)Sa(f)]‘F , (26) A(O)‘l‘A(l)%(H(OO)‘l‘ H(Ol))®(q)((')0)+ q)(ol))
where +HHP+HP o (@ +of)) (28

094019-4
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where the superscript indicés(i=0,1) denote the order of

radiative correction and the subscript indicgs(j=0,1) 5(O ANn)=
mean the order of power correction. The notatiorrepre- \/—
sents the convolution integral and the trace over the color —

and spin indices. To prove PQCD factorization, we need to —2s(0)ysfis(An) ],
generalize the one-loop factorization to arbitrary orders. It

[u(O) yshu(An)+ d(O) vshd(An)

can be done straightforward[{t9—22. 1 _ i — =y
For convenience, we may write the amplitude as J5(0An)= \/§[u(0)y5vﬁu()\n)+d(0)75ﬁd()\n)
A(Y*P—y)=—i€%€,,nPiPLe Fp (Q)), (29 +5(0) yshs(An)],

where €* denotes the polarization vector of the final state 1 _
photon. The form factors are expressed in terms of the octet]gﬁ(o 7n,AN)= \/_[u(O)yaDB( nn)u(An)
and singlet components: 6

+d(0)y,D 4(7n)d(An)

Fpy(Q%)= 2 ap'Fp,(Q7), (30 N
o —25(0) 7D 4 m)s(A)],

where the expansion coefficiemagi ,P=n,7",1=8,1, de- 1 _
pend on the mixing schemsee the next sectipnBecause Jiﬁ(o,nn,)\n)z—[u(O) YoD g(7n)u(An)
of the »-%" mixing, we take the octet and singlet states as V3

the basis for our investigation of the form factors. The super-

scripti=8 or 1 denotes the contributions from octet or sin- +d(0) yDg(7n)d(rn)
glet current (see notation beloyw The leading order of +35(0)v.D o 7)s(An
Fpiy(Qz) is calculated from Figs.(#) and 1b) and takes the (0)7aDg(mn)s(An) ],
expression 1 _
Jigs(omn.kn)=%[U(0)75VQDB(nn)u(kn)
FI0(Q7)=4c [ d ro &
f— . X—' J—

Py 'Jo TQX(1—x) +d(0) y57,Dg(7n)d(An)

where the charge factors are defined @g=(e’+e} ~25(0) y57,D g(nn)s(AN)],

—2e)/\6 and C,=(e>+el+e)/\3. The NLO of
F 2) is evaluated from Fig. 2 as 1 —
Q) d JiﬂS(OJ]n,)\n)IE[U(O)’}%‘YQDB(ﬂn)u()\n)

[Gp (X)+Gp.(x)(1—2x)] _
FNO(Q?) =~ 16, | dr— . +3(0)757,D4(7)d(NN)

Q*x(1-x) —
(32 +5(0)y57,Dg(mn)s(An)]. (36)

We have taken the symmetry between the exchange @ecause of the factor-42x for Gp,, Gp. become dominant.

X (1=x) for ¢p (), Gp,(x), and Gp(x). The relevant The normalizations ofp, and G are determined from the
DAs are expressed epr|C|tIy as follows: leptonic weak decay and the axial anomaly fr meson,
respectively. This is similar to the pion casg.

o

1 d\
iIAX P.(P
e (X)= o (2m) e (O15(0Am)|Pi(Py)). (33) lll. THE MIXING SCHEMES

We employ the SU(3) octet and singlet states to describe

Gp(x)———el J J dn_d7y gl 7(x1=X) the »-n' system. They and ' meson states can be de-

(2m) (277) scribed by means of the octet and singlet statgs and| 7,)

><e'“<0|.] (0.0, AM)|P:(Py), (34) through the one-mixing-angle scheme:
| 17) =cos6| ng) —sin 6] 71),
Gh(x)=— —d“ﬁ’f dxlj L AN i

o (2m) (2m) |%")=sin6| ng) + cosé| 1,), (37)
x e™(0]J! wps(0,770, AN)|P;(Pq)), (350  where the mixing angl® controls the relative strength. With
the mixing, theny and 'y form factors take the expres-

where nonlocal currents are defined as sions

094019-5
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0.3 —r r r 1 r r 1 r r T 1 T
i Fit1
FitTl ------

025 | .

0z} [ -
3 i R I FIG. 5. The results of the? fit to the ny
& ols - transition form factor within the one-mixing-
e [ ] angle scheméhe solid ling and the two-mixing-
S [ ] angle scheméthe dashed line The data points

0.1 - are taken fronj7-11].

