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h-h8 mixing and the next-to-leading-order power correction
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The next-to-leading-orderO(1/Q4) power corrections forhg and h8g form factors are evaluated and
employed to explore theh-h8 mixing. The parameters of the two-mixing-angle scheme are extracted from the
data for form factors, two-photon decay widths, and radiativeJ/c decays. Thex2 analysis gives the result
f h1

5(1.1660.06)f p , f h8
5(1.3360.23)f p ,u1529°63°,u85221.3°62.3°, wheref h1(8)

and u1(8) are the
decay constants and the mixing angles for the singlet~octet! state. In addition, we arrive at a stringent range for
f h8

c :210 MeV< f h8
c <24 MeV.

DOI: 10.1103/PhysRevD.65.094019 PACS number~s!: 12.38.Bx, 14.40.2n
n

is

of

p-
LO

e
-
di
w
pe

is
so

n

th
h

bo

lo

f

we
s

e
e-

-
les
the

eme

by

n
the

ac-

s.

e

mo-

-

I. INTRODUCTION

Recently, the next-to-leading-order~NLO! power correc-
tion has been shown to have an important role in understa
ing the exclusive processesg* p→g @1# and g* p→p @2#.
The method for calculating the NLO power correction
called the collinear expansion@1,3–6#. This power expansion
method is compatible with perturbative QCD~PQCD! factor-
ization @1,2#, which gives the amplitude as a convolution
perturbatively calculable hard scattering amplitudes~the hard
function! and nonperturbative hadronic wave functions~the
soft function!. Furthermore, it is a Feynman diagram a
proach such that the partonic interpretation for the N
power correction can be preserved.

The asymptotic limit of thepg transition form factor as
2 f p /Q2 with f p593 MeV, is about 15% higher than th
upper end of the CLEO data@7#. This deviation can be suc
cessfully explained by the NLO power correction. In ad
tion, the NLO power correction can well describe the lo
energy portion of the CLEO data. Our purpose in this pa
is to generalize the approach for thepg form factor to the
hg andh8g form factors. The first problem we shall face
that there are many independent degrees of freedom as
ated with theh and h8 lowest valence Fock states. Theh
andh8 mesons are admixtures of the SU(3)F octet and sin-
glet states; this gives eight quantities: four wave functio
and four related decay constants. Theh andh8 mesons can
also receive contributions from the U(1)A anomaly which
gives intrinsic heavy quark and gluon content. To reduce
number of independent degrees of freedom, we invoke p
nomenological constraints and physical assumptions a
the wave functions and decay constants.

For the phenomenological constraints, we shall emp
the large momentum transfer data for thehg andh8g tran-
sition form factors@7–11#, the two-photon decay widths o
theh andh8 mesons, and the ratioRJ/c of theJ/c→hg and
J/c→h8g decay widths. As for the physical assumptions
shall invoke the SU(3)F octet-singlet mixing scheme. In thi
mixing scheme, bothh andh8 are linear combinations ofh8
andh1, the octet and singlet states in the SU(3)F represen-
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tation. The mixing is controlled by the mixing angle. In th
one-mixing-angle scheme, in which the octet and singlet m
son states have different decay constantsf h8

and f h1
and

share a common mixing angleu85u15u, the mixing angle
u is in the range of220°<u<210° @12#. In recent years,
much evidence@13,14,18# has indicated that a two-mixing
angle scheme, in which the octet and singlet mixing ang
u8 andu1 can take different values, is more general than
one-mixing-angle scheme. Thehg and h8g form factors
have been investigated by both the one-mixing-angle sch
@15–17# and two-mixing-angle scheme@14#. We would like
to make a more refined analysis of these form factors
including the NLO power correction.

In this paper, we shall investigate thehg andh8g form
factors and the mixing pattern of theh-h8 system by em-
ploying the PQCD formula with NLO power correction i
the standard hard scattering approach. We shall employ
collinear expansion to derive the NLO@O(Q24)# power cor-
rection forhg andh8g form factors in Sec. II. In Sec. III we
shall analyze the high momentum transfer data for form f
tors, the two-photon decay widths, and the ratioRJ/c . The
values of the mixing parameters are determined from ax2

analysis of the data. Section IV is devoted to conclusion

II. hg AND h8g FORM FACTORS AND COLLINEAR
EXPANSION

Our strategy in calculating the power corrections to theh
andh8 meson-photon transition form factor is to invoke th
collinear expansion@1,4–6#. For simplicity, we shall first
ignore the meson mass effects. That is, we choose the
mentum of the initial state meson,P1, and that of the final
state photon,P2, as

