N,

Information
?ﬁ% Processing
Letters

ELSEVIER Information Processing Letters 82 (2002) 73-81 —_—,
www.elsevier.com/locate/ipl

Parallel distance transforms on a linear array architecture

Tsorng-Lin Chig**, Kuang-Bor Wang, Zen Cherf, Der-Chyuan Lo®

@ Department of | nformation Management, Ming Chuan University, Taoyuan, Taiwan
b Department of Electrical Engineering, Chung Cheng Institute of Technology, Taoyuan, Taiwan
¢ Ingtitute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan

Received 30 November 2000; received in revised form 15 June 2001
Communicated by F.Y.L. Chin

Abstract

Distance transformation (DT) has been widely used for image matching and shape analysis. In this paper, a parallel algorithm
for computing distance transformation is presented. First, itis shown that the algorithm has an execution irmedodyles,
foranN x N image using a parallel architecture that requi®¥g2] parallel processors. By doing so, the real time requirement
is fulfilled and its execution time is independent of the image contents. In addition, a partition method is developed to process
an image when the parallel architecture has a fixed number of processing elements (PEs); say two or more. The total executior
time for anN x N image by employing a fixed number of PEs iaNfVM + 2(M — 1)], when M is the fixed nhumber of PEs.
0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction value is equal to the distance from it to the nearest
background pixel.

The distance transformation (DT) is very useful in  1here are three major types of distance trans-
many applications such as thinning [1], medial axis formation functlor_1$: octagonal [8], weighted (cham-
transformation [2], convex hull extraction [3], robot f€") [9], and Euclidean [10]. In general, they cannot
path finding [4], skeletonization [5], Voronoi diagram be computed using similar algorithms. 'I_'he Euc_hdean
extraction [3], planar tessellation [3], robot aerial im- DT generates com.plete error—free Eu_clldean 'd|stance
age registration [4], and pattern matching [6,7]. DT is maps. But, computmg the Egclldean dlstan.ce is essen-
defined by a local operation based on a central pixel t|a!ly a global operatlon thatis very expensive and un-
and the pixels in its neighborhood. The local opera- suitable for \./LSI implement. He.”ce' Itis c_mly neces-
tions are iterated until the distance values converge. sary to COﬂS.IdEI’.the local opergUon aqd glve areason-
Thus the operation produces a distance map for a givenable approxmaﬂqn to the Euclidean d|stqnce.
binary image containing object pixels and background .\ @PProximation method for computing the DT

ixels. For each object pixel in the image, its distance in only two passes over the image is the chamfer
P ' Jectp ge distance transformation. It has better accuracy than

the others [9]. In this paper, we will propose a two-
* Corresponding author. pass algorithm and design a hardware architecture for
E-mail address: tichia@mcu.edu.tw (T.-L. Chia). chamfer DT.
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Table 1
Comparison among several chamfer distance transformation algorithms
Methods Author Computation flow #PEs Time complexity Sequential or parallel Processing time
Type 1 Rosenfeld [11] 2-pass raster scan 1 (N® Sequential Independent
Verwer [12] Bucket sort 1 Qv 2) Sequential Independent
Rosenfeld [13] 2-pass raster scan 1 (NB3) Sequential Independent
Type 2 Borgefors [14] Pyramid N2 O(N) Parallel Dependent
Piper [15] MPP N2 Iterate until no change Parallel Dependent
Paglieroni [16] Row scan & col. scan N2 O(N) Parallel Dependent
Type 3 Shih [17] 2-pass raster scan  [N/2] O(12N — 4) Parallel Independent
Chen [18] 4-pass raster scan N O(5N) Parallel Independent
Our method 2-pass raster scan [N/2] O(6N —4) Parallel Independent
Time
Complexity
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Fig. 1. The computational complexity diagram of the several chamfer DT algorithms.