0.0s B .

1 " 1 L 1 1

0 5 10 15 20

Q*1GeV?
F Q%) =cosoF ;. ,(Q%) —sinF,,(Q7), I[7—yy]=0.46+0.04 keV,
[ 7' =4.28+0.19 keV. 41
F,(Q%)=sin6F, (Q?)+cosiF, (Q?). (39) (7' —vy] (41)

The decay rates have the theoretical expressions
To proceed, we also assume that the octet and singlet DAs

take asymptotic form. Therefore, we hage, (x) =3f, x(1 942 Cgft,—C,f8 2
! ! 3 7 7'
—X)/\/2 andG,,(x) =3y27?f3 x(1-X). The form factors F[ww]=32773'\/'n 88l
F,,(Q% (i=8,1) are simplified by substituting,, (x) and 7t
Gy (X): S 9’ 5 [~Cefi+Caf} ?
R e R
1 |9, Gu(x) (42)
F, (QZ):4cif dx —4
" X(1=x)| Q2 Q4 ,
where the decay constants are defined as
f, gm?f2 f8=f, coss, fl=—f, sing,
zaﬁciQ—"z' - "'] (39) T oo

t8,=f,sino, f.,=f, coso. (43)

Using Eq.(39) in Eq. (38), we can derive the coefficien&ﬁi
in Eq. (30).

To compare the form factors with the data, we extrapolat
the form factors to all orders:

The 2 fit results are shown as fit | in Figs. 5 and 6 and in
Table I. It is seen that fit | is in good agreement with the data
Sor the form factors. To test the fit parameters, we employ the
ratio of the decay rates fal/ ¢ in 'y and ny:

6.2Cif,, I/ p—n"y)

Ryy=—=————=5.0+0.6. 44

F r(Q%) =

It is usually assumed that the radiatiVle/— n(#%') vy decays
This formula gives theoretical support to the approach usingre dominated by nonperturbative gluon matrix elements
the interpolating formula for theyy and »'y form factors  (0|GG|7') and(0|GG|#) such that the ratio takes the ex-
[18]. pression24]

The decay constantsm,i =8,1, and the mixing angl®
will be determined by a least? fit to the transition form
factor data above 1 Gé\and the two-photon decay widths
[23]

Ray= (45)

2 8 1 2
Mwaw+w5go)(pwr
2,¢8 1
M2(F8+\2fL) | 1P,

094019-6
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oS —7r+7——++

0.3 |- -
0.25

02 FIG. 6. The results of thg? fit to the 7'y

transition form factor within the one-mixing-
angle scheméhe solid ling and the two-mixing-
angle scheméthe dashed line The data points

are taken fronj7-11].

o015 F

CPFy(0H)[GeV]

0.1

0.05

0 . . . . 1 . . . L 1 " . . . 1 . . . .
0 5 10 15 20

Q?GeV?]

with pp=M,(1—M3/M3,)/2 being the three-momentum where 6; denote the mixing angles. Using this mixing
of the P meson. Our fit result is close to the one obtainedscheme, thepy and 7'y form factors can be expressed,
from chiral perturbation theoryyPT), except for the octet respectively, as

decay constantngz f,<1.28 .,

Fr]y(Qz):COSHBany(QZ)_Sineanl'y(Qz)v
xPT:6~—-20° to -—10°,

2\ i 2 2
f7,8=1-28fw. fr,ﬁl-lfﬂ- (46) F, ,(Q%)=sin GBF,W(Q )+00501F7M(Q ). (49
The octet decay constafif,_ is calculable byyPT up to the  The form factors Q%) are the same as those in the one-
one-loop approximation mixing-angle scheme. We first change the value$,pfand
6; to fit the data. The? fit result is shown as fit Il in Figs. 5
M2 M2 M2 and 6 and Table I. From fit | and fit Il in Table 1, it is found
7~ 1 < >In A >t u 5 that the two-mixing-angle scheme is better in accuracy than
(4mfr)e (4wfr)e (4mf,) the one-mixing-angle scheme by 100%. This is close to the
X =1.28f . 47) investigations 0f13,14,18.