P1
m5S Q,

M P
2

2Q
,0'D[pm1

M P
2

2
nm'pm,

P2
m5S 0,

Q

2
,0'D[

Q2

2
nm, ~1!

such that the virtual photon has momentumq5P22P1 with
virtuality q252Q2 to make PQCD applicable. The vectorsp
andn are in the1 and2 directions in the light-cone refer
©2002 The American Physical Society19-1
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TSUNG-WEN YEH PHYSICAL REVIEW D 65 094019
ence frame and have the propertiesp25n250 and p•n
51. M P denotes the mass of the initial state meson. For
Feynman diagrams displayed in Figs. 1~a! and 1~b!, the am-
plitudes are written as

A~P1 ,P2!5E d4k

~2p!4
Tr@H~k,P2 ,Q2!F~k,P1 ,Q2!# ~2!

where the trace is taken over the color and spin indices
the meson distribution amplitude~DA! F(k,P1 ,Q2) for the
P(5h,h8) meson is expressed

F~k,P1 ,Q2!5E d4k

~2p!4E d4zeik•z^0uq̄~0!q~z!uP&. ~3!

We assign the loop momentumk for the valence antiquark
and let it flow into the hard function. The hard functio
H(k,P2 ,Q2) contains two parton-photon interaction vertic
and one virtual internal parton propagator. The amplitudA
contains leading, next-to-leading and higher twist contrib
tions. The quantity twist is understood as an effective tw
for nonlocal operators and is not exactly the same as
usual twist defined for local operators. The twist has differ
meanings for the hard and soft functions. For the hard fu
tion, the twist is defined as the power of the inverse of
photon virtualityQ, and, for the soft function, the twist rep
resents the power of the small scaleL with magnitude of
orderLQCD . By employing collinear expansion, we can sy
tematically separate the leading-twist~LT! contributions
from the next-to-leading-twist~NLT! contributions. The LT
contributions are from collinear loop momentumk̂5xp. It is
therefore convenient to parametrize the loop momentumk
into

km5xpm1
k21k'

2

2x
nm1k'

m , ~4!

wherek contains the on-shell part

kL
m5xpm1

k'
2

2x
nm1k'

m ~5!

and the off-shell part

kS
m5

k2

2x
nm. ~6!

In the first step, we expand the hard functionH(k) with
respect tok̂ as

FIG. 1. The leading order diagrams forg* h(h8)→g. The cross
symbol represents the vertex of the virtual photon.
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H~k!5H~k5 k̂!1
]H~k!

]ka U
k5 k̂

~k2 k̂!a1•••. ~7!

With the help ofkL andkS , we can factorize the loop parto
propagatorF(k)52 i /(k”2 i e) into its long distance par
FL(k) and short distance part~the special propagator define
in @6#! FS(k), which are expressed as

FL~k!5
2 ik” L

k22 i e
, FS~k!5

2 in”

2k•n2 i e
. ~8!

The propagatorsFL(k) and FS(k) have different physical
meanings. To see this, let us consider their propagation
the light cone. The integrals ofFL(k) and FS(k) over k1

5k•n give

f L~h,l!5E dk•n

~2p!
eik•n(h2l)FL~k!}u~h2l!,

f S~h,l!5E dk•n

~2p!
eik•n(h2l)FS~k!}d~h2l!, ~9!

whereh and l mean the light-cone distances in the2 di-
rection. It is obvious thatFS(k) is not propagating on the
light cone. This means thatFS(k) should be included in the
hard function. By dimensional counting,FS(k) is of order
O(Q21). Therefore, including oneFS(k) in the hard func-
tion causes an increase of one twist order for the hard fu
tion.

There are different effects asFL(k) andFS(k) act on the
spin structures of the hard function, the terms proportiona
p” or n” . As FL(k) acts onp” , its collinear part vanishes an
noncollinear parts are retained:

FL~k!p”52F~k!~k2 k̂!a~ iga!FS~k!p” ~10!

where the minus sign comes from the antiparticle propaga
The vertexiga and short distance propagatorFS(k) are then
absorbed into the hard function. The factor (k2 k̂)a is in-
cluded in the soft function to become a coordinate derivat
of the quark fields. AsFL(k) acts onn” , its collinear part
contributes to leading order. The short distance propag
FS(k) only serves to introduce the interaction termq̄A” q for
the p” vertex, whereAa denote the gluon fields. The tota
effects ofFL(k) and FS(k) acting onp” are to include one
iga and oneFS(k) into the hard function and to absorb th
factor (k2 k̂)a and gauge fieldsAa into the soft function to
become a covariant derivativeDa5 i ]a2gAa with g the
strong coupling.

