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Abstract-A new strategy for inverting a nonsingular matrix is evaluated in this paper. The 

essential concept of this strategy is to partition a nonsingular matrix into blocks, then to apply 

the author’s decomposition to the block-based procedure. Since different partitions require different 
costs, finding an economical partition is necessary. This paper studies the optimum partition so that 
the complexity for the inverse of a nonsingular matrix may be significantly reduced. 

1. INTRODUCTION 

The author’s decomposition [1,2] provides a special feature in inverting a nonsingular matrix [A], 
which decomposes [A] directly into [Al-l. For a general nonsingular matrix, the inverse of [A] 
is written in the form [A]-’ = [L][D][V], in which [L] is a lower triangular matrix with unit 
coefficients, [D] is a diagonal matrix, and [U] is an upper triangular matrix with unit coefficients. 
The procedure for decomposing [A] of order (n x n) into [A]-’ = [L][D][U] is as follows [2]: 

For j = n + 1 with step (-l), do 

(a) for i = j + 1 4 n with step 1, do 
n 

Aji +- Aji + c Aj/c * Aki; 
k=i+l 

(b) for i = n -+ j + 1 with step (-l), do 

i-l 

Aji + -Aji * Aii - C Ajk * Akk * Aki; 
k=j+l 

CC) Ajj + 
1 

Ajj + C;=j+i Ajk * Akj ’ 

(1) 

(2) 

(3) 

(d) for i = j + 1 + n with step 1, do 
n 

Aij+Aij+ C Aik*Akj; 
k=i+l 

(4 

(e) for i = n -+ j + 1 with step (--I), do 

i-l 

Aij t -Aii * Aij - C Ai,+ * Akk * Akj- 
k=j+l 

(5) 

After the computation of equations (l)-(5), the lower triangular part of [A] is [L], the diagonal 
part of [A] is [D], and the upper triangular part of [A] is [VI. It has been proved [3] that the 
complexity in equations (l)-(5) can be reduced by a block-based procedure. The purpose of this 
work is to study the optimum number of blocks so that the complexity in inverting a nonsingular 
matrix may be significantly reduced. 
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2. A BLOCK-BASED PROCEDURE 

If the matrix [A] is partitioned into a (N x N)-block matrix, the block-based version of the 
author’s decomposition is written as: 

For J = N + 1 with step (-l), do 

(a) for I = J + 1 + N with step 1, do 

[Au1 +- [Ad + 5 [&K][&u]; 
K=I+l 

(b) for I = N + J + 1 with step (-l), do 
I-l 

Lb1 + -LJJI~[AII~ - c [J&K][AKKI[AKII; 
x=J+l 

-1 

(cl PJJ] + [AJJI + 5 [AJK][dKJ] 1 ; 

(d) for I = J + 1 -_) 

K=J+l J 

N with step 1, do 

(6) 

(7) 

(8) 

5 [AzKI[AKJI; (9) 
K&+1 

(e) for I = N + J + 1 with step (-l), do 

[AzJ] +- -[AzII[AIJI - E [AzK][AKKIMKJI; 
K=J+l 

(10) 

where [AIJ] is a submatrix of [A]. The results obtained from equations (6)-(10) represent that 

L [ANN] J 

PI = 

(11) 

(12) 

(13) 

and the product of [L][D][U] is [A)-‘. Th e inverse operation of the right side in equation (8) 
first implements the element-based procedure as shown in equations (l)-(5) so that [A]-’ is in 
the form of [L](D][U], and then performs the product of [L][D][U] to obtain a single matrix 
representation for [A]-‘. 

This work partitions matrix [A] of order (M x M) into a (N x N)-block matrix. Certainly, 
there exists a variety of partition patterns. This work will try a baIance partition, i.e., each block 
has as equal size as possible. Generally, M is not a multiple of N. Because of balance partition, 
the difference between any blocks is at most 1; for example, some blocks may be of size n, while 
others may be of size n + 1. In this work, we just write the block size n as 

M 
n=-. 

N (14) 

It can be counted that the procedure in equations (6)-(10) requires N inverse operations, $N” - 
iN2 - QN matrix additions/subtractions, and N3 - gN2 + $N matrix multiplications. 
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3. THE OPTIMUM PARTITION 

RECALL 1. The number of arithmetic operations in inverting an asymmetric matrix [A] of order 
(n x n) into (A]- l is fn3 - 2n2 + $72 (see 131). 

