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Improvements on the Duality Based Method Used In
Solving Optimal Power Flow Problems

Ch'i-Hsin Lin, Shin-Yeu Lin, and Shieh-Shing Lin

Abstract—To improve the previously developed dual-type (DT) The OPF problems with voltage and generation constraints
method used in solving optimal power flow (OPF) problems with  possess the above two properties. However, if the thermal-limit
large number of thermal-limit constraints, we propose two new constraints are considered, property b) may no longer be valid

techniques in this paper. The first one is a graph-method based de- henth t ission i f fi h Thisi
composition technique which can decompose the Iarge-dimensionW enthesetransmissionlines form a connecting grapn. 11is im-

projection problem, caused by the large number of thermal-limit  Plies that the large-dimension projection problem induced in the
constraints, into several independent medium-dimension pro- DT method cannot be decomposed into branchwise and node-

jection subproblems at the expense of slight increment of the wise projection subproblems, hence, increase computational in-
dual problem’s dimension. The second technique is an aCt'Ve'SEteﬁiciency. A remedy strategy proposed in [11] is to convert

strategy based DT method which can solve the medium-dimension th ling th -limit traints int lit traint
projection subproblems efficiently. We have used the DT method € COUPling thermal-imit constraints into équality constraints

embedded with these two new techniques in solving numerous @nd decoupling branchwise inequality constraints using slack
OPF’s with large number of thermal-limit constraints. The test variables. Such a conversion will make property b) hold, how-

results show that the proposed techniques are very efficient and ever, at the expense of increasing the number of equality con-
f&iﬁ';ﬁ:#?&%‘g;?ﬁtsm method for handling large number of  giyaints, slack variables, and consequently the dimension of the
- _ dual problem, which causes computational inefficiency. Thus,
Index Terms—becomposition, graph method, nonlinear pro- we encounter two extreme cases corresponding to whether using
gramming, optimal power flow (OPF), thermal-limit constraints.  {he conversion technique or not. In fact, compromising between
these two extreme cases to generalize the DT method to deal
|. INTRODUCTION with the quadratic subproblems of the OPF problems with large
. number of thermal-limit constraints is tiperposeof this paper.
ARGE'SCALE optimal power flow (OPF) problem has To accomplish this goal, we propose two techniques. The
. been a typical re$e?‘r0h ISSUE In the power system rese one is agraph method based decomposition technique
h|_story. Among all existing algonthms developed for _SOlV'ngvhich incorporates with the conversion technique can decom-
th'.s problem Su?h as [1}-[10], efficiency a_nd numerical st ose the coupling thermal-limit constraints into disjoint subsets
bility are two major goals to pursue. In previous research wo that the large-dimension projection problem induced in the

[11], we have develo_ped a dual-ty'pe (OT) methodi to solve tlﬂf’l’ method can be decomposed into independent medium-di-
quadratic programming problems induced from using a succzi

) ; ) ension projection subproblems. The second technique is
sive quadratic programming (SQP) method to solve OPF prg active-set strategy based DT methatich can solve the

difficulti ¢ binding i lit traints: tof it r?ﬁedium-dimension projection subproblems efficiently. These
fhiculties of binding inequality constraints, Most Ot 1S COMy, gy techniques to be presented in Sections Il and Il
putations lie in two steps: the first one is solving a set of Ime@r

. . L : an be embedded in the DT method to incorporate with the
equations to obtain asscent directiorof thedual function and SQP method to solve the OPF problems with large number
the other one is solvinglarge-dimension projection probleso

) ) ; . of thermal-limit constraints as presented in Section IV. Test
as to compute thgradientof the dual function required in set-

. i . . results are given in Section V to demonstrate the efficiency of
ting up the above mentioned linear equations. It has been sh

8 proposed techniques and their effective improvement on
in [11] that this DT method is computationally very efficient[he [F;T ?nethod qu ! Ve Improv

provided that the target systems possespajsitystructure so
that we can use aparse-matrix techniqui® solve the set of
linear equations and lecoupling inequality constraing® that
we can decompose the large-dimension projection problem intol he thermal-limit constraint for a transmission line in power
independenbranchwiseor nodewiseprojection subproblems. Systems [12] can be expressed as

, , , , hi; < hijes, fisej, fi) < hij (1)
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Fig. 1. Example of category a). (@)
3 I |
A. Converting Thermal-Limit Constraints I_——I"—— l ] 3
Using slack variable;;, we can convert (1) into the following
equality constraint and branchwise inequality constraint [11]:
hij(ei, fisej, fi) =xij (2) -
hij <zij < hij. ®) ®)

Fig. 2. (a) Example of category b). (b) Modification of Fig. 2(a).

B. Decomposition Algorithm [

| I
As indicated in Section I, to render the OPF problem { IR EREREREE
with large number of coupling thermal-limit constraints, we
should compromise between increasing the dimension of the

dual problem, caused by additional equality constraints, and
reducing the dimension of the projection subproblem. To fulfill
this task, a natural criteria can be minimizing the increase of
equality constraints subject to keeping the dimensions of the (@)
projection subproblems under certain level. We present in this NEEE
section a graph-method based decomposition technique to f I
accomplish the above mentioned criteria approximately.
Construction of the Graph:An advantage of the thermal-
)

i

—ts

limit constraints of a power system is these transmission lines
themselves form a graph. ;

