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Improvements on the Duality Based Method Used in
Solving Optimal Power Flow Problems

Ch’i-Hsin Lin, Shin-Yeu Lin, and Shieh-Shing Lin

Abstract—To improve the previously developed dual-type (DT)
method used in solving optimal power flow (OPF) problems with
large number of thermal-limit constraints, we propose two new
techniques in this paper. The first one is a graph-method based de-
composition technique which can decompose the large-dimension
projection problem, caused by the large number of thermal-limit
constraints, into several independent medium-dimension pro-
jection subproblems at the expense of slight increment of the
dual problem’s dimension. The second technique is an active-set
strategy based DT method which can solve the medium-dimension
projection subproblems efficiently. We have used the DT method
embedded with these two new techniques in solving numerous
OPF’s with large number of thermal-limit constraints. The test
results show that the proposed techniques are very efficient and
effectively improve the DT method for handling large number of
thermal-limit constraints.

Index Terms—Decomposition, graph method, nonlinear pro-
gramming, optimal power flow (OPF), thermal-limit constraints.

I. INTRODUCTION

L ARGE-SCALE optimal power flow (OPF) problem has
been a typical research issue in the power system research

history. Among all existing algorithms developed for solving
this problem such as [1]–[10], efficiency and numerical sta-
bility are two major goals to pursue. In previous research work
[11], we have developed a dual-type (DT) method to solve the
quadratic programming problems induced from using a succes-
sive quadratic programming (SQP) method to solve OPF prob-
lems. This DT method is numerically stable and circumvent the
difficulties of binding inequality constraints; most of its com-
putations lie in two steps: the first one is solving a set of linear
equations to obtain anascent directionof thedual function, and
the other one is solving alarge-dimension projection problemso
as to compute thegradientof the dual function required in set-
ting up the above mentioned linear equations. It has been shown
in [11] that this DT method is computationally very efficient
provided that the target systems possess a)sparsitystructure so
that we can use asparse-matrix techniqueto solve the set of
linear equations and b)decoupling inequality constraintsso that
we can decompose the large-dimension projection problem into
independentbranchwiseor nodewiseprojection subproblems.

Manuscript received September 24, 1999; revised September 28, 2001. This
work was supported in part by the National Science Council of Taiwan, R.O.C,
under Grant NSC88-2213-E-009-123.

C.-H. Lin is with the Department of Electronics Engineering, KaoYuan Insti-
tute of Technology, Kaoshiung, Taiwan, R.O.C.

S.-Y. Lin and S.-S. Lin are with the Department of Electrical and Control En-
gineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., (e-mail:
sylin@cc.nctu.edu.tw).

Publisher Item Identifier S 0885-8950(02)03837-3.

The OPF problems with voltage and generation constraints
possess the above two properties. However, if the thermal-limit
constraints are considered, property b) may no longer be valid
when these transmission lines form a connecting graph. This im-
plies that the large-dimension projection problem induced in the
DT method cannot be decomposed into branchwise and node-
wise projection subproblems, hence, increase computational in-
efficiency. A remedy strategy proposed in [11] is to convert
the coupling thermal-limit constraints into equality constraints
and decoupling branchwise inequality constraints using slack
variables. Such a conversion will make property b) hold, how-
ever, at the expense of increasing the number of equality con-
straints, slack variables, and consequently the dimension of the
dual problem, which causes computational inefficiency. Thus,
we encounter two extreme cases corresponding to whether using
the conversion technique or not. In fact, compromising between
these two extreme cases to generalize the DT method to deal
with the quadratic subproblems of the OPF problems with large
number of thermal-limit constraints is thepurposeof this paper.

To accomplish this goal, we propose two techniques. The
first one is agraph method based decomposition technique
which incorporates with the conversion technique can decom-
pose the coupling thermal-limit constraints into disjoint subsets
so that the large-dimension projection problem induced in the
DT method can be decomposed into independent medium-di-
mension projection subproblems. The second technique is
an active-set strategy based DT methodwhich can solve the
medium-dimension projection subproblems efficiently. These
two new techniques to be presented in Sections II and III
can be embedded in the DT method to incorporate with the
SQP method to solve the OPF problems with large number
of thermal-limit constraints as presented in Section IV. Test
results are given in Section V to demonstrate the efficiency of
the proposed techniques and their effective improvement on
the DT method.

