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Abstract

Distance transformation (DT) has been widely used for image matching and shape analysis. In this paper, a parallel algorithm
for computing distance transformation is presented. First, it is shown that the algorithm has an execution time of 6N − 4 cycles,
for anN ×N image using a parallel architecture that requires�N/2� parallel processors. By doing so, the real time requirement
is fulfilled and its execution time is independent of the image contents. In addition, a partition method is developed to process
an image when the parallel architecture has a fixed number of processing elements (PEs); say two or more. The total execution
time for anN × N image by employing a fixed number of PEs is 2[N2/M + 2(M − 1)], whenM is the fixed number of PEs.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The distance transformation (DT) is very useful in
many applications such as thinning [1], medial axis
transformation [2], convex hull extraction [3], robot
path finding [4], skeletonization [5], Voronoi diagram
extraction [3], planar tessellation [3], robot aerial im-
age registration [4], and pattern matching [6,7]. DT is
defined by a local operation based on a central pixel
and the pixels in its neighborhood. The local opera-
tions are iterated until the distance values converge.
Thus the operation produces a distance map for a given
binary image containing object pixels and background
pixels. For each object pixel in the image, its distance

* Corresponding author.
E-mail address: tlchia@mcu.edu.tw (T.-L. Chia).

value is equal to the distance from it to the nearest
background pixel.

There are three major types of distance trans-
formation functions: octagonal [8], weighted (cham-
fer) [9], and Euclidean [10]. In general, they cannot
be computed using similar algorithms. The Euclidean
DT generates complete error-free Euclidean distance
maps. But, computing the Euclidean distance is essen-
tially a global operation that is very expensive and un-
suitable for VLSI implement. Hence, it is only neces-
sary to consider the local operation and give a reason-
able approximation to the Euclidean distance.

An approximation method for computing the DT
in only two passes over the image is the chamfer
distance transformation. It has better accuracy than
the others [9]. In this paper, we will propose a two-
pass algorithm and design a hardware architecture for
chamfer DT.
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Table 1
Comparison among several chamfer distance transformation algorithms

Methods Author Computation flow #PEs Time complexity Sequential or parallel Processing time

Type 1 Rosenfeld [11] 2-pass raster scan 1 O(N2) Sequential Independent

Verwer [12] Bucket sort 1 O(N2) Sequential Independent

Rosenfeld [13] 2-pass raster scan 1 O(N2) Sequential Independent

Type 2 Borgefors [14] Pyramid N2 O(N) Parallel Dependent

Piper [15] MPP N2 Iterate until no change Parallel Dependent

Paglieroni [16] Row scan & col. scan 2N O(N) Parallel Dependent

Type 3 Shih [17] 2-pass raster scan �N/2� O(12N − 4) Parallel Independent

Chen [18] 4-pass raster scan N O(5N) Parallel Independent

Our method 2-pass raster scan �N/2� O(6N − 4) Parallel Independent

Fig. 1. The computational complexity diagram of the several chamfer DT algorithms.

As for chamfer DT computation, three major types
of approach are available, refer to Table 1 and Fig. 1.
Type 1 [11–13] is the sequential propagation algo-
rithm. Although the sequential algorithm is more suit-
able for VLSI implementation than the parallel al-
gorithm, the total execution time is O(N2) for an
N × N image which does not meet the requirements
for real-time applications. The processing time of the
above methods is in-dependent on the image con-
tents. Type 2 [14–16] is the massively parallel method,
which can be extremely efficient if enough processor
elements (PEs) are available. The time complexity can
be reduced to O(N). However, this method is depen-
dent on the image contents.

From the viewpoint of real-time application, most
of the existing sequential algorithms for computing
the distance transformations do not meet the real-time
requirement. Hence, the use of a parallel algorithm
is indispensable. Although adopting the algorithm
of massively parallel method, whose total execution
time is O(N), meets the requirements for real-time
applications. But the massively parallel algorithm
needs O(N2) processor elements, which is unsuitable
for VLSI implementation, and the execution time is
dependent on the image contents. This is a serious
disadvantage for the real applications.