The contributions from the second term of Eq.~7! and
from Figs. 1~c! and 1~d! are of twist 6 or higher and will not
be considered in the discussion below. The reason is tha
possible nonvanishing components ofga in ]H(k)/]ka are
a51 or 2, but both vanish as]H(k)/]ka contracts with
(k2 k̂)a or ^0uq̄AaquP&. We substitute the first term of Eq
~7! into the integral with the soft function and apply th
identity
9-2
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E dxd~x2k•n!51 ~11!

to convert the loop momentum integral into the fraction
variable integral. The amplitude then becomes, appro
mately,

A~P1 ,P2!'E dxTr@H~x!F~x!# ~12!

which contains LT and NLT contributions. The meson D
F(x) has the expression

F~x!5E
0

` dl

2p
eixl^0uq̄~0!q~ln!uP&. ~13!

We now discuss how to separate the LT from the NLT co
tributions for amplitudeA. Because the final state photon
real and has transverse polarization, the hard functionH(x)
can have spin structuresg'n”g' , g'p”n” , g'n” p” , andg'p”g' ,
whereg'5ga with a51,2. The first spin structure leads
the LT contribution, while the second and third result in t
NLT contributions. The last spin structure would lead to
next-to-next-to-leading-twist contribution and will not b
considered below. To calculate the NLT contributions,
need to apply Eq.~10! to extract the contributions from th
noncollinear loop momentum. As a result, we get the am
tude up to NLT as

A'E dxTr@H~x!F~x!#1E dxTr@Ha~x!wa8
a Fa8~x!#

~14!

where the first term of the right-hand side of Eq.~14! comes
from the Feynman diagrams shown in Figs. 1~a! and 1~b! and
the second term from the diagrams shown in Fig. 2. T
tensorwa8

a is defined aswa8
a

5ga8
a

2pana8 . The NLT hard
function Ha(x) is defined as

Ha~x!5~ iga!
2 in”

2x
H~x!1H~x!~ iga!

in”

2~12x!
~15!

and the NLT meson DAFa(x) is expressed

Fa~x!5E
0

1

dx1E
0

` dl

2pE0

`dh

2p
ei (x12x)heixl

3^0uq̄~0!Da~hn!q~ln!uP&. ~16!

FIG. 2. The next-to-leading-twist ~NLT! diagrams for
g* h(h8)→g. The propagator with one bar is the special propa
tor.
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The factorization of the momentum integral is finished.
complete the factorization, we still need to perform the fa
torizations of the color and spin indices. To separate the c
indices, we take the convention that the color factors of
hard function are extracted and absorbed into the soft fu
tion. As for the spin indices, we employ the expansion of
soft functions into their spin components

F5(
G

GfG,

Fa5(
G

GfG;a, ~17!

whereG denotes the gamma matrix andfG(;a) is the related
spin component of the distribution amplitude. For a giv
order of 1/Q2, we choose the componentfG(;a) with lowest
twist. The determination of the lowest twistfG(;a) can be
done as follows. First, we notice that the tensor structure
fG(;a) can be expressed in terms ofp, n, d'

ab5gab2panb,
ande'

ab5eabglpgnl . The vectorsp andn have dimensions
@p#51 and@n#521 with respect to the hard scaleQ. Sec-
ondly, note that the matrix element for the soft function
written as

F;^0uq̄quP&,

Fa;^0uq̄DaquP&. ~18!

From the above facts, we can derive a power counting rul
follows. Consider thatfm1•••mF ;a1•••aB has the fermion in-
dexF and the boson indexB. The fermion indexF arise from
the spin index factorization for 2F fermion lines connecting
the soft function and the hard function and the boson indeB
denotes thenD power of momenta in the previous collinea
expansion and thenG gluon lines asB5nD1nG . We may
write

fm1•••mF ;a1•••aB5(
i

Lt i21ei
m1•••mF ;a1•••aBf i ~19!

whereL denotes a small scale associated with DA. The s
polarizersei denote the combination of vectorspm, nm, and
g'

m . The variablet i represents the twist of DAf i . The re-
strictions over polarizersei

m1•••mF ;a1•••aB are

na j
ei

m1•••mF ;a1•••a j •••aB50, ~20!

which are due to the fact that the polarizersei are always
projected bywa8

a . The dimension offm1•••mF ;a1•••aB is de-
termined by dimensional analysis,

d~f!53F1B21. ~21!

By equating the dimensions of both sides of Eq.~19!, one
can derive the minimum oft i ,

t i
min52F1B1

1

2
@12~21!B#. ~22!