II. GRAPH-METHOD BASED DECOMPOSITIONTECHNIQUE

The thermal-limit constraint for a transmission line in power
systems [12] can be expressed as

(1)

where denotes the real power flow of the trans-
mission line from bus to bus , and denote real and imagi-
nary parts of bus’s voltage, respectively, and and denote
the lower and upper limit of the real power flow, respectively.
Thus, whenever the thermal-limit constraints are required upon
a set of connecting transmission lines, they are coupling.
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Fig. 1. Example of category a).

A. Converting Thermal-Limit Constraints

Using slack variable , we can convert (1) into the following
equality constraint and branchwise inequality constraint [11]:

(2)

(3)

B. Decomposition Algorithm

As indicated in Section I, to render the OPF problem
with large number of coupling thermal-limit constraints, we
should compromise between increasing the dimension of the
dual problem, caused by additional equality constraints, and
reducing the dimension of the projection subproblem. To fulfill
this task, a natural criteria can be minimizing the increase of
equality constraints subject to keeping the dimensions of the
projection subproblems under certain level. We present in this
section a graph-method based decomposition technique to
accomplish the above mentioned criteria approximately.

Construction of the Graph:An advantage of the thermal-
limit constraints of a power system is these transmission lines
themselves form a graph.

Categories of the Graph:There may exist separate con-
necting graphs corresponding to decoupling subsets of
thermal-limit constraints. Thus, our graph-method based
decomposition technique should apply to each individual
connecting graph. In this section, we denote a connecting graph
by . First of all, we categorize into four categories: a) no
loop, b) few loops and each loop contains few transmission
lines, c) few loops and some loops contain many transmission
lines, and d) many loops. To perform the categorization,
we first calculate the number of loops and the number of
transmission lines in each loop . If ,

is of category a); Fig. 1 shows such an example. We let
and denote the threshold values ofand , respectively.
If and for every , then is of
category b); suppose we set , ; Fig. 2(a) shows
such an example. If and for some , then
is of category c); Fig. 3(a) shows such an example, in which

. If , is of category d); Fig. 4(a)
shows such an example.

Remark 1: To calculate and , for is
indeed a simple task. We can apply any typical spanning tree
algorithm [13] to to identify a directed spanning tree starting
from the root bus, which is called source bus in the sequel. Then
each transmission line not in this tree will form a loop with
transmission lines in this tree. Subsequently, we may calculate

and .

(a)

(b)

Fig. 2. (a) Example of category b). (b) Modification of Fig. 2(a).

(a)

(b)

Fig. 3. (a) Example of category c). (b) Modification of Fig. 3(a).

(a)

(b)

Fig. 4. (a) Example of category d). (b) Modification of Fig. 4(a).

C. Graph-Method Based Decomposition Algorithm

The criteria that we mention at the beginning of Section II-B
can be interpreted in terms of the represented graph as: to deter-
mine a set of smallest possible number of transmission lines so
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that the removal of which ensures the dimensions of the sepa-
rated subgraphs under certain level; in other words, to make the
dimension of the largest separated subgraph as small as possible.
Our decomposition procedures for the graph of each category is
heuristic and aims to accomplish this criteria approximately.

Before proceeding, we need the following notations:
denotes the transmission line connecting buswith bus ;
denotes a set of transmission lines in; denotes the th
subgraph of ; denotes theth subgraph of after the
removal of . In addition, we need a terminologycapacity
denoted by so that represents the total number of
transmission lines in; for example, . To ensure the
dimension of a subgraph being under certain level, we define
a threshold value so that if , need
be decomposed further. Using these notations, we can state our
decomposition algorithm in the following and provide illus-
trative examples for those steps that perform decomposition
afterwards.

Algorithm I:

Given data: The connecting graph G, threshold values

L , T , and C .

Step 0: Pick up two geometrically farthest buses

as a source and a sink. Assign each transmission

line’s capacity to be 1.

Step 1: Identify a directed spanning tree starting

from the source bus.