The third one, Type 3 method, is the systolic array
method. To make the linear array suitable for VLSI
implementation, the number of PEs must not be too
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large. This means that the number of PEs, denoted
as M, must be fixed and is usually smaller than the
image sizeN ×N (N � 512) in practical applications.
The minimum number of PEs is 2, and the reasonable
number must be suitable for VLSI implementation.
So that we have: 2� M < N . This method is also
independent of the image contents. Recently, Shih,
King and Pu [17] developed a systolic array using
the sequential two-pass raster scan algorithm [13]. In
their design, the total execution time for two scans
of the whole image is 12N − 4 cycles. Chen and
Yang [18] introduced a systolic array using the four-
pass algorithm. The total execution time is 5N using
N processing elements. If the image is divided into
m2 subimages, whose sizes are(N/m) × (N/m), the
total number of clock cycles required increases to
4mN + N/m.

In this paper, a parallel algorithm for computing
distance transformation is presented. First, it will be
shown that the algorithm has an execution time of
6N −4 cycles for anN ×N image using a architecture
containing�N/2� parallel processors. In addition, the
algorithm developed can work with various existing
chamfer distance functions and its execution time is
independent of the image contents; thus it is quite
flexible. Second, we shall propose a partition method
to process an image when the parallel architecture has
a fixed number of PEs. The total execution time is
better than given in [18] with the same number of PEs.

The organization of the paper is as follows: In Sec-
tion 2, a parallel distance transformation algorithm
based on two scanning passes is presented. The corre-
sponding linear array architecture is proposed and the
time complexity of the approach is analyzed in Sec-
tion 3. In Section 4, a partition method is introduced
to process a large size image when the architecture
has a fixed number of PEs. Section 5 gives the con-
clusions.

2. Basic ideas and the parallel algorithm

Traditionally, the distance transformation can be
completed in two scans of the image [13]. In the first
row-by-row scan (from left to right and top to bottom)
of the N × N image, the temporary distance value
d1(P (i, j)) for pixel P(i, j) is computed based on
P(i, j) and the four adjacent pixelsP(i − 1, j − 1),

Fig. 2. The adjacent pixels of pixelP (i, j): (a) in the forward pass,
and (b) in the backward pass.

P(i − 1, j), P(i − 1, j + 1), andP(i, j − 1) (refer
to Fig. 2). Similarly, the temporary distance value
d2(P (i, j)) is computed based onP(i, j) and P(i,

j +1), P(i +1, j −1), P(i +1, j), andP(i +1, j +1)

during the second row-by-row scan (from right to left
and bottom to top). The final distance value ofP(i, j)

in the distance map is given by a minimum operation:

d
(
P(i, j)

) = Min
(
d1

(
P(i, j)

)
, d2

(
P(i, j)

))
.

Based on the above concept, we shall propose
a parallel distance transformation algorithm. In this
algorithm, we use one processing element (PE) to
do the pipeline operations on the pixels in each row.
Thus, the required number of PEs isN . Later on,
we shall propose a partition method using a fixed
number of PEs that can be 2 or more. The algorithm
is divided into two passes: forward and backward.
In the forward pass all image rows are scanned and
processed in parallel with each row in an assigned PE.
Each row is scanned from left to right. However, the
distance values of the preceding neighboring pixels
in the row must be ready for use by the current
pixel. Also, the input data flow of the preceding
row must be two cycles ahead of the current row.
In this scanning fashion, thed1(P (i, j)) value for
pixel P(i, j) is computed inPEi after it receives
d1(P (i − 1, j − 1)), d1(P (i − 1, j)), andd1(P (i − 1,

j +1)) computed inPEi−1 during the last three cycles
andd1(P (i, j − 1)) computed inPEi during the last
cycle. Similarly, in the backward passd2(P (i, j))

is computed inPEN−i−1. Right afterd2(P (i, j)) is
obtained,d(P (i, j)) is computed inPEN−i−1. In
Fig. 3, the time-space diagram for a 4× 4 image is
shown. The forward pass is executed at time instants 0
to 9; the backward pass is executed at time instants
10 to 19. Thus, the distance values of the required
adjacent pixels are always ready before computing the
distance value of the current pixel. The algorithm is
given below.
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Distance Transformation algorithm