-

9-3
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TSUNG-WEN YEH PHYSICAL REVIEW D 65 094019
It is obvious from Eq.~22! that there are only finite number
of fermion lines, gluon lines and derivatives contributing to
given power of 1/Q2.

We now demonstrate that the collinear expansion is co
patible with the conventional approach for proving t
PQCD factorization at one-loop order of the radiative corr
tion. To show this, we consider the radiative correction
H(x) as displayed in Fig. 3~a!. If the radiative gluon in Fig.
3~a! is collinear with momentum l a5( l 1,l 2,l'

i )
5(Q,l2/Q,l), wherel!Q, the lower virtual antiquark has
the momentum (k2 l );(jQ,l2/Q,l) with k5xP1. It is ob-
vious that the virtual antiquark in the collinear region b
haves similarly to the loop antiquark in the tree amplitud
The collinear expansion for Fig. 3~a! in the collinear region
is the same as the expansion for the tree diagram Fig. 1~a! in
the leading configuration. To demonstrate this, we write
integrand for Fig. 3~a! as

I 3a5E d4l

~2p!4

g2e2Gbl~ l !

l 2

3Tr@gbF~ l 1!e”F~ l 3!gmF~ l 2!gl#

[E d4l

~2p!4
Tr@H3a~ l !F3a~ l !#, ~23!

where we have definedl 15k2 l ,l 25(P12k1 l ), l 35P2
2k1 l ,

H3a~ l !52 ie2@e”F~ l 3!gm#,

F3a~ l !5
ig2Gbl~ l !

l 2
@gbF~ l 1!F~ l 2!gl#, ~24!

andF( l i)51/ł i . We first expandH3a( l ):

H3a~ l !5H3a~ l 5 l̂ !1
]H3a~ l !

] l l U
l 5 l̂

~ l 2 l̂ !l ~25!

with l̂ 5(x2j)P1. Repeating the same considerations for
expansion of the tree amplitude, we can recastI 3a into

I 3a5E dj@H0
(0)~j!F3a~j!#

1E dj@Ha
(0)~j!wa8

a F3a
a8~j!#1•••, ~26!

where

FIG. 3. The one-loop diagrams for the LT amplitude of proce
g* h(h8)→g.
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F3a~j!5E dl

~2p!
E d4l

~2p!4
eil(j1x2 l •n)

3F ig2Gbl~ l !

l 2
gbF~ l 1!F~ l 2!glG ,

F3a
a8~j!5E dl

~2p!
E d4l

~2p!4
eil(j1x2 l •n)

3F ig2Gbl~ l !

l 2
gbF~ l 1!l a8F~ l 2!glG . ~27!

It is obvious that bothF3a(j) andF3a
a8(j) are collinear di-

vergent for collinearl. We introduce corresponding soft func

tions F0
(1) andF1

(1) to absorbF3a(j) andF3a
a8(j). The cor-

responding tree level hard functions are denoted asH0
(0) and

H1
(0) , respectively. If the radiative gluons in Fig. 3~a! are

soft, i.e., the gluons have momentuml 5( l 1,l 2,l')
;(l,l,l), there are no effects on power expansion. This
because the eikonal approximation up toO(1/Q6) can be
applied to factorize the soft gluons from the valence qu
propagator. The other two particle reducible diagrams F
3~b! and 3~c! can be dealt with similarly. It is noted that th
double logarithms in Figs. 3~a!–3~c! arising from the mixing
contributions from the soft and collinear divergences can
each other. In the light-cone gaugen•A50, Figs. 3~d! and
3~e! in the collinear region are more suppressed than F
3~a!–3~c! in the collinear region by, at least, 1/Q2. After
subtracting the soft contributions~the soft and collinear di-
vergences! from the one-loop radiative correction diagram
Figs. 3~a!–3~c!, we can obtain the one-loop corrected ha
functions ~LO and NLO! H0

(1) and H1
(1) , separately. The

analysis for the radiative corrections toHa(x) is simple,
since it involves only radiative corrections and has no ne
to consider collinear expansion. The diagrams for the rad
tive corrections toHa(x) are shown in Fig. 4. As a result, u
to first order in radiative and power corrections, we can
rive at the factorized amplitudes as

A(0)1A(1)'~H0
(0)1H0

(1)! ^ ~F0
(0)1F0

(1)!