Step 3: Calculate L and T of each loop

l ; j = 1; . . . ; L. If L = 0, go to Step 3(a);if L < L

and T < T , for every j = 1; . . . ; L, go to Step 3(b);

if L < L and T � T for some j, go to Step 3(c);

if L � L , go to Step 4.

Step 3(a): Find t = argfmin j C(S (t )) � C(S (t )) j

g. The transmission line t will be removed. Go to

Step 6.

Step 3(b): Represent each loop l by one transmission

line and assign that transmission line with a ca-

pacity of C(l ). Then perform the same procedures

as in Step 3(a).

Step 3(c): Remove a transmission line from each

large loop, then perform the same procedures as in

Step 3(a) or Step 3(b).

Step 4: Identify all directed paths from the source

bus to the first encountered loops. Delete the

transmission lines in each of those paths and add

their capacities uniformly to the corresponding

loop. Perform a maximum-flow minimum-cut algorithm

[13] on the resulting graph to determine the min-

imum cuts.

Step 5: Letting T be the ith minimum-cut, deter-

mine

T = arg min max C(S (T )) : (4)

Then T will be removed.

Step 6: For any separated subgraph S , if C(S ) � C ,

pass S ; otherwise, repeat Steps 1 to 6 for S .

Note: A minimum cutis a cutset with minimum total ca-
pacities among all the cutsets that can separate the graph into
at least two disjoint subgraphs, and the source bus and sink bus
belong to different subgraphs.

D. Illustrations and Examples for Decomposition Steps of
Algorithm I

In the above algorithm, the removed transmission line(s)
implies the corresponding thermal-limit constraints will be
converted to equality and branchwise inequality constraints as
shown in (2) and (3). For the graphical examples provided here,
the capacity of a transmission line is 1 unless it is specifically
marked. Following are the illustrations for the decomposition
steps:

For Step 3(a): The removal of a transmission line inof cat-
egory (a) will result in two separated subgraphsand . For
example, in Fig. 1, . Hence
will be removed. This procedure achieves the destined criteria.

For Step 3(b): Fig. 2(b) is resulted from Fig. 2(a) using one
transmission line to represent a loopassociated with the ca-
pacities . Consequently, the resulting graph in Fig. 2(b) is
of category (a).

For Step 3(c): Fig. 3(b) belonging to category a) is resulted
from Fig. 3(a) after removing .

For Step 4: The reason to delete those transmission lines in-
dicated in Step 4 is to avoid meaningless minimum-cut. For ex-
ample, the transmission line connecting with the source bus in
Fig. 4(a) is an obvious minimum cut to separate the source bus
from the sink bus. Thus, Fig. 4(b) is resulted from Fig. 4(a) after
deleting the transmission lines from the source bus to the first
encountered loop, and the capacities of the transmission lines of
that loop are also modified as dictated in Step 4.

For Step 5: Equation (4) is to find the minimum cut
such that the dimension of the largest separated subgraph
due to the removal of that cut is smallest. For example, in
Fig. 4(b), each of the transmission lines marked by “x,” “x
x,” and “x x x,” represents a minimum cut, and we denote
them by , , and , respectively. Consequently,

,
, and . Therefore,

will be the minimum cut to be removed.
Remark 2: Algorithm I can be executed off-line, because

the thermal-limit constraints required upon the transmission
lines are usually known in prior.

Remark 3: The factors that really affect the computational
speed of our method proposed in this paper is the reduction of
the projection subproblems’ dimensions, in terms of the capac-
ities of the disjoint subgraphs, and the additional equality con-
straints and slack variables, in terms of the removed branches,
however, not the category of the graph. The purpose that we
categorize the graph into four categories is to find a systematic
method, as shown in Steps 3(a)-(c), 4 and 5 of Algorithm I, to
decouple the connecting graph into disjoint subgraphs by re-
moving as less branches as possible so as to achieve the goal of
our decomposition strategy approximately.

Remark 4: Since this graph-method based decomposition
algorithm is executed off-line, the values of and can be
determined based on the structure ofIn general, for a larger
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, there may be more loops, and each loop may consist of
more transmission lines. Thus, the values ofand should
be set larger for larger . Recommended value ranges of

and are (4, 8) and (10, 15), respectively, depending on
the value of . Comments regarding the value of will be
presented in Remark 5.