Categories of the GraphThere may exist separate con-
necting graphs corresponding to decoupling subsets of (b
thermal-limit constraints. Thus, our graph-method baseg. 3. (a) Example of category c). (b) Modification of Fig. 3(a).
decomposition technique should apply to each individual
connecting graph. In this section, we denote a connecting graph Source
by G. First of all, we categoriz& into four categories: a) no
loop, b) few loops and each loop contains few transmission
lines, c) few loops and some loops contain many transmission
lines, and d) many loops. To perform the categorization,
we first calculate the number of loogs and the number of
transmission line§;, in each loop;,j = 1,..., L. If L =0,
G is of category a); Fig. 1 shows such an example. Wd lgt
and7j denote the threshold values bfand7;,, respectively. Source
If L < Lo andTy, < Ty foreveryj = 1,..., L, theng is of
category b); suppose we sky = 4, Ty = 10; Fig. 2(a) shows 2
such an example. If. < Lo andT;; > Tp for somey, theng
is of category c); Fig. 3(a) shows such an example, in which
7, =11 > 15 = 10.If L > Ly, G is of category d); Fig. 4(a) Sink
shows such an example. (b)
. Remark 1:To calculateL, andTla"j =1. o L, for g, 1S Fig. 4. (a) Example of category d). (b) Modification of Fig. 4(a).
indeed a simple task. We can apply any typical spanning tree
algorithm [13] tog to identify a directed spanning tree startin
from the root bus, which is called source bus in the sequel. Then
each transmission line not in this tree will form a loop with The criteria that we mention at the beginning of Section 11-B
transmission lines in this tree. Subsequently, we may calculatn be interpreted in terms of the represented graph as: to deter-
Land’;,5 =1,...,L. mine a set of smallest possible number of transmission lines so

Sink

Graph-Method Based Decomposition Algorithm



LIN et al: IMPROVEMENTS ON THE DUALITY BASED METHOD USED IN SOLVING OPTIMAL POWER FLOW PROBLEMS 317

that the removal of which ensures the dimensions of the sepa- Note: A minimum cuis a cutset with minimum total ca-
rated subgraphs under certain level; in other words, to make fheities among all the cutsets that can separate the graph into
dimension of the largest separated subgraph as small as possdilast two disjoint subgraphs, and the source bus and sink bus
Our decomposition procedures for the graph of each categorpalong to different subgraphs.
heuristic and aims to accomplish this criteria approximately. ) N

Before proceeding, we need the following notationg: D. Illgstratlons and Examples for Decomposition Steps of
denotes the transmission line connecting bugth busj; 7, Algorithm |
denotes a set of transmission linesdn S; denotes thejth In the above algorithm, the removed transmission line(s)
subgraph o@; S;(1’.) denotes thgth subgraph ofj after the implies the corresponding thermal-limit constraints will be
removal ofZ,.. In addition, we need a terminologsapacity converted to equality and branchwise inequality constraints as
denoted byC' so thatC(x) represents the total number ofshown in (2) and (3). For the graphical examples provided here,
transmission lines in; for example C(t;;) = 1. To ensure the the capacity of a transmission line is 1 unless it is specifically
dimension of a subgraph being under certain level, we defingarked. Following are the illustrations for the decomposition
a threshold valu€, so that ifC(S,(Z;.)) > Cy, S;(I;) need steps:
be decomposed further. Using these notations, we can state oWor Step 3(a): The removal of a transmission ling iof cat-
decomposition algorithm in the following and provide illusegory (a) will result in two separated subgraghsandS,. For
trative examples for those steps that perform decompositiegample, in Fig. 1| C(S1(t;;)) — C(Sa(t;;)) |= 0. Hencet;;

afterwards.
Algorithm [:

Given data: The connecting graph G, threshold values
Ly, Ty, and (.

Step 0: Pick up two geometrically farthest buses
as a source and a sink. Assign each transmission
line’'s capacity to be 1.

Step 1: Identify a directed spanning tree starting
from the source bus.

Step 3: Calculate L and T, of each loop
l;,7 =1,...,L. If L = 0, go to Step 3(a);if L < Lo
and le < Ty, for every g =1,...,L, go to Step 3(b);
if L < Lo and T, > Ty for some j, go to Step 3(c);
if L > Ly, go to Step 4.

Step 3(a): Find t* = arg{min,; . eg | C(S1(t:;)) — C(S2 (ti;)) |
}. The transmission line t* will be removed. Go to
Step 6.

Step 3(b): Represent each loop I; by one transmission
line and assign that transmission line with a ca-
pacity of C(l;). Then perform the same procedures
as in Step 3(a).

Step 3(c): Remove a transmission line from each
large loop, then perform the same procedures as in
Step 3(a) or Step 3(b).

Step 4: Identify all directed paths from the source
bus to the first encountered loops. Delete the
transmission lines in each of those paths and add
their capacities uniformly to the corresponding
loop. Perform a maximum-flow minimum-cut algorithm
[13] on the resulting graph to determine the min-
imum cuts.

Step 5: Letting
mine

T7** be the ith minimum-cut, deter-

}- 4
Then T will be removed.
Step 6: For any separated subgraph S, it C(S;) £ Ch,
pass S;; otherwise, repeat Steps 1 to 6 for S;.

T = arg {Illill_ |: max  C(S;(T7))

T L. m
T ST )

will be removed. This procedure achieves the destined criteria.

For Step 3(b): Fig. 2(b) is resulted from Fig. 2(a) using one
transmission line to represent a lobpassociated with the ca-
pacitiesC(l;). Consequently, the resulting graph in Fig. 2(b) is
of category (a).

For Step 3(c): Fig. 3(b) belonging to category a) is resulted
from Fig. 3(a) after removing;;.