1~H1
(0)1H1

(1)! ^ ~F1
(0)1F1

(1)! ~28!

s

FIG. 4. The one-loop diagrams for the NLT amplitude of pr
cessg* h(h8)→g.
9-4
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where the superscript indicesi ( i 50,1) denote the order o
radiative correction and the subscript indicesj ( j 50,1)
mean the order of power correction. The notation^ repre-
sents the convolution integral and the trace over the c
and spin indices. To prove PQCD factorization, we need
generalize the one-loop factorization to arbitrary orders
can be done straightforwardly@19–22#.

For convenience, we may write the amplitude as

A~g* P→g!52 ie2emablP1
aP2

belFPg~Q2!, ~29!

where el denotes the polarization vector of the final sta
photon. The form factors are expressed in terms of the o
and singlet components:

FPg~Q2!5 (
i 58,1

aP
PiFPig

~Q2!, ~30!

where the expansion coefficientsaP
Pi ,P5h,h8,i 58,1, de-

pend on the mixing scheme~see the next section!. Because
of the h-h8 mixing, we take the octet and singlet states
the basis for our investigation of the form factors. The sup
script i 58 or 1 denotes the contributions from octet or s
glet current ~see notation below!. The leading order of
FPig

(Q2) is calculated from Figs. 1~a! and 1~b! and takes the
expression

FPig
LO ~Q2!54CiE

0

1

dx
fPi

~x!

Q2x~12x!
, ~31!

where the charge factors are defined asC85(eu
21ed

2

22es
2)/A6 and C15(eu

21ed
21es

2)/A3. The NLO of
FPig

(Q2) is evaluated from Fig. 2 as

FPig
NLO~Q2!5216CiE

0

1

dx
@GPi

~x!1G̃Pi
~x!~122x!#

Q4x~12x!
.

~32!

We have taken the symmetry between the exchange
x↔(12x) for fPi

(x), GPi
(x), and G̃Pi

(x). The relevant
DAs are expressed explicitly as follows:

fPi
~x!52 i

1

4E0

` dl

~2p!
eilx^0uJ5

i ~0,ln!uPi~P1!&, ~33!

GPi
~x!52

1

8
e'

abE
0

1

dx1E
0

` dl

~2p!

dh

~2p!
eih(x12x)

3eilx^0uJab
i ~0,hn,ln!uPi~P1!&, ~34!

G̃P
i ~x!52

i

8
d'

abE
0

1

dx1E
0

` dl

~2p!

dh

~2p!
eih(x12x)

3eilx^0uJab5
i ~0,hn,ln!uPi~P1!&, ~35!

where nonlocal currents are defined as
09401
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J5
8~0,ln!5

1

A6
@ ū~0!g5n”u~ln!1d̄~0!g5n”d~ln!

22s̄~0!g5n”s~ln!#,

J5
1~0,ln!5

1

A3
@ ū~0!g5n”u~ln!1d̄~0!g5n”d~ln!

1 s̄~0!g5n”s~ln!#,

Jab
8 ~0,hn,ln!5

1

A6
@ ū~0!gaDb~hn!u~ln!

1d̄~0!gaDb~hn!d~ln!

22s̄~0!gaDb~hn!s~ln!#,

Jab
1 ~0,hn,ln!5

1

A3
@ ū~0!gaDb~hn!u~ln!

1d̄~0!gaDb~hn!d~ln!

1 s̄~0!gaDb~hn!s~ln!#,

Jab5
8 ~0,hn,ln!5

1

A6
@ ū~0!g5gaDb~hn!u~ln!

1d̄~0!g5gaDb~hn!d~ln!

22s̄~0!g5gaDb~hn!s~ln!#,

Jab5
1 ~0,hn,ln!5

1

A3
@ ū~0!g5gaDb~hn!u~ln!

1d̄~0!g5gaDb~hn!d~ln!

1 s̄~0!g5gaDb~hn!s~ln!#. ~36!

Because of the factor 122x for G̃Pi
, GPi

become dominant.

The normalizations offP
i and GP

i are determined from the
leptonic weak decay and the axial anomaly forPi meson,
respectively. This is similar to the pion case@1#.

III. THE MIXING SCHEMES

We employ the SU(3)F octet and singlet states to describ
the h-h8 system. Theh and h8 meson states can be de
scribed by means of the octet and singlet statesuh8& anduh1&
through the one-mixing-angle scheme:

uh&5cosuuh8&2sinuuh1&,

uh8&5sinuuh8&1cosuuh1&, ~37!

where the mixing angleu controls the relative strength. With
the mixing, thehg and h8g form factors take the expres
sions
9-5
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FIG. 5. The results of thex2 fit to the hg
transition form factor within the one-mixing
angle scheme~the solid line! and the two-mixing-
angle scheme~the dashed line!. The data points
are taken from@7–11#.
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Fhg~Q2!5cosuFh8g~Q2!2sinuFh1g~Q2!,

Fh8g~Q2!5sinuFh8g~Q2!1cosuFh1g~Q2!. ~38!