FACT 1. The number of arithmetic operations for the product of 2 matrices of order (n x n) is 
2n3 - n2, and the number of arithmetic operations for the addition of 2 matrices of order (n x n) 
is n2. 

Since a (N x N)-block procedure has N inverse operations, $N3 - 4N2 - QN addition/subtraction 

operations, and N3 - $N2 + ;N multiplication operations, the cost in implementing a (N x N)- 
block procedure is 

C=N $3-2n2+$ ( > ( + iN3 _ kJj12 _ :N 
> ( n2 + N3 - iN2 + ;N > (2n3 - n2) 

2N3--3N2+yN)n3+(--iN3+N2-iN)n'+(aN)n. (15) 

Substituting equation (14) into (15) yields 

C=-$N-(3M3+;M2)$+(;M3)$+(2M3+M2+;M). (16) 

The optimum partition may be analyzed by the first and second order derivatives of C with 
respect to N, which can be written as 

~_?!!!f~ 
N2 3 N3’ 

d2C 
-==(3OM-SMN-8N). 
dN2 3 N4 

(17) 

(18) 

Then, the optimum N is the solution of s = 0 subject to the condition that $ > 0. The 

condition that g = 0 yields 

N3-(9M+8)N+20M=O. (19) 

Generally, the solution N to equation (19) may not be an integer. The optimum partition N is 

the integer closest to the solution of equation (19). The condition that $$ > 0 leads to 

30M 
NC-. 

9M+8 

Then, the optimum partition N may be written in Lemmas l-3. 

LEMMA 1. The optimum partition N is defined as follows: 

(a) N is the integer closest to the solution of N3 - (9M + 8)N + 20M = 0, 

in which M 2 2 is the order of matrix. 

LEMMA 2. For a given M 2 2, the optimum partition N exists. 

PROOF. Let F(N) = N3 - (9M + 8)N + 20M. Then, F(1) = 11M - 7 > 0, since M 2 2. 
Furthermore, 

F 
(SM-: 8)3 

(M3(7290M - 7560) + 17280M2 + 5120M), 
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in which the value in each () is positive. This means that F(30M/(9M + 8)) < 0. Therefore, 
F(1) * F(30M/(9M + 8)) < 0, which implies that there exist one or three roots of F(N) = 0 
between 1 and 30M/(9M + 8). However, by Descartes’s rule of signs, there exists one negative 
root so that it is impossible to have three roots between 1 and 30M/(9M + 8). This implies that 
there exists exactly one root between 1 and 30M/(9M + 8). I 

LEMMA 3. For a given M 2 2, the optimum partition N is 2. 

PROOF. By Lemma 2, there exists exactly one root between 1 and 30M/(9M + 8) such that 
F(N) = 0. Since 

30M 20 90M - 160 

- - - = 9(9M + 8) “’ 9M+8 9 (21) 

where M 2 2, so that 1 < 4 < 9 < 30M/(9M + 8). Furthermore, F($) = -(4960/g3) < 0, 

and F(G) = (52M - 69)/8 > 0 since M 2 2. This shows that F(g) * F(F) < 0, and implies that 

the optimum partition N is between 4 and $. Therefore, the closest integer N to the interval 

between z and T is 2. This completes the proof. I 

4. DISCUSSION 

This paper proves that for a given nonsingular matrix, the optimum partition is N = 2, 
such that equation (16) becomes C = 2 M3 - M2 + 5M and the block procedure as shown in 
equations (6)-(10) is simplified as: 

(4 [A221 + [&Q]-~, ’ (22) 
(b) [A121 + -[A12l[A221, (23) 

(c) [All] + [[Ail] + [Aiz][A2r]]-i, (24) 

(d) [A211 + -[A22l[A211. (25) 

The optimum partition also requires two inverse operations as shown in equations (22) and (24). 
Certainly, we may apply other optimum partitions to invert submatrices, and we may repeatedly 
apply an optimum partition to the inverse of submatrices in each level. This forms a recurrent 
optimum strategy for the inverse of a nonsingular matrix. A recurrent optimum partition may 
make a significant reduction in arithmetic operations. For the example of [A221 of order (T x 3) 

in equation (22), applying an optimum partition for inverting [A221 into [A22]-l in a single matrix 
representation requires 