As for chamfer DT computation, three major types From the viewpoint of real-time application, most
of approach are available, refer to Table 1 and Fig. 1. of the existing sequential algorithms for computing
Type 1 [11-13] is the sequential propagation algo- the distance transformations do not meet the real-time
rithm. Although the sequential algorithm is more suit- réquirement. Hence, the use of a parallel algorithm
able for VLSI implementation than the parallel al- S indispensable. Although adopting the algorithm
gorithm, the total execution time is (@2) for an ?_f ma}sswelz\lly paralltel trﬁethod,_whosetto]:[al exelctl_Jtlon
N x N image which does not meet the requirements Ime is Q(N), meets the requirements for real-time

for real-time applications. The processing time of the applications. But the massively parallel algorithm
PP ' P 9 needs @QN?) processor elements, which is unsuitable

above methods is in-dependent on the image con-¢,. v/ 5| implementation, and the execution time is
tents. Type 2 [14-16] is the massively parallel method, gependent on the image contents. This is a serious
which can be extremely efficient if enough processor gisadvantage for the real applications.

elements (PEs) are available. The time complexity can  The third one, Type 3 method, is the systolic array
be reduced to QV). However, this method is depen- method. To make the linear array suitable for VLSI
dent on the image contents. implementation, the number of PEs must not be too
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large. This means that the number of PEs, denoted
as M, must be fixed and is usually smaller than the
image sizeV x N (N > 512) in practical applications.
The minimum number of PEs is 2, and the reasonable
number must be suitable for VLSI implementation.
So that we have: £ M < N. This method is also
independent of the image contents. Recently, Shih,
King and Pu [17] developed a systolic array using
the sequential two-pass raster scan algorithm [13]. In
their design, the total execution time for two scans
of the whole image is 1¥ — 4 cycles. Chen and
Yang [18] introduced a systolic array using the four-
pass algorithm. The total execution time & fising

N processing elements. If the image is divided into
m? subimages, whose sizes dé/m) x (N/m), the
total number of clock cycles required increases to
4nN + N/m.

In this paper, a parallel algorithm for computing
distance transformation is presented. First, it will be
shown that the algorithm has an execution time of
6N — 4 cycles foranvV x N image using a architecture
containing[ N /2] parallel processors. In addition, the
algorithm developed can work with various existing
chamfer distance functions and its execution time is
independent of the image contents; thus it is quite
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Fig. 2. The adjacent pixels of pixét (i, j): (a) in the forward pass,
and (b) in the backward pass.

(a)

PG—-1,j), P6—1,j+1),andP(,j — 1) (refer
to Fig. 2). Similarly, the temporary distance value
d2(P(i, j)) is computed based oR (i, j) and P(i,
j+1D,PG+1,j—1),P3i+1,j),andP(i+1, j+1)
during the second row-by-row scan (from right to left
and bottom to top). The final distance valuery, ;)
in the distance map is given by a minimum operation:

d(P(i, j)) =Min(di(PG, j)), d2(P, j)))-

Based on the above concept, we shall propose
a parallel distance transformation algorithm. In this
algorithm, we use one processing element (PE) to
do the pipeline operations on the pixels in each row.
Thus, the required number of PEs M. Later on,

we shall propose a partition method using a fixed
number of PEs that can be 2 or more. The algorithm