A large value offf7,=cos¢91f,7C [25,26], which is respon-

It is noted that the predicted results b 7n— yvy), I'(’ sible for the intrinsic charm content of the’ meson, has
—vyv), andRy,, shown in Table | are close to the experi- been proposed to resolve the large branching ratios

mental values within & accuracy. BR(B—#7'K) and BRB—Xsy). We may explore this
Recently, it has been proposéti3, 14,18 that |) and  within our approach by adding intrinsic charm content into
|7") can mix through a two mixing-angle-scheme as our formalism. The effects of the intrinsic charm content are

similar to that of the singlet component. That means one can
replacef 7 with f%:f‘;,/cosel, the decay constant for in-
trinsic charm for the corresponding singlet terms. That is the
part of the form factors from the intrinsic charm, with the

| ') =sin 6g| ng) +c0s6,| 71), (48)  expression

| 17) = cOSBg| 7g) —SiN 01| 71),

TABLE I. The results of the? fit to the 7y and ' y transition form factors and the two-photon widths
within the one- and two-mixing-angle schemes.

T'(p—2y) T(5'—2y) X per degree
() S P g 01 (keV) (keV) Rary of freedom
Fit | 0.99 1.08 —16.4° —16.4° 0.49 4.47 5.6 64/31
Fit 1l 1.32 1.16 —22.3° -9.1° 0.50 4.34 4.4 32/31
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TABLE Il. The results of they? fit to the 7y and 5’y transition form factors within the one- and
two-mixing-angle schemes with or without intrinsic charm content.

f,,B/f7T f,,l/f7T f,,C(MeV) Og 0, X2 per degree of freedom
Fit | 0.99 1.08 0 —16.4° —16.4° 61/29
Fit | 0.99 1.08 -8 —16.4° —16.4° 34/29
Fit 1l 1.32 1.16 0 —22.3° -9.1° 31/29
Fit 1l 1.32 1.16 -5.6 —22.3° —-9.1° 19/29

see that including the intrinsic charm content can indeed im-
] (500  Pprove the accuracy. This shows that our formalism is consis-

tent with perturbation theory and that the higher Fock state

can be reasonably added in. As shown below, the allowed
where e;=2/3 and the related DAs arg, (x)=3f, x(1  yalue forf, is less tharf .. In literature[14,18,25,28 f,_
—x)/\2 and G, (x)=327?f; x(1—x). The effect from s proposed in the range 140 MevV<f, <15 MeV. To
the large value of the charm quark mass has been absorbggkt this, we plot in Fig. 7 thg? distribution for each set of
into the twist-4 DAG,, () [1]. After including the contribu-  mixing parameters listed in Table Il over a wide range of
tion of the intrinsic charm, thegyy and ' y form factors then —140 Mest,]Cs 140 MeV. It is seen that the range of

dx

pX) G0
FWCY(QZ):‘]'egf X(l—X) ’ —4 ’

Q? Q*

become f,,c— 10 Mest,?Cs —4 MeV is allowed by the data. Be-
) ) cause the value of ca is close to unity,ff], is almost equal
Fr]y(Q ):COSGSan'y(Q ) to f77c'
_ From the above analysis, one may see that combining the
—sin6,[F, ,(Q*)+F, (Q)], high energy data and the low energy experiment can result in

constraints on the mixing parameters in a very efficient way.
We can give a general analysis for the two-mixing-angle
F . (Q%)=sin6gF , ,(Q?) scheme. We shall investigate tlé distributions of the mix-
ing parameters. The procedure of analysis is as follows. We
+C0591[F7m(Q2)+ F,,(Q)1. (51 first separate the data into two groups. The data for the form
¢ factors, the two-photon decay rates, and the ratioJiat
radiative decays are denoted as set | while the latter two data
are chosen as set Il. We then determine the Igastalues
from Eq. (51) that the form factor® , (Q2) has a larger for sets | qnd Il. The_ reason for separating the data into set |
: o 'y > g and set Il is that neither set | nor set Il can completely con-
dependence oh,,c thanF,,(Q7). We make a leasg” fit to strain the parameters. The parameters located withirad-
the form factor data to determine possible valued ofby  curacy of set I still have large uncertainties and require fur-
keeping the other parameters fixed. From Table Il, one magher restrictions, which can be obtained from the data set II.

As in the case of the octet and singlet form factors, the ex
trapolation ofF,M(QZ) to all orders is implied. It is clear

10000 g T T T T T T T
3 Fit1
1000 |-
FIG. 7. The plot of they* distribution vsf,, .
= lop The x? values are evaluated for the data for form
factors obtained by employing the sets of param-
eters listed in Table I.
10 E -
1 1 1 | 1 1 1 1
-200 -150 -100 -50 0 50 100 150 200
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FIG. 8. The plot off , versusf,_from thex?