Input: An N × N binary image{P(i, j)}.
/P (i, j) = 1 is a background pixel and

P(i, j) = 0 is an object pixel/

Output: An N × N distance mapD = {d(P (i, j))}.
Procedure:

for i = −1,0,1, . . . ,N, j = −1,0,1, . . . ,N

/ Initialization/

if (i = −1 or j = −1 or i = N or j = N)

thend(P (i, j)) = ∞ (a large number)

elseifP(i, j) = 1

thend(P (i, j)) = 0

elsed(P (i, j)) = ∞ (a large number)

for all PEi , i = 0,1, . . . ,N − 1, j = 0,1, . . . ,N − 1

begin

Step 1: forward pass

TD = Min
(
d(P (i − 1, j − 1)) + dn0,

d(P (i − 1, j)) + dn1,

d(P (i − 1, j + 1)) + dn2,

d(P (i, j − 1)) + dn3
)
,

d
(
P(i, j)

) = Min
(
TD, d(P (i, j))

)
,

outputd(P (i, j)) to PEi+1.

/ Wait until the forward pass of theP(N − 1,N − 1)

finishes./

Step 2: backward pass

TD = Min
(
d(P (N − i, j + 1)) + dn0,

d(P (N − i, j)) + dn1,

d(P (N − i, j − 1)) + dn2,

d(P (N − i − 1, j + 1)) + dn3
)
,

d
(
P(N − i − 1, j)

) = Min
(
TD, d(P (N − i − 1, j))

)
,

outputd(P (N − i − 1, j)) to PEi+1.

end

The neighborhood distancesdnk , k = 0,1,2,3, are
defined according to the selected distance function,
as shown in Fig. 4. For example, in the city block
function, the values of the neighborhood distances
dn0, dn1, dn2, dn3 are 2, 1, 2, and 1, respectively; in

Fig. 3. (a) A 4×4 image. (b) The time-space diagram of the forward
and backward passes; 0,1,2, . . . ,15 denote the pixel labels shown
in (a).

Fig. 4. (a) The notations of the neighboring distance constants.
(b) The values of the distance constants for the various distance
functions.

the chamfer 3–4 distance function, the values of the
neighborhood distancesdn0, dn1, dn2, dn3 are 4, 3, 4,
and 3, respectively.

3. The linear array architecture

For the above parallel distance transformation algo-
rithm, it can be implemented by a linear array archi-
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Fig. 5. The linear array architecture.

Fig. 6. The organization of a PE.

tecture to meet the real-time requirement. First, the
linear array consisting ofN processing elements is
devised to process a binary image withN × N pix-
els, as shown in Fig. 5. The PEs are indexed from
left to right, beginning withPE0. Initially, the im-
age buffer of the host computer stores the input bi-
nary image. As the process goes on, the buffer stores
distance map ord1(P (i, j)). In general,PEi receives
data fromPEi−1 and computesd1(P (i, j)) in row i

in every cycle. Due to the fact that the data flow is
shifted one pixel per cycle and that the distance values
of four adjacent pixels must be completed beforehand,
the input image in the image buffer is skewed so that
the clock cycle ofPEi lags behind that ofPEi−1 by
two cycles. This is achieved by inputting the data in
each row (i = 0,1,2, . . . ,N − 1) through a delay line
with a length of 2× i. Hence, for the pixelP(i, j)

at time t , the distance values ofd1(P (i − 1, j − 1)),

d1(P (i −1, j)), andd1(P (i −1, j +1)) are calculated
and passed fromPEi−1 to PEi in the forward pass at
time instantst − 3, t − 2, andt − 1, respectively. The
distance value ofd1(P (i, j −1)) is obtained and stored
in PEi at timet − 1. Similarly,PEN−i−1 receives the
distance values ofd2(P (i +1, j +1)), d2(P (i +1, j)),
d2(P (i + 1, j − 1)), and d2(P (i, j + 1)) before it
computesd2(P (i, j)) and, then,d(P (i, j)) during the
backward pass.