III. M ETHOD FOR MEDIUM-DIMENSION

PROJECTIONSUBPROBLEM

The following projection subproblem is considered in this
section:

(5)

(6)

(7)

where the -dimensional vector is a given vector consisting
of the increments of the real part and imaginary part of the bus
voltage during solution process,, , and are scalars, is
an -dimensional constant vector, and the functional inequality
constraints (6) denote the linearized coupling thermal-limit
constraints, denotes a set of nodewise inequality constraints
such as the voltage-magnitude constraints and control-variable
constraints.

The method we propose to solve (5)–(7) is anactive-set
strategy based DT method. Theactive-set strategywill
first identify the working set, that is theactive linearized
thermal-limit constraints at current state ; then at the
next, -th, iteration, we will solve the problem (5)–(7) for the
working set at only as shown below

(8)

where denotes the set of indices of active linearized
thermal-limit constraints (6) at , that is

or , de-
notes either or depending on which side of the linearized
thermal-limit constraint in (6) isactive. The initial working set is
assigned to be . Clearly, the working set
should be updated for each newly obtained, which is the so-
lution of (8), and the details will be discussed later.

To solve (8), we will solve its corresponding dual problem

(9)

where the dual function

(10)

and is the Lagrange multiplier vector asso-
ciated with the active constraints. The dual problem (9) can be
solved by the DT method proposed in [11] using the following
iterations:

(11)

where is a positive step-size and can be obtained
from solving

(12)

in which the matrix is an approximate Hessian of
, which can be computed by the following [14]:

(13)

where the matrix is the collection
of the column vectors , is a small positive
real number, and is an identity matrix. Each component of the
gradient of in (12) can be computed by [14]

(14)

where , according to the DT method in [11], is the solution of
the minimization problem on the RHS of (10), which is equiva-
lent to the following decomposable projection problem

(15)

where

(16)

The projection problem (15) can be decomposed into indepen-
dent nodewise projection subproblems, and the analytical for-
mula for solving each nodewise projection subproblem is given
in [11]. Therefore, setting up the linear equation (12) is an easy
task.

Consequently, if there are only few active linearized thermal-
limit constraints in each iteration, which is typical in normal op-
erating conditions of a power system [12], then the dimension
of the linear equation (12) as well as should
be small, and (12) can be easily solved. Therefore, the advan-
tages of the DT method are preserved in this solution process.

Addition and Subtraction for the Constraints in the Working
Set: When , the solution of (8), is obtained, we will check
its satisfaction of (6). Any new active index will be added to

to update . On the contrary, if no constraint in
(6) is violated, we will investigate the following condition: if

and or and , for some
, then this constraint will be released from to

update [14]. Consequently, if no constraint is violated, and
if and or and , for all ,
then is the solution of the projection subproblem (5)–(7).

In the following, we state the algorithm of active-set strategy
based DT method for solving the projection subproblem (5)–(7).

Algorithm II:

Step 0: Given ~y, set y = ~y and k � 1 = 0.

Step 1: Find J(y ).

Step 2: Initially guess �(0).

Step 3: Solve (15) for ŷ using the formula given in

[11] .

Step 4: Compute Q(�(j)) and @q(�(j))=@� according to

(13) and (14) , respectively.

Step 5: Solve (12) for ��(j).
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Step 6: If k��(j)k < ", go to Step 7; otherwise, up-

date �(j+1) = �(j)+�(j)��(j), set j = j+1, and return

to Step 3.

Step 7: Update y = ŷ and check its satisfaction

of (6) . If no constraint is violated, go to Step

8; otherwise, add new active index to J(y ) to

update J(y ). Set k � 1 = k and return to Step 2.

Step 8: If d = �c and � (j) � 0, or d = c and � (j) � 0,

stop, and y is the solution; otherwise, drop the

index i from J(y ) to update J(y ). Set k � 1 = k

and return to Step 2.

Remark 5: As indicated previously, our active set strategy
based DT method is especially suitable for solving projection
problem with very few active constraints. However, if more ac-
tive constraints are present, smallerin Algorithm I is prefer-
able so as to avoid the frequent adding and dropping the active
constraints during the solution process. Thus, the choice of the
value of in Algorithm I will depend on the value of
and the system’s statistics. In general, the value range ofis
taken to be (15, 40).