To proceed, we also assume that the octet and singlet
take asymptotic form. Therefore, we havefh i

(x)53 f h i
x(1

2x)/A2 andGh i
(x)53A2p2f h i

3 x(12x). The form factors

Fh ig
(Q2) ( i 58,1) are simplified by substitutingfh i

(x) and

Gh i
(x):

Fh ig
~Q2!54CiE dx

1

x~12x! Ffh i
~x!

Q2
24

Gh i
~x!

Q4 G
56A2Ci

f h i

Q2 F12
8p2f h i

2

Q2 G . ~39!

Using Eq.~39! in Eq. ~38!, we can derive the coefficientsaP
Pi

in Eq. ~30!.
To compare the form factors with the data, we extrapol

the form factors to all orders:

Fh ig
~Q2!5

6A2Ci f h i

Q218p2f h i

2
. ~40!

This formula gives theoretical support to the approach us
the interpolating formula for thehg and h8g form factors
@18#.

The decay constantsf h i
,i 58,1, and the mixing angleu

will be determined by a leastx2 fit to the transition form
factor data above 1 GeV2 and the two-photon decay width
@23#
09401
As

e

g

G@h→gg#50.4660.04 keV,

G@h8→gg#54.2860.19 keV. ~41!

The decay rates have the theoretical expressions

G@h→gg#5
9a2

32p3
Mh

3FC8f h8
1

2C1f h8
8

f h8
1 f h

82 f h8
8 f h

1 G 2

,

G@h8→gg#5
9a2

32p3
Mh8

3 F2C8f h
11C1f h

8

f h8
1 f h

82 f h8
8 f h

1 G 2

,

~42!

where the decay constants are defined as

f h
85 f h1

cosu, f h
152 f h1

sinu,

f h8
8

5 f h1
sinu, f h8

1
5 f h1

cosu. ~43!

The x2 fit results are shown as fit I in Figs. 5 and 6 and
Table I. It is seen that fit I is in good agreement with the d
for the form factors. To test the fit parameters, we employ
ratio of the decay rates forJ/c in h8g andhg:

RJ/c5
G~J/c→h8g!

G~J/c→hg!
55.060.6. ~44!

It is usually assumed that the radiativeJ/c→h(h8)g decays
are dominated by nonperturbative gluon matrix eleme

^0uGG̃uh8& and ^0uGG̃uh& such that the ratio takes the ex
pression@24#

RJ/c5S Mh8
2

~ f h8
8

1A2 f h8
1

!

Mh
2~ f h

81A2 f h
1 !

D 2S ph8
ph

D 3

~45!
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FIG. 6. The results of thex2 fit to the h8g
transition form factor within the one-mixing
angle scheme~the solid line! and the two-mixing-
angle scheme~the dashed line!. The data points
are taken from@7–11#.
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with pP5MJ/c(12M P
2 /MJ/c

2 )/2 being the three-momentum
of the P meson. Our fit result is close to the one obtain
from chiral perturbation theory (xPT), except for the octe
decay constantf h8

5 f p,1.28f p ,

xPT:u'220° to 210°,

f h8
51.28f p , f h1

'1.1f p . ~46!

The octet decay constantf h8
is calculable byxPT up to the

one-loop approximation

f h8
'F12

MK
2

~4p f p!2
ln

MK
2

~4p f p!2
1

Mp
2

~4p f p!2G
3 f p51.28f p . ~47!

It is noted that the predicted results forG(h→gg), G(h8
→gg), and RJ/c shown in Table I are close to the expe
mental values within 1s accuracy.

Recently, it has been proposed@13,14,18# that uh& and
uh8& can mix through a two mixing-angle-scheme as

uh&5cosu8uh8&2sinu1uh1&,

uh8&5sinu8uh8&1cosu1uh1&, ~48!
09401
d
where u i denote the mixing angles. Using this mixin
scheme, thehg and h8g form factors can be expresse
respectively, as

Fhg~Q2!5cosu8Fh8g~Q2!2sinu1Fh1g~Q2!,

Fh8g~Q2!5sinu8Fh8g~Q2!1cosu1Fh1g~Q2!. ~49!