[;(~)3-(~)2+~(~)]+[~(~)3-~(~)] 
+2[;(F)3-3(T)]=;(;)3-($)2-3($) (26) 

arithmetic operations, in which the first [a] is the cost for an optimum partition, the second [e] 
is the cost for converting [A22]-l from the form [L][O][V] in 0 t a single matrix representation 
(see [3]), and the third [ l is the cost for converting the inverse of two submatrices into single ] 
matrix representations. Apparently, applying an optimum partition to equation (22) may further 
reduce the arithmetic operations in the amount 

[5(~)3-2(;)2+;(;)]-[;(r)‘-(f)2-;(;)] 

=;(F)“-(F)“+;(c). (27) 
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Therefore, repeatedly applying an optimum partition to the inverse of each submatrix in each 
level may reduce the arithmetic operations in the amount 

and the cost for inverting [A] becomes 

c= ;M3_M2+;M - 1 [ &M3-M2+;M+;Mlog2M 1 = ;M3 - :M - ;Mlog, M. 

Since Gaussian elimination takes ;M” + 0(M2) operations for the inverse of a nonsingular 
matrix, the presented method is superior to the Gaussian elimination for the inverse. Comparing 
with the Strassen algorithm [4] for the inverse of a matrix requiring approximately 5.64M2.8 
arithmetic operations, the presented method is also superior to Strassen’s algorithm for a certain 
range of M, for example, M 5 1675. A combination of Strassen algorithm (for M > 1675) 
and the presented method (for M 5 1675) may provide a mixed procedure for the inverse of a 
nonsingular matrix. However, in practical applications we always try to avoid inverting a dense 
large-scaled matrix, but we used to invert small matrices for large-scaled applications; for an 
example to general iterative method with a tridiagonal block matrix [C] as 

[Cl11 [Cl21 

[Cl = 
ic211 [c22] [c23] 

[c32] [c33] [c34] ’ 

. . *. 
. .I 

*. 

where each diagonal submatrix [C&l is full and of a small order, a preconditioner [P] may be 
defined as 

[C11]-l 

PI = [C221-l , -. .I 
in which each inverse can be implemented by the presented method. 

This paper proposes a smart procedure as shown in equations (22)-(25) for the inverse of a 
nonsingular matrix, by which the complexity can be significantly reduced. The procedures in 
equations (22)-(25) are clear and easy to program. The inverse of submatrices in equation (22) 
and (24) can be efficiently and accurately implemented by the original version of the author’8 
decomposition as shown in equations (l)-(5); f or example, let us consider an ill-conditioned 
matrix [A] of order (500 x 500) in which Aii = 1.0, A, = 1.0 + c (i > j), and A, = 1.0 - E 
(i < j) with a tiny E. We understand that if E = 0, then matrix [A] is singular, and for a 
tiny e the matrix [A] in this example is ill-conditioned. In this example, let E = 10m7. The 
4-byte computation with 7 digits (single precision) is not suited for this example because round- 
off error will truncate (1.0 f E) into 1.000000 such that [A] becomes singular. We have to use 
g-byte computation (double precision) for this example. Define bi = Cy=‘i Aij the ith coefficient 
of {B}. Then, the exact solution {X} to [A](X) = {B} is with unit coefficients. The author’s 
decomposition accurately solves this example, and all the obtained 500 coefficients of {X} are 
unit. More experimental tests with pseudo random procedures for generating matrix [A] show that 
double precision may provide a high accurate result of the new class of decomposition. Another 
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way to improve accuracy can be achieved by the equations of round-off error [5]. The inverse of 
a matrix is very useful, but expensive. As emphasized in [6], it may be worthwhile to calculate 
[A]-’ explicitly for the solution of [A](X) = {I?} w h en exploiting parallelism. Many practical 
applications will lead to a sparse matrix [A]. Certainly, [A]-’ may be a full matrix, even though 
[A] is in a sparse configuration. The conventional method, i.e., Gaussian elimination and Strassen 
algorithm, can not take advantage of sparsity for dealing with the inverse. Because of writing 

[W1 = [qPl[ul, th e author’s decomposition also provides a possibility to keep [A], [L], and 
[U] in the same sparse configuration. It has been found [7,8] that a stairs-shape sparsity is well- 
suited for the author’s decomposition, which can be an efficient sparse solver. The comparisons [9] 
between the author’s decomposition and the Gaussian elimination in solving sparse systems of 
linear equations showed that the author’s decomposition also provides a faster solution. The 
author’s decomposition not only can provide an optimum partition for dense matrices, but also 
can take advantage of sparsity for the inverse. It may be a fundamental tool in scientific and 
engineering computing. 
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