IV. M ETHOD FOR OPF PROBLEM WITH LARGE

THERMAL-LIMIT CONSTRAINTS

Using notations given in [11], we can state the OPF problem
with large number of thermal-limit constraints as follows:

(17)

where the vector represents all variables, in which
the vector represents control variables such as , trans-
former tap ratio, etc.; denotes the real and reactive
power flow balance equations at all but slack buses;and are
real and imaginary parts of the bus complex voltage; the vector
function denotes the transmission line real power flow
functions, the vectors and denote the lower and upper limit
of real power line flows, respectively, that is, the thermal-limit;

and are lower and upper limit of bus voltage magnitudes,
and and are lower and upper limits of control variables.

We will first apply Algorithm I described in Section II to de-
compose the coupling thermal-limit constraints

. We let ,
and denote the disjoint subsets
of thermal-limit constraints resulted from Algorithm I, and let

denote the set of thermal-limit constraints
that will be converted to equality constraints and branchwise

inequality constraints. After the decomposition and conversion,
the OPF problem (17) becomes

(18)

where is the vector of slack variables used to convert the in-
equality constraints into equality con-
straints and branchwise inequality constraints

. The SQP method [11] uses the following itera-
tions to solve the above OPF problem:

(19)

where is a step-size [11], and ( ) is the solu-
tion of the following QP subproblem:

(20)

in which denotes , and the diagonal ma-
trix is defined by

(21)

where is an identity matrix, and is a small positive real
number but enough to make positive definite.

Remark 6: In most of the OPF problems such as eco-
nomic dispatch or minimum system-losses problems,can be
predetermined.

The dual problem of the above QP subproblem is

(22)
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where the dual function

(23)

and the constraints of the primal variables in the dual function,

The DT method solves the above dual problem using the itera-
tions

(24)

where is the iteration index, is a positive step-size, and
is obtained from solving

(25)

in which the Hessian of and the gradient of
can be computed as described in the following.

The is the unconstrained dual function defined as

(26)

which is the dual function in (23) but relaxing the constraints on
primal variables, and the Hessian of can be computed
by

(27)

The gradient of is

(28)

and can be computed by

(29)

(30)

where needed in (29) and (30) is the solution of the
constrained minimization problem on the RHS of (23) and, ac-
cording to the DT method [11], can be obtained from solving
the following projection problem:

(31)
where computed by

(32)

(33)

is the solution of the unconstrained dual function
shown in (26). Furthermore, can be expressed as

(34)

where and

Since and , , are disjoint subsets, the
projection problem (31) can be decomposed into the following

projection subproblems:

(35)

and

(36)
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where and are given in (32)
and (33), respectively. The projection subproblem in (35) can be
easily solved by the following analytical formula:

if
if
otherwise.

(37)

On the other hand, each projection subproblem in (36) has ex-
actly the same form as the projection subproblem considered in
Section III, thus can be solved by the active-set strategy based
DT method.

Now we are ready to state our algorithm for solving OPF
problems with large number of thermal-limit constraints stated
in (17) as follows.

Algorithm III:

Step 0: Perform Algorithm I on h � h(e; f) � �h of

the OPF problem (17) to formulate the OPF problem

(18) .

Step 1: Initially guess x(0) and set k = 0.

Step 2: Initially guess �(0) and set t = 0.

Step 3: Use (37) to solve (35) for �ẑ and use Algo-

rithm II to solve (36) for �x̂ , i = 1; . . . ; n:

Step 4: Compute @�(�(t))=@� by (29) and (30) ; compute

@ � (�(t))=@� by (27) .

Step 5: Solve (25) to obtain ��(t).

Step 6: If k��(t)k < ", go to Step 7; otherwise, up-

date �(t + 1) = �(t) + �(t)��(t), set t = t + 1 and return

to Step 3.

Step 7: If k(�x̂;�ẑ)k < ", stop and x(k) is the solu-

tion; otherwise go to Step 8.

Step 8: Update x(k+1) = x(k)+�(k)�x̂ and z(k+1) = z(k)+

�(k)�ẑ, set k = k + 1 and return to Step 2.

Remark 7: For the issues of discrete control variables and
problem of infeasibility, we follow the same treatments as that
of [11], although in current algorithm, we do not express them
explicitly.