For Step 4: The reason to delete those transmission lines in-
dicated in Step 4 is to avoid meaningless minimum-cut. For ex-
ample, the transmission line connecting with the source bus in
Fig. 4(a) is an obvious minimum cut to separate the source bus
from the sink bus. Thus, Fig. 4(b) is resulted from Fig. 4(a) after
deleting the transmission lines from the source bus to the first
encountered loop, and the capacities of the transmission lines of
that loop are also modified as dictated in Step 4.

For Step 5: Equation (4) is to find the minimum cut
such that the dimension of the largest separated subgraph
due to the removal of that cut is smallest. For example, in
Fig. 4(b), each of the transmission lines marked by “x,” “x
X,” and “x x x,” represents a minimum cut, and we denote
them by 77X, T.**, and T.***, respectively. Consequently,
maXg >y C(s;(1x)) = 11, maXe (rxx)y C(s; (™)) =
10, andmaxg gxxx) C(S; (1)) = 14. Therefore 1>
will be the minimum cut to be removed.

Remark 2: Algorithm | can be executed off-line, because
the thermal-limit constraints required upon the transmission
lines are usually known in prior.

Remark 3: The factors that really affect the computational
speed of our method proposed in this paper is the reduction of
the projection subproblems’ dimensions, in terms of the capac-
ities of the disjoint subgraphs, and the additional equality con-
straints and slack variables, in terms of the removed branches,
however, not the category of the graph. The purpose that we
categorize the graph into four categories is to find a systematic
method, as shown in Steps 3(a)-(c), 4 and 5 of Algorithm I, to
decouple the connecting graph into disjoint subgraphs by re-
moving as less branches as possible so as to achieve the goal of
our decomposition strategy approximately.

Remark 4: Since this graph-method based decomposition
algorithm is executed off-line, the values b and7; can be
determined based on the structureGoln general, for a larger
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C(G), there may be more loops, and each loop may consistwhere3(;) is a positive step-size antiu(j) can be obtained
more transmission lines. Thus, the valued.gfandZy should from solving

be set larger for large€’(G). Recommended value ranges of da(p(5))
Lo andT, are (4, 8) and (10, 15), respectively, depending on QuNARJ) + —5—

the value ofC(G). Comments regarding the value@§ will be ) . ] On ] ]
presented in Remark 5. in which the matrixQ(y(j)) is an approximate Hessian of

q(u(4)), which can be computed by the following [14]:

=0 (12)

lll. METHOD FOR MEDIUM-DIMENSION Qi) =-AL A,  —&1 (13)

Ye—1
PROJECTIONSUBPROBLEM . ] . .
where the matrix4,, , = [a;],¢ € J(yx—1) is the collection

The following projection subproblem is considered in thigf the column vectors;,i € J(yx_1), 61 is a small positive

section: real number, and is an identity matrix. Each component of the
. . . radient of 7)) in (12) can be computed by [14
min (y - §)" (v = ) 5 9 aQ((N(z?))) (12) puted by [14]
q ] N .
¢ <afy+b;<Ei=1,...,n (6) #:a?y’—i—bi—di, i€ J(yp—1) (14)
y €Q2 )

wherej’, according to the DT method in [11], is the solution of
the minimization problem on the RHS of (10), which is equiva-

where then-dimensional vectof; is a given vector consisting ) DA
|gnt to the following decomposable projection problem

of the increments of the real part and imaginary part of the b
voltage during solution process, ¢;, andb; are scalarsg; is min(y — ) (' — i) (15)
ann-dimensional constant vector, and the functional inequality y'en

constraints (6) denote the linearized coupling thermal-limithere

constraints{2 denotes a set of nodewise inequality constraints L1
such as the voltage-magnitude constraints and control-variable y=9—35 Z Hi Qg - (16)
constraints. i€J(yr—1)

The method we propose to solve (5)—(7) is artive-Set The projection problem (15) can be decomposed into indepen-
strategy based DT method. Thactive-set strategywill  gent nodewise projection subproblems, and the analytical for-
first identify the working sef that is theactive linearized 4 for solving each nodewise projection subproblem is given
thermal-limit constraints at current staig . then at the i, [11]. Therefore, setting up the linear equation (12) is an easy
next, k-th, iteration, we will solve the problem (5)—(7) for thegzgk.
working set aty, only as shown below Consequently, if there are only few active linearized thermal-
limit constraints in each iteration, which is typical in normal op-

. T =
mym W=9"=9) erating conditions of a power system [12], then the dimension

aZTy +b; =d;, i € J(yp_1) of the linear equation (12) as well &545,,114%4 — 61 should
v €D ®) be small, and (12) can be easily solved. Therefore, the advan-

tages of the DT method are preserved in this solution process.
where J(yx_1) denotes the set of indices of active linearized Addition and Subtraction for the Constraints in the Working
thermal-limit constraints (6) ai_1, that isJ(y,_1) = {i € Set: Wheny, the solution of (8), is obtained, we will check
(1,2,...,0) | ¢; > afyr 1+ b;0r g < alyp 1 +b;}, d; de- its satisfaction of (6). Any new active index will be added to
notes eithek; or ¢; depending on which side of the linearized/ (yx—1) to updateJ(y). On the contrary, if no constraint in
thermal-limit constraintin (6) iactive The initial working setis (6) is violated, we will investigate the following condition: if
assigned to bé (o) = J(¢). Clearly, the working sef(y,_;) di = ¢; andp; < 0ord; = ¢; andp; > 0, for some: €
should be updated for each newly obtaingdwhich is the so- /(yx—1), then this constraint will be released fraffy,—.) to
lution of (8), and the details will be discussed later. update/(y)[14]. Consequently, if no constraintis violated, and