The form factorsFh ig
(Q2) are the same as those in the on

mixing-angle scheme. We first change the values off h i
and

u i to fit the data. Thex2 fit result is shown as fit II in Figs. 5
and 6 and Table I. From fit I and fit II in Table I, it is foun
that the two-mixing-angle scheme is better in accuracy t
the one-mixing-angle scheme by 100%. This is close to
investigations of@13,14,18#.

A large value off h8
c

5cosu1fhc
@25,26#, which is respon-

sible for the intrinsic charm content of theh8 meson, has
been proposed to resolve the large branching ra
BR(B→h8K) and BR(B→Xsg). We may explore this
within our approach by adding intrinsic charm content in
our formalism. The effects of the intrinsic charm content a
similar to that of the singlet component. That means one
replacef h1

with f hc
5 f h8

c /cosu1, the decay constant for in
trinsic charm for the corresponding singlet terms. That is
part of the form factors from the intrinsic charm, with th
expression
s
TABLE I. The results of thex2 fit to thehg andh8g transition form factors and the two-photon width
within the one- and two-mixing-angle schemes.

f h8
/ f p f h1

/ f p u8 u1

G(h→2g)
~keV!

G(h8→2g)
~keV! RJ/c

x2 per degree
of freedom

Fit I 0.99 1.08 216.4° 216.4° 0.49 4.47 5.6 64/31
Fit II 1.32 1.16 222.3° 29.1° 0.50 4.34 4.4 32/31
9-7
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TABLE II. The results of thex2 fit to the hg and h8g transition form factors within the one- an
two-mixing-angle schemes with or without intrinsic charm content.

f h8
/ f p f h1

/ f p f hc
(MeV) u8 u1 x2 per degree of freedom

Fit I 0.99 1.08 0 216.4° 216.4° 61/29
Fit I 0.99 1.08 28 216.4° 216.4° 34/29
Fit II 1.32 1.16 0 222.3° 29.1° 31/29
Fit II 1.32 1.16 25.6 222.3° 29.1° 19/29
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Fhcg~Q2!54ec
2E dx

x~12x! Ffhc
~x!

Q2
24

Ghc
~x!

Q4 G ~50!

where ec52/3 and the related DAs arefhc
(x)53 f hc

x(1

2x)/A2 and Ghc
(x)53A2p2f hc

2 x(12x). The effect from

the large value of the charm quark mass has been abso
into the twist-4 DAGhc

(x) @1#. After including the contribu-

tion of the intrinsic charm, thehg andh8g form factors then
become

Fhg~Q2!5cosu8Fh8g~Q2!

2sinu1@Fh1g~Q2!1Fhcg~Q2!#,

Fh8g~Q2!5sinu8Fh8g~Q2!

1cosu1@Fh1g~Q2!1Fhcg~Q2!#. ~51!

As in the case of the octet and singlet form factors, the
trapolation ofFhcg(Q2) to all orders is implied. It is clear

from Eq. ~51! that the form factorFh8g(Q2) has a larger
dependence onf hc

thanFhg(Q2). We make a leastx2 fit to

the form factor data to determine possible values off hc
by

keeping the other parameters fixed. From Table II, one m
09401
ed

-

y

see that including the intrinsic charm content can indeed
prove the accuracy. This shows that our formalism is con
tent with perturbation theory and that the higher Fock st
can be reasonably added in. As shown below, the allow
value for f hc

is less thanf p . In literature@14,18,25,26#, f hc

is proposed in the range2140 MeV< f hc
<15 MeV. To

test this, we plot in Fig. 7 thex2 distribution for each set of
mixing parameters listed in Table II over a wide range
2140 MeV< f hc

<140 MeV. It is seen that the range o

f hc
210 MeV< f hc

<24 MeV is allowed by the data. Be

cause the value of cosu1 is close to unity,f h8
c is almost equal

to f hc
.

From the above analysis, one may see that combining
high energy data and the low energy experiment can resu
constraints on the mixing parameters in a very efficient w
We can give a general analysis for the two-mixing-an
scheme. We shall investigate thex2 distributions of the mix-
ing parameters. The procedure of analysis is as follows.
first separate the data into two groups. The data for the fo
factors, the two-photon decay rates, and the ratio forJ/c
radiative decays are denoted as set I while the latter two
are chosen as set II. We then determine the leastx2 values
for sets I and II. The reason for separating the data into s
and set II is that neither set I nor set II can completely co
strain the parameters. The parameters located within 1s ac-
curacy of set I still have large uncertainties and require f
ther restrictions, which can be obtained from the data se
m
m-
FIG. 7. The plot of thex2 distribution vsf hc
.