flexible. Second, we shall propose a partition method is divided into two passes: forward and backward.
to process an image when the parallel architecture hasin the forward pass all image rows are scanned and
a fixed number of PEs. The total execution time is processed in parallel with each row in an assigned PE.
better than given in [18] with the same number of PEs. Each row is scanned from left to right. However, the
The organization of the paper is as follows: In Sec- distance values of the preceding neighboring pixels
tion 2, a parallel distance transformation algorithm in the row must be ready for use by the current
based on two scanning passes is presented. The correpixel. Also, the input data flow of the preceding
sponding linear array architecture is proposed and therow must be two cycles ahead of the current row.
time complexity of the approach is analyzed in Sec- In this scanning fashion, théi(P(i, j)) value for
tion 3. In Section 4, a partition method is introduced pixel P(i, j) is computed inPE; after it receives
to process a large size image when the architectured1(P(i —1, j — 1)),d1(P(i — 1, j)), andd1(P (i — 1,
has a fixed number of PEs. Section 5 gives the con- j + 1)) computed irPE;_1 during the last three cycles
clusions. anddi(P(i, j — 1)) computed inPE; during the last
cycle. Similarly, in the backward pas&(P(, j))
is computed inPEy_;_1. Right afterd>(P(i, j)) is
obtained, d(P(i, j)) is computed inPExy_;—_1. In
Fig. 3, the time-space diagram for ax44 image is
Traditionally, the distance transformation can be shown. The forward pass is executed at time instants 0
completed in two scans of the image [13]. In the first to 9; the backward pass is executed at time instants
row-by-row scan (from left to right and top to bottom) 10 to 19. Thus, the distance values of the required
of the N x N image, the temporary distance value adjacent pixels are always ready before computing the
di1(P(i, j)) for pixel P(i, j) is computed based on distance value of the current pixel. The algorithm is
P(i, j) and the four adjacent pixeB(i — 1, j — 1), given below.

2. Basicideasand the parallel algorithm
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Distance Transformation algorithm
Input: An N x N binary image{P (i, j)}.
/P(i, j) =1is a background pixel and
P(i, j) =0is an object pixef
Output: An N x N distance ma = {d(P(i, j))}.
Procedure:
fori=-1,0,1,...,N, j=-1,0,1,....N
/ Initialization /
if i=-1orj=—-lori=Norj=N)
thend(P(i, j)) = oo (alarge number)
elseif P(i, j) =1
thend(P(i, j)) =0
elsed(P(i, j)) = oo (alarge number)
forall PE;, i =0,1,...,N—-1, j=0,1,...,. N -1
begin
Step 1: forward pass
D = Min(d(P(i —-1,j—1) +dno,
d(P(i—1,)))+dn,
d(P(i—1,j+1) +dn2,
d(P(i, j — 1)) + dn3).
d(P(, j)) =Min(TD, d(P(, j))).
outputd(P(i, j)) to PE;41.
/ Wait until the forward pass of the(N —1, N — 1)
finishes/
Step 2: backward pass
D = Min(d(P(N —1i,j+ 1) +dno,
d(P(N —i,J)) +dn1,
d(P(N —i,j—1) +dn2,
d(P(N—i—1,j+1)+du3),
d(P(N —i—1,))=Min(TD,d(P(N —i —1, j))),
outputd(P(N —i — 1, j)) to PE; ;1.
end

The neighborhood distancdg;, k =0, 1, 2, 3, are
defined according to the selected distance function
as shown in Fig. 4. For example, in the city block
function, the values of the neighborhood distances
dno, dn1, dy2, dy3 are 2, 1, 2, and 1, respectively; in

o|j112]|3
415|6|7
8119|1011
12|13|14|15
(a)
PE j#———— Forward Pass ————s<+———Backward Pass ———
PE; 12[13[14[15 3[2[1]o0
PE; 89|01 7|6|5]a
PE, 45|67 11]10] 9 |8
pE,Jof1]2]3 15[14[13]12
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ¢
(b)

Fig. 3. (a) A 4x 4 image. (b) The time-space diagram of the forward
and backward passes; 02, ..., 15 denote the pixel labels shown
in (a).

an dnl dn2
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. di di 2-3 di 3-4 di 5-7 di
nj
2 1 3 4 7
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d 1 1 2 3 5
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2 1 3 4 7
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d 1 1 2 3 5
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Fig. 4. (a) The notations of the neighboring distance constants.
(b) The values of the distance constants for the various distance
functions.

the chamfer 3—4 distance function, the values of the
neighborhood distanceko, d,1, dn2, d,3 are 4, 3, 4,
and 3, respectively.