To solve (8), we will solve its corresponding dual problem if d; = ¢; andu; > 0ord; = ¢; andu; < 0,foralli € J(yx—_1),
theny, is the solution of the projection subproblem (5)—(7).

mjlx q(p) 9 In the following, we state the algorithm of active-set strategy
based DT method for solving the projection subproblem (5)—(7).
where the dual function Algorithm II:
— _iNT (a5 (T R
q(p) = Iyrélg(u 9 (v-9)+ Z pi(a; y+bi—di) (10) Step 0: Given §, set y, =4 and k—1=0.

i€ (un-1) Step 1: Find  J(yx_1).

and[u;,¢ € J(y_1)] is the Lagrange multiplier vector asso-Step 2: Initially guess #(0).
ciated with the active constraints. The dual problem (9) can Btgp 3: Solve  (15) for §’ using the formula given in

solved by the DT method proposed in [11] using the following 1] -
iterations: Step 4: Compute  Q(p(j)) and dq(p(j))/Ou according to
(13) and (14) , respectively.

p(g+1) = p(s) + BUHARG) (11) step 5: solve  (12) for Au(j).
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Step 6: If  [|Au(5)|l < &, go to Step 7; otherwise, up- inequality constraints. After the decomposition and conversion,
date wu(j+1) = pu(i)+8(G)Au(s), set j=3j+1, and return the OPF problem (17) becomes
to Step 3.
Step 7: Update  y = 4’ and check its satisfaction .
o min F'(z)
of (6) . If no constraint is violated, go to Step z
8; otherwise, add new active index to J(yi_1) to g(z) =0
update J(y.). Set k—1=4k and return to Step 2. ho(e,f) — 2 =0

Step 8: If d; =¢; and p;(j) >0, or d; =¢, and p;(y) <0,

. ) . <z<h
stop, and ;. is the solution; otherwise, drop the ]—10 <z < ho

index ¢ from J(y,_1) to update J(yz). Set k —1 = k ﬁi Shi(eiafi) < Bz" 1=1,2,...,n
and return to Step 2. V<<V <V
ulu<a (18)

Remark 5: As indicated previously, our active set strategy
based DT method is especially suitable for solving projectiosherez is the vector of slack variables used to convert the in-
problem with very few active constraints. However, if more agquality constraintg, < ho(e, f) < ho into equality con-
tive constraints are present, smalféyin Algorithm | is prefer-  straintsho(e, f) — z = 0 and branchwise inequality constraints
able so as to avoid the frequent adding and dropping the active< » < ho. The SQP method [11] uses the following itera-
constraints during the solution process. Thus, the choice of fins to solve the above OPF problem:
value of Cy in Algorithm | will depend on the value of'(G)
and the system’s statistics. In general, the value range, o$ 2(k + 1) =z(k) + a(k)Azn(k)

taken to be (15, 40). 2(k 4+ 1) =z(k) + a(k)Az(k) (19)

wherea(k) is a step-size [11], andNz(k), Az(k)) is the solu-

IV. METHOD FOROPF RROBLEM WITH LARGE tion of the following QP subproblem:

THERMAL-LIMIT CONSTRAINTS

Using notations given in [11], we can state the OPF problem min FEE) | n leTHAH}nAZTAZ
with large number of thermal-limit constraints as follows: Ardz 0w 2 2
glz(k)) + WAQZ =0
inF’
minF(z) ho(k) + Oholk) 5, 4 Pholk) \ f—2(k)— Az =0
g(z) =0 ge of _
h<h(e,f)<h ohalh) Ji S;}(Lk()k—)i- Az <hg
V ; < by —— Ag; S Af; <h;
u<u<u (17) i=1,2,...,n
vk . OVk) .
< A Af <
V<SV(Ek)+ 9c e+ af f £V

where the vector = (u, ¢, f) represents all variables, in which

the vecton: represents control variables suchfas Q¢, trans-

former tap ratio, etc.y(x) = 0 denotes the real and reactive ] .

power flow balance equations at all but slack buses)d f are N Which hi(k) denotesh;(e; (k). fi(k)), and the diagonal ma-

real and imaginary parts of the bus complex voltage: the vectgX H is defined by

function i(e, f) denotes the transmission line real power flow )

functions, the vectors and’ denote the lower and upper limit H = diag [3 F(x(k))} PN (21)

of real power line flows, respectively, that is, the thermal-limit; dx? 2

V andV are lower and upper limit of bus voltage magnitudes,

andy anda are lower and upper limits of control variables. WhereI is an identity matrix, and, is a small positive real
We will first apply Algorithm | described in Section Il to de- humber but enough to maké positive definite.

compose the coupling thermal-limit constraiits< A(e, f) < Remark 6:1n most of the OPF problems such as eco-

h.We leth, < hi(er, f1) < hi,hy < ha(ea, f2) < ha nomic dispatch or minimum system-losses probletpgan be
. &1 = ’ = PR ’ = )T .

andh, < hn(e., f.) < h, denote then disjoint subsets predetermined.

of thermal-limit constraints resulted from Algorithm |, and let
ho < ho(e, f) < ho denote the set of thermal-limit constraints
that will be converted to equality constraints and branchwise mQX(/’()‘) (22)

u < ul(k)+ Au <% (20)