3.1. The processing element

Based on the parallel algorithm, the operations
performed inPEi include:
(1) Comparing the distance values of four adjacent

pixels in the forward or backward pass.
(2) Outputting the distance value ofP(i, j) to PEi+1

and image buffer.
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Fig. 7. The structure of a CAU unit.

After taking all the necessary operations into con-
sideration, the structure ofPEi , shown in Fig. 6, is
proposed. Two input ports are required to receive the
distance values fromPEi−1 and the image buffer of
the host computer. Since the initial value ofd(P (i, j))

in the image buffer is decided by the binary value of
P(i, j) in the initialization phase, the input data of
port 1 is connected to the image buffer in the forward
pass. The output value ofd1(P (i, j)) from PEi will
be sent back to image buffer. In the backward pass,
the input data ofPEi needsd1(P (N − i − 1, j)), thus
the input data of port 1 is also connected to the image
buffer. For computing the distance valued(P (i, j))

the data path fromPEi−1 is also needed so that the dis-
tance values of three adjacent pixels in rowi − 1 are
obtained in sequence through port 2. These input dis-
tance values are input with two delay units. As a result,
the needed input data from rowi − 1 are ready before
starting calculating the distance value ofd(P (i, j))

in the comparator and arithmetic unit (CAU). On the
other hand, a feedback loop is connected from the out-
put of CAU through a delay unit to the input of CAU.
The path provides the distance value ofd(P (i, j − 1))

to CAU. Finally, the output is sent toPEi+1 and the
image buffer.

3.2. The CAU

To find the minimum value of the four adjacent
distance values and the value ofd(P (i, j)) itself, a

comparator is used in CAU, as shown in Fig. 7. The
comparator determines the minimum of the distance
values at the four adjacent pixels that depend on the
distance function chosen, and the current distance
value d(P (i, j)). The output of the comparator is
defined as the distance valued(P (i, j)) which is also
passed toPEi+1.

The various distance functions can be selected by
control signals. The distance values at adjacent pixels
are stored in a look-up table, and are sent to the
inputs of four adders. For example, in the chamfer 3–4
distance function, the distance value atP(i −1, j −1),
P(i − 1, j), P(i − 1, j + l), andP(i, j − 1) are 4, 3,
4, 3, respectively. So the input operand for adder are 4
for Adder A, 3 for B, 4 for C, and 3 for D.

Using the space-time diagram of the input image,
the time complexity of the algorithm can be easily
analyzed. If the input data rate is one pixel per cycle,
the distance map will be obtained for either pass in
3N − 2 cycles where

3N − 2 = (the length of the first row)

× (the execution cycle per pixel)

+ (the skewed delay per row)

× (the row number of image− 1)

= N × 1+ 2× (N − 1).

Hence the total execution time for both forward and
backward passed is 6N − 4 cycles, so it is of order
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Fig. 8. The linear array architecture for executing the partitioned
image.

O(N). Hence it meets the requirements for real-time
applications.

4. The partitioning method

To make the linear array suitable for VLSI imple-
mentation, the number of PEs must not be too large.
This means that the number of PEs, denoted asM,
must be fixed and is usually smaller than the image
sizeN (N � 512) in practical applications. The mini-
mum number of PEs is 2, and the reasonable number
must be suitable for VLSI implementation. WhenN >

M, the same parallel architecture presented previously
will be used, but some extra hardware is needed to han-
dle the image partition problem.