' 3. Thelinear array architecture

For the above parallel distance transformation algo-
rithm, it can be implemented by a linear array archi-
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Fig. 5. The linear array architecture.
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Fig. 6. The organization of a PE.

tecture to meet the real-time requirement. First, the d1(P(i —1, j)), andd1(P(i —1, j + 1)) are calculated
linear array consisting ofV processing elements is and passed frorRE;_1 to PE; in the forward pass at

devised to process a binary image withx N pix- time instants — 3,7 — 2, andr — 1, respectively. The
els, as shown in Fig. 5. The PEs are indexed from distance value af1(P (i, j —1)) is obtained and stored
left to right, beginning withPEg. Initially, the im- in PE; attimer — 1. Similarly, PEy_;_1 receives the

age buffer of the host computer stores the input bi- distance values afz(P(i +1, j+1)),d2(P (@i +1, j)),
nary image. As the process goes on, the buffer storesd2(P(i + 1, j — 1)), and d2(P(i, j + 1)) before it
distance map od1(P(, j)). In general PE; receives ~ computesiz(P (i, j)) and, thend(P(i, j)) during the
data fromPE;_1 and computeg/1(P (i, j)) in row i backward pass.

in every cycle. Due to the fact that the data flow is

shifted one pixel per cycle and that the distance values 3.1. The processing element

of four adjacent pixels must be completed beforehand,

the input image in the image buffer is skewed so that Based on the parallel algorithm, the operations
the clock cycle ofPE; lags behind that oPE;_1 by performed inPE; include:

two cycles. This is achieved by inputting the data in (1) Comparing the distance values of four adjacent
eachrow(=0,1,2,..., N — 1) through a delay line pixels in the forward or backward pass.

with a length of 2x i. Hence, for the pixelP (i, j) (2) Outputting the distance value #f(, j) to PE; 1

at timet, the distance values afi(P(i — 1, j — 1)), and image buffer.
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Fig. 7. The structure of a CAU unit.

After taking all the necessary operations into con- comparator is used in CAU, as shown in Fig. 7. The
sideration, the structure d?E;, shown in Fig. 6, is comparator determines the minimum of the distance
proposed. Two input ports are required to receive the values at the four adjacent pixels that depend on the
distance values frorPE;_; and the image buffer of  distance function chosen, and the current distance
the host computer. Since the initial valuefP (i, j)) value d(P(i, j)). The output of the comparator is
in the image buffer is decided by the binary value of defined as the distance valdéP (i, j)) which is also
P(i, j) in the initialization phase, the input data of passed td°E; ;.
port 1 is connected to the image buffer in the forward  The various distance functions can be selected by

pass. The output value @k (P (i, j)) from PE; will control signals. The distance values at adjacent pixels
be sent back to image buffer. In the backward pass, are stored in a look-up table, and are sent to the
the input data oPE; needsi/1(P(N —i — 1, j)), thus inputs of four adders. For example, in the chamfer 3—-4

the input data of port 1 is also connected to the image distance function, the distance valuePai — 1, j — 1),
buffer. For computing the distance valdéP (i, j)) Pi-1j),PG—-1,j+D,andP(i,j—1) are 4, 3,
the data path frorRE; _; is also needed so thatthe dis- 4, 3, respectively. So the input operand for adder are 4
tance values of three adjacent pixels in row 1 are for Adder A, 3 for B, 4 for C, and 3 for D.

obtained in sequence through port 2. These input dis-  Using the space-time diagram of the input image,
tance values are input with two delay units. As aresult, the time complexity of the algorithm can be easily
the needed input data from raw- 1 are ready before  analyzed. If the input data rate is one pixel per cycle,
starting calculating the distance value &fP (i, j)) the distance map will be obtained for either pass in
in the comparator and arithmetic unit (CAU). On the 3N — 2 cycles where

other hand, a feedback loop is connected from the out-

put of CAU through a delay unit to the input of CAU. 3N — 2 = (the length of the first row)

The path provides the distance valueidP (i, j — 1))
to CAU. Finally, the output is sent tBE; 11 and the
image buffer.

x (the execution cycle per pixel)
+ (the skewed delay per row)

x (the row number of image 1)
3.2. The CAU — Nx1+2x(N-1.