The dual problem of the above QP subproblem is
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where the dual function The gradient ofs(A(%)) is
o) = min OEEE) o LT A, 0T _ (960®) 3" o
(Az,Az)cT Oz 2 a\ arg T 9N,
1 dg(x(k))
+—A,TA,+AT[ k) + ———A
2177 27T 9(@(k)) Oz v and can be computed by
Iho(k) dho(k)
+ A\ [h k) + Ae+ Af
o [P+ 5 o1 OO _ iy 800 g
—z(k) — Az] (23) 0Ny dz
AT (\(t Aho(k
| o | 00O gy = 2y + L0
and the constraints of the primal variables in the dual function, OAn, de
Oholk) 7 _ Az, (30)
dhi(k) oh;(k) af
=< (Az,Az) | h; < h(k)+ 5 Ae;+ aF, Afi < h;
Ci 7
i=1,... 0k, < 2(k)+ Az < hy where(_Afc, A?) _negde_d in (29) and (30) is the solution of the
av (k) av (k) - constrained minimization problem on the RHS of (23) and, ac-
V<V + 50 Ae + af Af<V cording to the DT method [11], can be obtained from solving

the following projection problem:
u < u(k) +Au < u}. g prol P

.  min (Az—ADT(Az— AZ) + (Az — AT (Az — AZ)
The DT method solves the above dual problem using the itefa=.2=)el

: 31)
¢ (
ons where(Az, Az) computed by
A(t+1) = A(t) + B(AXD) (24)
Az = (32)
wheret is the iteration indexg(¢) is a positive step-size, and o
AX(t) = (AN (), AXn, (t)) is obtained from solving Ad — — H-L {8FT(x(k)) N 8gT(a:(k)))\g
oz oz
9%¢" (A1) 99T (M) Ohg (k) }
= Ao 33
Tz AX(t) + B\ 0 (25) 9z (33)

in which the Hessian of“(A(t)) and the gradient op(A(¢)) is the solution of the unconstrained dual functipt(A())
can be computed as described in the following. shown in (26). Furthermoré; can be expressed as
The ¢*(A(t)) is the unconstrained dual function defined as

r=Tr,uULT,;) (34)

#"(A()) = min 2R

1 1
+ §Aa:THAa: + 577A2TA2

Az
wherel', = {Az | h, < 2(k) + Az(k) < h,} and

_ ‘ ‘ Ohi(k) Ohi(k)
+ AT {g(g;(k))erm} Fm;—{Aa:zlhiShz(k)Jr—aei Aei+ S k) At < By
' : OVi(k) . OVi(k) . _ o
+ %, [ho(k)—z(k)—i—ahg(k)Ae Vi SVilk) + =5 0 + = A S Vi
Aho(k ‘ w; (k) + Auy <4y ,i=1,...,n
+ 301(0 )Af—Az} (26)

Sincel', andl',,,i = 1,...,n, aren + 1 disjoint subsets, the

projection problem (31) can be decomposed into the following
which is the dual function in (23) but relaxing the constraints op 1 projection subproblems:

primal variables, and the Hessiangif(A(¢)) can be computed

by . T -
AI?éI%;(AZ — A2 (Az — AZ) (35)
*¢"(A(1) _
e and
5g($(k))H—1 59T(l‘(k)) 39(g(k))H 13hoT(k)
aig(k) 1 agT(g)r<k)) a0 1 20F <k> Y @7 min (Awi— AR (A = Az)i=1.n (36)
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whereA> and(Az;, A#s,..., A%,)= Az aregivenin (32) thermal-limit constraints for the IEEE 244-bus system, and
and (33), respectively. The projection subproblemin (35) can thee corresponding transmission lines of these four cases are
easily solved by the following analytical formula: a) 38-40, 38-110, 54-110, 40-42, 42-80, 80-34, 34-82,
82-72, 72-84, 84-23, 23-21, 21-22, 22-15, 15-14, 14-12,
hoj — 25(K)s i 25 (k) + A > oy 12-4, 4-1, 1-10, 10-7, 7-175, 175-226, 226-211, 211-177,
Az =23 by —2(k), if (k) + A% <h,, (37) 177-219, 219-203, 203-202, 202-235, 235-237, 237-238 and

Az, otherwise. 238-201, b) 54-110, 54-63, 63-110, 38-110, 38-40, 40-42,

42-80, 80-34, 34-82, 82-72, 72-84, 84-80, 80-67, 67-83,

L . 83-20, 20-22, 22-15, 15-14, 14-12, 10-7, 7-175, 175-226,
On the other hand, each projection subproblem in (36) has 6-211, 211-177, 177-219, 219-203, 203202, 203—235,

gctl;t/.thelﬁa;rr]]e form at;c, thelprcgebctl?r? subtprobletm ;:or;adegeﬁ%_zss’ 235-237 and 237-238, ¢) 12-17, 17-14, 14-118,
ection 1, thus can be solved by Ihe active-set Sategy bay g 143, 12-4, 4-1, 1-10, 10-11, 11-144, 144-163, 163-149,

DT method. . . 49-164, 164-143, 10-7, 7-175, 175-226, 226-218, 218-210,
Now we are ready to state our algorithm for solving OPE, 5 195" 195997 227_212 212-26. 26-215 215-217

proi)l7ems \;whh large number of thermal-limit constraints stat 7-205. 205-204, 204201, 201109, 109-197, 197-211 and
in (17) as follows. 211-226 d) 54-63, 63110, 54-40, 38110 ,38-82, 82—42,