Assume an image whose size isN × N , and a
linear array that hasM PEs. LetN � M. In the first
place, the image must be divided into a number of
subimagesm = �N/M� each withM or less rows.
This row partitioning starts from top to bottom (refer
to Fig. 9(a)), hence subimageSj includes the part of
image from rowM × j to rowM × (j +1)−1, where
j = 0,1, . . . , �N/M� − 1 andSm−1 includes the part
of image from rowM × (m − 1) to rowN − 1. These
subimages are executed in an increasing order of the
index j from 0 to m − 1. The parallel architecture
presented above will require an extra programmable
delay line between the data output ofPEM−1 and the
input port 2 ofPE0 (refer to Fig. 8).

According to the values ofN andM, we distinguish
the following cases for the execution model:

Fig. 9. The time-space diagram of the distance computation by our
method for the caseN � M : (a) an image is divided into subimages,
(b) the diagram forM � N � 2M , (c) the diagram forN � 2M .

(1) Case 1: M < N � 2M.
In this case, the elementPE0 executes the first

row of the subimageS1, but it must wait until the
corresponding output result ofPEM−1 belonging to
subimageS0 has arrived. Therefore, the subimageS1

must be delayed 2M −N clock cycles before it is input
to the port 1 ofPE0. The programming delay line will
be set to zero. The time-space diagram is shown in
Fig. 9(b) and the total execution time is 2(3N −2). For
comparison, the time-space diagram for the two-pass
algorithm [17] is shown in Fig. 10(b), and the total
execution time is 2[4N + 2(N − 1)]. Based on the
analysis mentioned above, we compute the distance
map of the image of sizeN × N using �N/2� PEs,
and total execution time is the same if we useN PEs.
In the caseN = 2M, its speed is respectively about 2
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Fig. 10. The time-space diagram of the distance computation by the
two-pass algorithm [17] for the caseN � M : (a) an image is divided
into subimages, (b) the diagram forM � N � 2M , (c) the diagram
for N � 2M .

and 1.4 times faster than the two-pass and four-pass
algorithms using the same number of PEs.

(2) Case 2: N � 2M.
Since the output results of the last row ofSj

produced fromPEM−1 are N − 2M clock cycles
ahead of the input data of the first row ofSj+1 to
PE0, the output ofPEM−1 must be input through an
N − 2M delay line. Thus, the side effect betweenSj

and Sj+1, can be reduced through the timing delay.
The time-space diagram for this case is shown in
Fig. 9(c) and the total execution time is 2{Nm+2[N −
M(m − 1) − 1]}. The time-space diagram of the two-
pass algorithm is given in Fig. 10(c) and the total
execution time is 2{(2m+4)N −(m−1)4M −2}. The

(a)

(b)

Fig. 11. The time-space diagram of the distance computation by the
four-pass algorithm [18] for the caseN � M : (a) an image is divided
into subimages, (b) the diagram forN � M .

Fig. 12. Time comparison between two-pass algorithm, four-pass
algorithm and our method.

time-space diagram of the four-pass algorithm [18] is
given in Fig. 11(b), and the total execution time is
4mN + N/m.

Consider that an image has a size of 1024× 1024
and a linear array hasM PEs withM � 1024. When
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we compare the two-pass algorithm, the four-pass
algorithm and our method, all using the same number
of PEs, the number of clock cycles required are
different, as shown in Fig. 12. IfN � 2M, our speed
is nearly 2 times faster than the other two methods.

5. Conclusions

In this paper, a parallel algorithm and its hardware
architecture for computing the distance transformation
have been described. With our proposed architecture,
the distance map of anN × N binary image can be
obtained within 6N − 4 cycles using an architecture
of �N/2� PEs. Other advantages of our architecture
include modularity, expandability, regularity of data
flow, and hardware simplicity. These properties are
highly desirable for VLSI implementations. We also
consider the partition problem when the image size
is larger than the size of the PE array. In the future,
the distance transformation subject to some imposed
constraints will be studied with a modified version of
the current architecture.
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