To find the minimum value of the four adjacent Hence the total execution time for both forward and
distance values and the value &fP (i, j)) itself, a backward passed isN6— 4 cycles, so it is of order
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Fig. 8. The linear array architecture for executing the partitioned

image. . S, i
PE, 4 i N-M
PE, !
O(N). Hence it meets the requirements for real-time ND M M N2 Time
applications. ’
(b)
P
4. The partitioning method PEw.
To make the linear array suitable for VLSI imple- : So S LR
mentation, the number of PEs must not be too large. :E TN—M(M)
This means that the number of PEs, denotedvias Time
. . . N-1 2N-1 (m-1)N-1 mN-1
must be fixed and is usually smaller than the image (c)

size N (N > 512 in practical applications. The mini-
mum number of PEs is 2, and the reasonable numberrig. 9. The time-space diagram of the distance computation by our
must be suitable for VLSI implementation. Whan> method for the cas®y > M: (a) an image is divided into subimages,
M, the same parallel architecture presented previously () the diagram fol/ < N < 2M, (c) the diagram fonv > 2M.
will be used, but some extra hardware is needed to han-
dle the image partition problem.

Assume an image whose size A x N, and a (1)Casel: M < N <2M.
linear array that hag/ PEs. LetN > M. In the first In this case, the elemerREy executes the first
place, the image must be divided into a number of row of the subimagess, but it must wait until the
subimagesn = [N/M] each withM or less rows. corresponding output result &1E),_1 belonging to
This row partitioning starts from top to bottom (refer subimageSo has arrived. Therefore, the subimage
to Fig. 9(a)), hence subimagg includes the part of ~ mustbe delayed® — N clock cycles before itis input
image fromrowM x jtorowM x (j +1) — 1, where to the port 1 ofPEp. The programming delay line will
j=0,1,...,IN/M]| —1 andS,,_1 includes the part  be set to zero. The time-space diagram is shown in
of image from rowM x (m — 1) torow N — 1. These Fig. 9(b) and the total execution time i63V — 2). For
subimages are executed in an increasing order of thecomparison, the time-space diagram for the two-pass
index j from 0 tom — 1. The parallel architecture  algorithm [17] is shown in Fig. 10(b), and the total
presented above will require an extra programmable execution time is AN 4+ 2(N — 1)]. Based on the
delay line between the data outputRE,,_; and the analysis mentioned above, we compute the distance
input port 2 ofPEg (refer to Fig. 8). map of the image of siz&/ x N using[N/2] PEs,

According to the values a¥ andM, we distinguish and total execution time is the same if we Ugd°Es.
the following cases for the execution model: In the caseV = 2M, its speed is respectively about 2
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PE, N-M(m-1) Fig. 11. The time-space diagram of the distance computation by the
PE, i four-pass algorithm [18] for the cage > M: (a) an image is divided
0 IN# AN+ Ame 1N+ ImN+1 e into subimages, (b) the diagram fasr> M.
(c)
250
Fig. 10. The time-space diagram of the distance computation by the
two-pass algorithm [17] for the cagé > M: (a) an image is divided 200 |, our method
into subimages, (b) the diagram fof < N < 2M, (c) the diagram \
for N > 2M. 1oL N four-Pass algorithm [18]
=z Cycles BN
(X10000) 3\ .
100 \‘ — — = two-Pass algorithm [17]
and 1.4 times faster than the two-pass and four-pass
algorithms using the same number of PEs. 0k
(2)Case2: N > 2M. 0
2 4 8 16 32 64 128 256 512 1024