Thex2 values are evaluated for the data for for
factors obtained by employing the sets of para
eters listed in Table I.
9-8
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FIG. 8. The plot off h1
versusf h8

from thex2

analysis for the data sets I and II. The regio
denoted as I and II represent the allowable valu
for f h1

and f h8
within 1s error for corresponding

data sets I and II.
he
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di-
To be more explicit, we plot the allowable regions for t
mixing parameters within 1s error with respect to those va
ues associated with the minimalx2 points. As shown in Figs
8 and 9, both allowable regions for data sets I and II are la
while their intersections are rather restricted. The reason
this fact is easily understood. Within the data set I, the
perimental errors are shared for high and low energy d
Because thex2 distribution can only measure the correl
tions between the mixing parameters, the aim of constrain
each parameter in an independent way cannot be met,
only partial restrictions over the correlations of the para
eters can be derived. This can be seen from Fig. 8, in wh
the f 8 parameter is not contrained in a reasonable way.
compensate this flaw, we note that thex2 distribution of data
set II can intersect with thex2 distribution of data set I. The
intersections between the twox2 distributions can give bette
09401
e
or
-
a.

g
nd
-
h
o

constraints on the parameters than the data set I or II.
should note that, although the data set II is a subset of
data set I,x2 distribution of the data set II is not necessar
a subset of thex2 distribution of data set I, since the effec
of correlations between the parameters are different for
two data sets. From the overlapping regions of the data s
and II at 1s error, we may extract from Figs. 8 and 9 th
allowable regions for the mixing parameters. In Fig. 8, w
plot the possible allowable ranges forf h8

and f h1
. It can be

observed from Fig. 8 that the overlapping region forf h8
and

f h1
is quite stringent: 1.1< f h8

/ f p<1.56 and 1.1< f h1
/ f p

<1.22. Figure 9 shows the allowable region foru1 and u8
from both data set I and set II. The overlapping region in
cates that212°<u1<26° and223.6°<u8<219°.

Combining Figs. 8 and 9, we may derive theQ2→` lim-
its of the scaledhg andh8g form factors:
ns
es
FIG. 9. The plot ofu1 versusu8 from thex2

analysis for the data sets I and II. The regio
denoted as I and II represent the allowable valu
for u1 andu8 within 1s error for the correspond-
ing data sets I and II.
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Q2Fhg~Q2!uQ2→`5
2

A3
@ f h8

cosu822A2 f h1
sinu1#

5189646 MeV,

Q2Fh8g~Q2!uQ2→`5
2

A3
@ f h8

sinu812A2 f h1
cosu1#

5295635 MeV. ~52!

The error in the scaledhg form factor being larger than tha
of the scaledh8g form factor is because the errors in th
data for thehg and h8g form factors are shared in ou
analysis. This is consistent with the concept ofh-h8 mixing.

IV. CONCLUSIONS

We have shown that the collinear expansion
g* h(h8)→g can be systematically performed in compa
ibility with PQCD factorization. TheO(Q24) power correc-
tions for Fhg(Q2) andFh8g(Q2) were evaluated. The mag
nitudes of NLO power corrections were determined.

We made a general analysis for the allowed values for
mixing parameters by combining the high and low ene
data. Except forf h8

, the other three parametersf h1
,u8(1) can

be constrained in a reasonable region. The large error for
fit of f h8

is mainly from the experimental error and can
improved by future experiments with higher accuracy.
present, we would invoke the chiral perturbation theory c
culation for f h8

.

er

09401
r

e
y

he

t
l-

We have also shown that the intrinsic charm content ofh8
meson has little contribution. Any sizable contribution fro
the intrinsic charm would lead to a largex2 value as shown
in Fig. 7. Of course, further investigations are required
this point, if more accurate form factor data become av
able.

So far, we have not considered the finite meson m
effects for thehg andh8g form factors. At first glance, the
meson mass effects cannot be safely ignored. Because
values of h and h8 meson masses are as large asMh

5547 MeV andMh85958 MeV, power corrections from
the mass effects of orderO(M P

2 /Q2) andO(M P
2L2/Q4) are

also important. The correctionsO(M P
2 /Q2) are of kinematic

type. This is similar to Nachtmann’s correction for deep
elastic scattering@27# and can be negligible. The second typ
of correctionO(M P

2L2/Q4) is dynamic and it can be argue
that they are of twist 6 at least. This is because the associ
spin projector isn”g5 ~cf. the leading spin projectorp”g5),
which will introduce two additionalFS propagators into the
related hard function. As a result, the dynamical type me
mass corrections are of orderO(M P

2L4/Q6). Of course, a
complete analysis for these meson mass effects is impor
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