Algorithm [il: 42-80, 80-34, 34-82, 82-72, 72-74, 7486, 86-84, 7284,
84-63, 63-21, 21-22, 22-15, 15-14, 14-12, 12-4, 4-1, 1-10,
Step 0: Perform Algorithm | on h < hef) < hof 10-7,7-175,175-226,226-211, 211-196, 196-197, 211-197,
the OPF problem (17) to formulate the OPF problem 197-219, 219-203, 203-235, 235237, 237-202 and 202-235.
(18) . Applying Algorithm I, which is Step 0 of Algorithm IIl, to the
Step 1: Initially guess x(0) and set k=0. above four cases of thermal-limit constraints, we found that the
Step 2: Initially guess A(0) and set t=0. thermal-limit constraints of a), b), ¢), and d) cases belong to a),
Step 3: Use (37) to solve (35) for AZ and use Algo- b), c), and d) categories considered in Section Il, respectively.
rithm 1l to solve (36) for Ady;, i=1,...,n The removed transmission lines determined by Algorithm | are
Step 4: Compute  94(A(t))/0A by (29) and (30) ; compute 12—4 for case a), 22-15 for case b), 17-175 and 201-109 for
920" (A(1))/0N* by (27) . case c), and 15-14 for case d). For the transmission lines of
Step 5: Solve  (25) to obtain  AA(?). each of the a), b), ¢), and d) cases, we assume four sets of
Step 6: If  |JAX(#)|l-c < €, go to Step 7; otherwise, up- thermal-limit values to account for different number of active
date A(t41) = A(t) + 3(t)AN(t), set t =t+1 and return thermal-limit constraints. Now, we have formed 32 OPF prob-
to Step 3. lems of the form (18) on the IEEE 244-bus system, and each
Step 7: If  ||[(A%,A%)]le < &, stop and  z(k) is the solu- OPF problem is resulted from a combination of the two ob-
tion; otherwise go to Step 8. jective function criteria, four cases of thermal-limit constraints
Step 8: Update  x(k+1) =a(k)+a(k)Az and z(k+1)=z(k)+ and four different number of active thermal-limit constraints.
a(k)Az, set k=k+1 and retun to Step 2. We then apply the rest of the steps of Algorithm Il to these

32 OPF problems in a Sparc 20 machine. The corresponding
PU times are shown in Tables I-VIIl. Each table consists of
ur OPFs corresponding to four cases of thermal-limit con-
raints with a given criteria and a given percentage of active
ermal-limit constraints. For the purpose of comparison, we
also solve the same OPF problems with the same setup by the
SQP method associated with DT method using pure conversion
technique in the same Sparc 20 machine. This method is given
We have applied Algorithm Ill on numerous OPF problemim [11] and is abbreviated as SQPDTCON in the sequel. The
with large number of thermal-limit constraints of the IEEHinal objective values obtained by SQPDTCON method are the
118-bus system and the IEEE 244-bus system. Due to the pagme as the values obtained by Algorithm Ill, and the corre-
limitation of the paper, we present the simulation results gponding CPU times consumption for each OPF are also re-
the IEEE 244-bus system only while the results of the IEERorted in Tables I-VIII. The test results shown in Table | and
118-bus system can be found in [15]. Table V correspond to the case that no thermal-limit constraints
We set the following parametery = 4, Ty = 10, Cy = 20 s active, thus the resulting CPU times of Algorithm IIl are the
in Algorithm 1, 6, = 0.01, ¢ = 102 in Algorithm II, and least compared with the other cases of same criteria but with
6, = 0.01, e = 1072 in Algorithm Ill. The objective functions active thermal limit constraints. Similar results also hold for
for all the tested OPF problems are of minimum system losstie SQPDTCON method. Tables II-1V report the CPU times
criteria as),  I4,;, where P, denotes the real power lossconsumed by the Algorithm 1ll and SQPDTCON method for
of transmission linet;;, and total generation cost criteria aghe cases of the OPF problems of minimum system-losses cri-
2. aiPéi + biPéi + ¢; where P, denotes the real power teria but with approximately 7%, 13%, and 20% active thermal-
generation of bug and a;, b;, and¢; are the coefficients of limit constraints. As we can see from the fifth column of these
the cost curve ofP;,. We consider four different cases ofthree tables that the speed-up ratio of Algorithm Ill over the

Remark 7: For the issues of discrete control variables an
problem of infeasibility, we follow the same treatments as tha
of [11], although in current algorithm, we do not express thefﬂ
explicitly.

V. TESTRESULTS
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TABLE | TABLE V
COMPARISON OF THEALGORITHM Il AND THE SQPDTCON M:THOD ONOPF  COMPARISON OF THEALGORITHM Il AND THE SQPDTCON MeTHOD ONOPF
PROBLEMS OF THEIEEE 244-BJS SYSTEMSWITH MINIMUM SYSTEM-LOSSES ~ PROBLEMS OF THEIEEE 244-BJs SYSTEMSWITH TOTAL GENERATION COST