V. TEST RESULTS

We have applied Algorithm III on numerous OPF problems
with large number of thermal-limit constraints of the IEEE
118-bus system and the IEEE 244-bus system. Due to the page
limitation of the paper, we present the simulation results of
the IEEE 244-bus system only while the results of the IEEE
118-bus system can be found in [15].

We set the following parameters: , ,
in Algorithm I, , 10 in Algorithm II, and

, 10 in Algorithm III. The objective functions
for all the tested OPF problems are of minimum system losses
criteria as , where denotes the real power loss
of transmission line , and total generation cost criteria as

where denotes the real power
generation of bus and , and are the coefficients of
the cost curve of . We consider four different cases of

thermal-limit constraints for the IEEE 244-bus system, and
the corresponding transmission lines of these four cases are
a) 38–40, 38–110, 54–110, 40–42, 42–80, 80–34, 34–82,
82–72, 72–84, 84–23, 23–21, 21–22, 22–15, 15–14, 14–12,
12–4, 4–1, 1–10, 10–7, 7–175, 175–226, 226–211, 211–177,
177–219, 219–203, 203–202, 202–235, 235–237, 237–238 and
238–201, b) 54–110, 54–63, 63–110, 38–110, 38–40, 40–42,
42–80, 80–34, 34–82, 82–72, 72–84, 84–80, 80–67, 67–83,
83–20, 20–22, 22–15, 15–14, 14–12, 10–7, 7–175, 175–226,
226–211, 211–177, 177–219, 219–203, 203–202, 203–235,
202–235, 235–237 and 237–238, c) 12–17, 17–14, 14–118,
118–143, 12–4, 4–1, 1–10, 10–11, 11–144, 144–163, 163–149,
149–164, 164–143, 10–7, 7–175, 175–226, 226–218, 218–210,
210–195, 195–227, 227–212, 212–26, 26–215, 215–217,
217–205, 205–204, 204–201, 201–109, 109–197, 197–211 and
211–226 d) 54–63, 63–110, 54–40, 38–110 ,38–82, 82–42,
42–80, 80–34, 34–82, 82–72, 72–74, 74–86, 86–84, 72–84,
84–63, 63–21, 21–22, 22–15, 15–14, 14–12, 12–4, 4–1, 1–10,
10–7, 7–175, 175–226, 226–211, 211–196, 196–197, 211–197,
197–219, 219–203, 203–235, 235–237, 237–202 and 202–235.

Applying Algorithm I, which is Step 0 of Algorithm III, to the
above four cases of thermal-limit constraints, we found that the
thermal-limit constraints of a), b), c), and d) cases belong to a),
b), c), and d) categories considered in Section II, respectively.
The removed transmission lines determined by Algorithm I are
12–4 for case a), 22–15 for case b), 17–175 and 201–109 for
case c), and 15–14 for case d). For the transmission lines of
each of the a), b), c), and d) cases, we assume four sets of
thermal-limit values to account for different number of active
thermal-limit constraints. Now, we have formed 32 OPF prob-
lems of the form (18) on the IEEE 244-bus system, and each
OPF problem is resulted from a combination of the two ob-
jective function criteria, four cases of thermal-limit constraints
and four different number of active thermal-limit constraints.
We then apply the rest of the steps of Algorithm III to these
32 OPF problems in a Sparc 20 machine. The corresponding
CPU times are shown in Tables I–VIII. Each table consists of
four OPFs corresponding to four cases of thermal-limit con-
straints with a given criteria and a given percentage of active
thermal-limit constraints. For the purpose of comparison, we
also solve the same OPF problems with the same setup by the
SQP method associated with DT method using pure conversion
technique in the same Sparc 20 machine. This method is given
in [11] and is abbreviated as SQPDTCON in the sequel. The
final objective values obtained by SQPDTCON method are the
same as the values obtained by Algorithm III, and the corre-
sponding CPU times consumption for each OPF are also re-
ported in Tables I–VIII. The test results shown in Table I and
Table V correspond to the case that no thermal-limit constraints
is active, thus the resulting CPU times of Algorithm III are the
least compared with the other cases of same criteria but with
active thermal limit constraints. Similar results also hold for
the SQPDTCON method. Tables II–IV report the CPU times
consumed by the Algorithm III and SQPDTCON method for
the cases of the OPF problems of minimum system-losses cri-
teria but with approximately 7%, 13%, and 20% active thermal-
limit constraints. As we can see from the fifth column of these
three tables that the speed-up ratio of Algorithm III over the
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TABLE I
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMSWITH MINIMUM SYSTEM-LOSSES