Since the output results of the last row 6f
produced fromPE,;_1 are N — 2M clock cycles
ahead of the input data of the first row 8f,; to
PEy, the output ofPE;,_1 must be input through an
N — 2M delay line. Thus, the side effect betwegn
and S;41, can be reduced through the timing delay.
The time-space diagram for this case is shown in time-space diagram of the four-pass algorithm [18] is
Fig. 9(c) and the total execution time i§¥m +2[ N — given in Fig. 11(b), and the total execution time is
M (m — 1) — 1]}. The time-space diagram of the two- 4mN + N/m.
pass algorithm is given in Fig. 10(c) and the total Consider that an image has a size of 1624024
executiontime is @2m +4)N — (m —1)4M —2}. The and a linear array ha&® PEs withM < 1024. When

PEs

Fig. 12. Time comparison between two-pass algorithm, four-pass
algorithm and our method.
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we compare the two-pass algorithm, the four-pass transformation in robot state space, in: Proc. Internat. Conf. on
algorithm and our method, all using the same number Intelligent Autonomous Systems, 1986, pp. 634-671.

of PEs, the number of clock cycles required are [5] C. Wayne, B. Philip, Generation skeletons and centerlines
different. as shown in Fig 12. IV > 2M., our speed from the distance transform, CVGIP: Graphic Model and

. IV 2 ti f h h h hod Image Processing 54 (5) (1992) 420-437.
Is nearly 2 imes faster than the other two methoas. [6] H.C. Liu, M.D. Srinath, Partial shape classification using

contour matching in distance transformation, IEEE Trans.

Pattern Anal. Machine Intell. 12 (11) (1990) 1072-1079.

R.L. Brown, The fringe distance measure: An easily calculated

image distance measure with recognition results comparable

In this paper, a parallel algorithm and its hardware to Gaussian blurring, IEEE Trans. Syst. Man Cybern. 24 (1)
architecture for computing the distance transformation (1994) 117115, ) L
have been described. With our proposed architecture [8] P.P. Das, Best simple octagonal distances in digital geometry,
: prop ' J. Approximation Theory 68 (1992) 155-174.

the distance map of aV x N binary image can be [9] G. Borgefors, Distance transformations in digital images,

5. Conclusions [7

obtained within & — 4 cycles using an architecture Comput. Vision Graphics Image Process. 34 (1986) 344-371.
of [N /2] PEs. Other advantages of our architecture [10] I. Ragnemalm, The Euclidean distance transform in arbitrary
include modularity, expandability, regularity of data dimensions, Pattern Recogn. Lett. 14 (1993) 883-888.

flow, and hardware simplicity. These properties are [11] A.Rosenfeld, J.L. Pfalz, Distance functions on digital pictures,
highly desirable for VLSI implementations. We also Pattern Recogn. 1 (1968) 33-61.

: . . . [12] B.J.H. Verwer, P.W. Verbeek, S.T. Dekker, An efficient uni-
consider the partition problem when the Image size form cost algorithm applied to distance transforms, |IEEE

is larger than the size of the PE array. In the future, Trans. Pattern Anal. Machine Intell. 11 (4) (1989) 425-429.
the distance transformation subject to some imposed [13] A. Rosenfeld, A.C. Kak, Digital Picture Processing, Vol. 2,
constraints will be studied with a modified version of 2nd edn., Academic Press, New York, 1982.

the current architecture. [14] G. Borgefors, T. Hartmann, S.L. Tanimoto, Parallel distance

transforms on pyramid machines: Theory and implementation,
Signal Process. 21 (1) (1990) 61-86.

[15] J. Piper, E. Granum, Computing distance transformations
in convex and non-convex domains, Pattern Recogn. 20 (6)
(1987) 599-615.

[16] D.W. Paglieroni, A unified distance transformation algorithm
and architecture, Machine Vision Appl. 5 (1992) 47-55.

[17] FY. Shih, C.T. King, C.C. Pu, Pipeline architectures for
recursive morphological operations, IEEE Trans. Image
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