CRITERIA AND NO ACTIVE THERMAL-LIMIT CONSTRAINT CRITERIA AND NO ACTIVE THERMAL-LIMIT CONSTRAINT
Algorithm| SQPDT- Algorithm| SQPDT-
Methods | 1, CON SQPDT| Speed- | CPU Methods| 18 et SQPDT| gpeed- | CPU
CPU CPU CPU up ratio} times in- ; CPU PO PO up ratio| times in-
Cases | times times times ?)) cx"eas?c? Cases | times times times i) ~ creased
(sec) | (sec) | (sec) B (sec) | (sec) | (sec) | © B (is)
() (i) (i) (i) (i1) (iii)
(a) 0.650 1.317 203 | 744% {a) 0.674 1417 2.10 | 10:13%
(b) 0.671 1414 0.605 211 [10.91% (b) 0.678 1.518 0.612 224 | 10.78%
{c) 0.712 1.687 237 | 17.69% ) 0.710 | 1.548 ’ 218 | 16.01%
(d) 0.673 1.489 2.21 11.24% ) 0.690 1.593 231 12.75%
TABLE 1
COMPARISON OF THEALGORITHM Il AND THE SQPDTCON M:THOD ON OPF TABLE VI
PROBLEMS OF THEIEEE 244-BJs SYSTEMS WITH MINIMUM SYSTEM-Losses  COMPARISON OF THEALGORITHM Il AND THE SQPDTCON M:eTHOD ONOPF
CRITERIA AND 7% ACTIVE THERMAL-LIMIT CONSTRAINTS PROBLEMS OF THEIEEE 244-BJS SYSTEMS WITH TOTAL GENERATION COST

CRITERIA AND 7% ACTIVE THERMAL-LIMIT CONSTRAINTS

Algorithm| SQPDT-
Methods m CON SQPDT Speed- | CPU ) Methods| Algorithm| SQPDT- | ¢ QPDT
TPU CPU Py up ratio| times in- m CON Speed- | CPU
. times times times (i creased CPU CPU CPU up ratio|{ times in-
Cases | sec.) {sec.) (sec.) ¢ (D) Cases | titmes times times (';.") creased
() (i) (iif) (sec.) (sec.) (sec.) S:(L;(Z)_tzz
() 0.695 1.408 2.03 | 14.88% (i) (i) (i)
{b) 0.716 1504 0.605 710 | 18.18% (a) 0.719 1.508 200 [ 1748%
©) 0.757 1.780 ) 2.35 | 95.0%% (b) 0.723 1.607 0.612 222 | 18.14%
()] 0.717 1578 220 | 18.51% {c) 0.754 1.640 ’ 2.12 | 23.00%
{d) 0.737 1.684 2.28 20.42%
TABLE I
COMPARISON OF THEALGORITHM Il AND THE SQPDTCON M:THOD ON OPF TABLE VII
PROBLEMS OF THEIEEE 244-BJS SYSTEMS WITH MINIMUM SYSTEM-LOSSES ~ COMPARISON OF THEALGORITHM IIl AND THE SQPDTCON METHOD ON OPF
CRITERIA AND 13% ACTIVE THERMAL-LIMIT CONSTRAINTS PROBLEMS OF THEIEEE 244-BJs SYSTEMS WITH TOTAL GENERATION COST
. CRITERIA AND 13% ACTIVE THERMAL-LIMIT CONSTRAINTS
Methods ﬁ}gonthm '(S:%I;DT- SQPDT| gpeed- | CPU Aleoriih
CP0 reidi] CPU up ratio| times in- Methods IHgDnt m g%I;DT- SQPDT Speed- | CPU
Cases | times ~| times times 5(%) C:ef“(‘fg TPU OPU B0 up ratio| times in-
(sec.) (sec.) (sec.) %rl Cases | times times times | (4 creased
(i) (i) (i) (sec.) (sec.) (sec.) © L’)T'i‘—"l
(a) 0.741 1.408 3.02 | 22.45% M (ii) (iii) #1)
(b) 0.760 1.595 0.605 210 | 25.61% (a) 0761 | 1.507 300 | 24.35%
{c) 0.803 1.871 233 | 32.72% (b) 0.768 1.609 221 | 25.49%
8% 0.612 - d
{d) 0.764 1.670 219 | 26.28% ©) 0.798 1.732 2.17 | 30.39%
(d) 0.781 1.775 2.27 27.61%
TABLE IV
COMPARISON OF THEALGORITHM Il AND THE SQPDTCON M:THOD ONOPF TABLE VIII

PROBLEMS OF THEIEEE 244-BJS SYSTEMSWITH MINIMUM SYSTEM-LOSSES

CRITERIA AND 20% ACTIVE THERMAL-LIMIT CONSTRAINTS COMPARISON OF THEALGORITHM Il AND THE SQPDTCON MeTHOD ON OPF

PROBLEMS OF THEIEEE 244-BJS SYSTEMS WITH TOTAL GENERATION COST
CRITERIA AND 20% ACTIVE THERMAL-LIMIT CONSTRAINTS

Methods| Algorithm| SQPDT- 1 gopng X :
101 CON Speed- | CPU Algorithm| SQPDT-
CPU CPU CPU ] up ratio| times in- Methods| |- CON SQPDT| gpeed- | CPU
Cases | times times times | Ui creased CPU CPU CPU | up ratio| times in-
. o {8~ (i#d) i
(?e‘“) ('iec.) (?fc~) G Cases | times times times %‘—)) Cfeas?_‘%
Ta) 02) 786 gnggo G 702 | 2991% gs)ec ) gsic') Ese;) ()(:—*(:)ul
. . . 1% i i iii
{b) 0.806 1.688 0.605 2.09 33.22% {a) 0.806 1.688 3.00 39.70%
{c) 0.845 1.963 232 | 39.67% () 0.811 1.788 0.612 220 | 32.52%
[C)) 0.809 1.761 218 | 33.72% (© 0.844 1.823 ) 2.16 | 37.91%
) 0.827 | 1.866 2.26 | 35.13%