CRITERIA AND NO ACTIVE THERMAL-LIMIT CONSTRAINT

TABLE II
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMSWITH MINIMUM SYSTEM-LOSSES

CRITERIA AND 7% ACTIVE THERMAL-LIMIT CONSTRAINTS

TABLE III
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMSWITH MINIMUM SYSTEM-LOSSES

CRITERIA AND 13% ACTIVE THERMAL-LIMIT CONSTRAINTS

TABLE IV
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMSWITH MINIMUM SYSTEM-LOSSES

CRITERIA AND 20% ACTIVE THERMAL-LIMIT CONSTRAINTS

SQPDTCON method is about 2. This indicates the improve-
ment of the current method on the SQPDTCON method is more
than 100%. The reason that the CPU time of Algorithm III and
its speed-up ratio over the SQPDTCON method are approxi-
mately the same for the four cases of thermal-limit constraints
in a table is because the disjoint subgraphs have approximately
the same capacities and the number of removed transmission

TABLE V
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMS WITH TOTAL GENERATION COST

CRITERIA AND NO ACTIVE THERMAL-LIMIT CONSTRAINT

TABLE VI
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMS WITH TOTAL GENERATION COST

CRITERIA AND 7% ACTIVE THERMAL-LIMIT CONSTRAINTS

TABLE VII
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMS WITH TOTAL GENERATION COST

CRITERIA AND 13% ACTIVE THERMAL-LIMIT CONSTRAINTS

TABLE VIII
COMPARISON OF THEALGORITHM III AND THE SQPDTCON METHOD ONOPF
PROBLEMS OF THEIEEE 244-BUS SYSTEMS WITH TOTAL GENERATION COST

CRITERIA AND 20% ACTIVE THERMAL-LIMIT CONSTRAINTS

lines are almost the same. However, the CPU times consumed by
Algorithm III increase when there are more active thermal-limit
constraints present, which are as we expected and can be ob-
served from Tables I–IV. Similar results can also be observed
from Tables V–VIII for the OPF problems with total generation
cost criteria.
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To investigate the efficiency of the two new techniques for
handling the large number of thermal-limit constraints, we
also solve the same OPF problem but without considering
any thermal-limit constraint using the SQP method associated
with the DT method. We abbreviate this method as SQPDT
method which in fact is the SQPDTCON method without using
conversion technique, because no thermal-limit constraint is
considered. Thus, the SQPDT method solves only two OPF
problems, one for each criteria. For easier reference, we also
show the CPU times consumption of the SQPDT method in
tables with the same objective function. We also report the
increased CPU times of Algorithm III compared with the
SQPDT method in each table, and they are mostly around 10%
when no thermal-limit constraint is active and less than 40%
when there are 20% active thermal-limit constraints. These
results indicate that the two new techniques are very efficient
in handling the large number of thermal-limit constraints.

Remark 8: Unfortunately, we do not have any software
implemented by the interior point method at hand to compare
with. However, in [11], we did compare the SQPDTCON
method with IMSL subroutine and achieve a speed-up ratio of
30 on a modified 57-bus system.

VI. CONCLUSION

In this paper, we have proposed two new techniques to im-
prove the previously developed DT method [11] used in solving
OPF problems with large number of thermal-limit constraints.
These two new techniques can decompose the large-dimension
projection problem into independent medium-dimension
projection subproblems and solve the medium-dimension
projection subproblems very efficiently; their computational
efficiency and effective improvement on the DT method have
been demonstrated by the results of our tests on numerous OPF
problems.

The DT method [11] is not only developed for the OPF prob-
lems, it can also apply to the nonlinear multicommodity net-
work flow problems [16]. Therefore, the two new techniques
proposed in this paper possess the potential to generalize the
DT method in [11] and [16] to solve general large network op-
timization problems.
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