- analysis for the data sets | and Il. The regions
denoted as | and Il represent the allowable values
for f,71 andf g within 1o error for corresponding
data sets | and .

fs/fn
1

0.5 - -1

0 L 1 1 1 1 1 L L L | 1 1 1 1 | 1 L L 1
0 0.5 1 1.5 2

Nl fa

To be more explicit, we plot the allowable regions for the constraints on the parameters than the data set | or Il. One
mixing parameters within & error with respect to those val- should note that, although the data set Il is a subset of the
ues associated with the minimgf points. As shown in Figs. data set Ix? distribution of the data set Il is not necessarily

8 and 9, both allowable regions for data sets | and Il are largé subset of the? distribution of data set I, since the effects
while their intersections are rather restricted. The reason fo@f correlations between the parameters are different for the
this fact is easily understood. Within the data set I, the exiwo data sets. From the overlapping regions of the data sets |
perimental errors are shared for high and low energy dat2nd Il at 1o~ error, we may extract from Figs. 8 and 9 the
Because they? distribution can only measure the correla- allowable regions for the mixing parameters. In Fig. 8, we
tions between the mixing parameters, the aim of constraining!t the possible allowable ranges foj andf,, . It can be
each parameter in an independent way cannot be met, afpserved from Fig. 8 that the overlapping region figr and
only partial restrictions over the correlations of the param-f,71 is quite stringent: 1.$f,,8/f7§ 1.56 and 1.£f,,1/f77
eters can be derived. This can be seen from Fig. 8, in whick<1 22. Figure 9 shows the allowable region #r and 65

the fg parameter is not contrained in a reasonable way. T¢rom both data set | and set IIl. The overlapping region indi-
compensate this flaw, we note that tpedistribution of data  cates that- 12°< 9, < —6° and — 23.6°< fg=< — 19°.

set Il can intersect with thg? distribution of data set I. The Combining Figs. 8 and 9, we may derive tQé— « lim-
intersections between the twd distributions can give better its of the scaledyy and »' y form factors:

FIG. 9. The plot off; versuség from the x>
analysis for the data sets | and Il. The regions
denoted as | and Il represent the allowable values
for 6, and g within 1o error for the correspond-
ing data sets | and Il

6g[o]
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2 We have also shown that the intrinsic charm conteny’of
QZFW(QZ)|Q2HOC=—[f,7800308—2\/§f nlsin 01] meson has little contribution. Any sizable contribution from
V3 the intrinsic charm would lead to a largé value as shown
=189+46 MeV, in Fig. 7. Of course, further investigations are required on
this point, if more accurate form factor data become avail-
2 able.
QZF”,Y(Q2)|Qzﬁx=—[fnssin Og+ 2./2f 7,100591] So far, we have not considered the finite meson mass
3 effects for thenyy and 5’ y form factors. At first glance, the
—295+135 MeV. (52) meson mass effects cannot be safely ignored. Because the

values of » and ' meson masses are as large Ms,

The error in the scalegy form factor being larger than that =547 MeV andM,, =958 MeV, power corrections from
of the scaledn’y form factor is because the errors in the the mass effects of ord@®(M2/Q?) andO(M2A?%/Q%) are
data for theyy and »'y form factors are shared in our a|so important. The correctior®(M2/Q?) are of kinematic
analysis. This is consistent with the conceptely’ mixing.  type This is similar to Nachtmann’s correction for deep in-
elastic scatterinf27] and can be negligible. The second type
of correctionO(M2A?/Q%) is dynamic and it can be argued

We have shown that the collinear expansion forthatthey are of twist 6 at least. This is because the associated
¥* 7(n')—y can be systematically performed in compat- SPin projector ishys (cf. the leading spin projectopys),
ibility with PQCD factorization. Thed(Q %) power correc- Which will introduce two additionaF 5 propagators into the
tions foer(Qz) anan,y(QZ) were evaluated. The mag- related hard function. As a result, the dynamical type meson
nitudes of NLO power corrections were determined. mass corrections are of ordéI(M%A“/QG). Of course, a

We made a general analysis for the allowed values for theomplete analysis for these meson mass effects is important.
mixing parameters by combining the high and low energy
data. Except fof , , the other three parametefrs , 65(1) can
be constrained in a reasonable region. The large error for the ACKNOWLEDGMENTS
fit of f,,8 is mainly from the experimental error and can be
improved by future experiments with higher accuracy. At This work was supported in part by the National Science
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