SQPDTCON method is about 2. This indicates the improve-

ment of the current method on the SQPDTCON method is mdiees are almost the same. However, the CPU times consumed by
than 100%. The reason that the CPU time of Algorithm Il andlgorithm Il increase when there are more active thermal-limit
its speed-up ratio over the SQPDTCON method are approgbnstraints present, which are as we expected and can be ob-
mately the same for the four cases of thermal-limit constrairgerved from Tables I-IV. Similar results can also be observed
in a table is because the disjoint subgraphs have approximatetym Tables V-VIII for the OPF problems with total generation
the same capacities and the number of removed transmissiost criteria.
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To investigate the efficiency of the two new techniques for [2] B. Stott and J. L. Marinho, “Linear programming for power-system

handling the large number of thermal-limit constraints, we network security applications|EEE Trans. Power Apparat. Systol.
| | h OPF bl b ith ideri PAS-98, pp. 837-848, May 1979.
also solve the same problem but without considering 3] B. Scott, O. Alsac, and A. Monticelli, “Security analysis and optimiza-

any thermal-limit constraint using the SQP method associate tion,” Proc. IEEE, vol. 75, no. 12, pp. 1623-1664, Dec. 1987.

with the DT method. We abbreviate this method as SQPDTH] T C. Giras and 8. 1 Talukdar Quasi Newton method for opimal
method which in fact is the SQPDTCON method without using ggwelrggfs’ Int. J. Elect. Power Energy Systol. 3, no. 2, pp. 59-64,

conversion technique, because no thermal-limit constraint ig5] S. N. Talukdar and T. C. Giars, “A fast and robust variable metric

considered. Thus, the SQPDT method solves onIy two OPF  method for optimum power flowsfEEE Trans. Power Apparat. Syst.
bl f h criteria. F . f | vol. PAS-101, pp. 415420, Feb. 1982.
problems, one for each criteria. For easier reference, we als R. C. Burchett, H. H. Happ, and D. R. Vierath, “Quadratically con-

show the CPU times consumption of the SQPDT method in  vergent optimal power flow,IEEE Trans. Power Apparat. Systiol.

tables with the same objective function. We also report the _ PAS-103, pp. 3267-3275, Nov. 1985. . -
. d CPU times of Algorithm Ill compared with the [7] D.I.Sun, B. Ashley, B. Brewer, A. Hughes, and W. F. Tinney, “Optimal
Increase g p power flow by Newton approach/EEE Trans. Power Apparat. Syst.

SQPDT method in each table, and they are mostly around 10%  vol. PAS-103, pp. 2864—2880, Oct. 1984.
when no thermal-limit constraint is active and less than 40%!8] D.!.Sun, T. 1. Hu, G. S. Lin, C. J. Lin, and C. M. Chen, "Experiences

. . . with implementing optimal power flow for reactive scheduling in the
when there are 20% active thermal-limit constraints. These Taiwan?)owersys%en?]EEE %ans. Power Systol. 3, pp. 1193_%120

results indicate that the two new techniques are very efficient  Aug. 1988.

in handling the large number of thermal-limit constraints. [9] A. Monticelliand W. E. Liu, "Adaptive movement penalty method for
Remark 8: Unfortunatelv. we do not have anv software the Newton optimal power flow,JEEE Trans. Power Systvol. 7, pp.
: y: y 334-340, Feb. 1992.

implemented by the interior point method at hand to compargio] Y.C.Wu, A. S. Debs, and R. E. Marsten, “A direct nonlinear predictor-
with. However. in [11] we did compare the SQPDTCON corrector primal-dual interior point algorithm for optimal power flows,”

. . . . IEEE Trans. Power Systvol. 9, pp. 876-883, May 1994.
method with IMSL subroutine and achieve a speed-up ratio 0{11] C. -H. Lin and S. -Y. Lin, “A new dual-type method used in solving

30 on a modified 57-bus system. optimal power flow problems,TEEE Trans. Power Systvol. 12, pp.
1667-1675, Nov. 1997.
[12] A. S. DebsModern Power Systems Control and OperatioiBoston,
VI. CONCLUSION MA: Kluwer, 1988.

. . . [13] R. Gould, Graph Theory Menlo Park, CA: Benjamin/Cummings,
In this paper, we have proposed two new techniques to im- ~ 19gg.

prove the previously developed DT method [11] used in solving14] D. Lueggergemintelar anSBNonlinear Programmingnd ed. Reading,
; _limi ; MA: Addison-Wesley, 1984.

OPF problems with Ia_lrge nhumber of thermal-limit Cons_tramts.'ng] C. H. Lin, “A new dual-type method for optimal power flow problems,”
These two new techniques can decompose the large-dimension” kao yuan Institute of Technology, Dept. Elect. Eng., Kaoshiung,
projection problem into independent medium-dimension  Taiwan, R.O.C., TR-2001, 2001.
projection subproblems and solve the medium-dimensioft®l S: Y. Lin and C. H. Lin, “A computational efficient method for non-

. - . . linear mutlticommodity network flow problemsNetworksvol. 29, pp.
projection subproblems very efficiently; their computational 225-244, July 1997.
efficiency and effective improvement on the DT method have

been demonstrated by the results of our tests on numerous OPF

problems. S . . . -
. Ch'i-Hsin Lin is currently an Assistant Professor in the Electronics Engineering
The DT method [11] is not only developed for the OPF prorbepartment at KaoYuan Institute of Technology, Kaoshiung, Taiwan, R.O.C.

lems, it can also apply to the nonlinear multicommodity net-
work flow problems [16]. Therefore, the two new techniques

proposed in this paper possess the potential to generalize the o _ _
DT method in [11] and [16] to solve general larae network o §h|n-Yeu Lin is currently a Professor in the Department of Electrical and Con-
g g Rrol Engineering at National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

timization problems.
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