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Persistent properties of period doubling in directly modulated semiconductor lasers
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In this paper the inherent properties of period-doubling behavior in deeply modulated laser diodes
were investigated. The thresholds for the period doubling in terms of the controlling parameters were
indicated. With the consideration of Langevin noise in the single-mode rate equations, it was indicated
that the noise acted as a virtual Hopf precursor for the event of period doubling. The linewidth and fre-
quency shifting of the noise bump were predicted by Floquet multipliers. Finally, a comparison of the
noise bumps obtained from the simulated and analytic methods was also presented.
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I. INTRODUCTION

Nonlinear dynamical behavior has been enthusiastical-
ly investigated in a wide variety of physical systems since
the discovery of scaling constants in routes to chaos [1].
At least three scenarios of routes to chaos have been suc-
cessfully applied to those systems. They are the Feigen-
baum, intermittent, and quasiperiodic routes, and are re-
lated to the period-doubling, saddle-node, and Hopf bi-
furcations, respectively. As subjected to the nonlinear
systems, the semiconductor 1asers have also been inten-
sively studied not only for theoretical interest, but also
for practical purposes [2]. A solitary single-mode semi-
conductor laser cannot exhibit chaotic behavior because
it is fully described by only two independent quantities:
the photon density and carrier density. The adding of an
additional degree of freedom, i.e., modulation, light injec-
tion, or delay feedback, is necessary for an allowance of
the occurrence of chaotic instability. The aspect of the
period-doubling route of a laser diode under direct-
current modulation is the focus of this paper.

Strong current modulation in semiconductor laser
diodes has recently received much attention, especially in
the area of high-speed short-pulse generation and mi-
crowave analog fiber-optic transmission [3—18 ]. The
output of photon density under such a circumstance ex-
hibits a number of nonlinear phenomena, i.e., harmonic
distortion, pulsation, bistability, quasiperiodic and
period-doubling (PD) routes to chaos, etc. A set of non-
linear rate equations governing the interrelationship be-
tween carrier density and photon density have been suc-
cessfully applied to forecast the relaxation oscillation and
bistability [6,19]. The influences of nonlinear gain
suppression factor, spontaneous emission factor, and
Auger recombination factor in the rate equations upon
the PD phenomenon have also been numerically exam-
ined [11,10—13]. The analytic method utilized for pre-
dicting the onset point of PD route has also been previ-
ously presented [14,15]. Despite great efforts, the impor-
tant role of noise on the dynamics of the routes to chaos
is not yet investigated in detail. The output of a cw diode
laser actually exhibits a large-amplitude fluctuation with

II. STOCHASTIC RATE EQUATIONS
AND THEORETICAL BASIS

With the consideration of the nonlinear gain suppres-
sion, the single-mode rate equations for the photon densi-
ty s and carrier density n can be written as [6,12]

dn I(t)
dt eV

—A(1 —E„,s)(n no)s+F—„(t)/V, (1)

8$ =I A(1 —e„,s)(n no)s——+ +F (t)/V, (2)

where e is the electron charge, V is the active volume, ~,
and ~ are the respective electron and photon lifetimes, 3
is the gain constant, no is the carrier density for tran-
sparency, I is the confinement factor, 13 is the spontane-
ous emission factor, and e„& is the nonlinear gain suppres-
sion factor which can represent some mechanisms, in-
cluding spatial hole burning, lateral carrier diffusion,
spectral hole burning, and other nonlinearities [6]. The
driving current containing dc and ac terms is expressed

frequency around the relaxation oscillation frequency.
These fluctuations arise from the quantum nature of
spontaneous emission and cannot be eliminated in real
diode lasers. In some sense the noise even plays a role of
precursor for nonlinear instability. The noise spectra un-
der the strong ac current modulation are investigated by
numerical computations and compare with the AM noise
theory [20]. It is demonstrated from the observable vari-
able, such as photon density in our case, the noises play
as a virtual Hopf precursor for the period doubling [21].
This study improves our understanding of the inherent
properties of period doubling in semiconductor laser
diodes.

The paper is organized as follows. The rate equations
are introduced here in Sec. II with the consideration of
Langevin noise. The algorithm of searching fixed points
with the Newton-Raphson method in numerical compu-
tation is also presented. The explanations of virtual Hopf
bifurcation by Floquet theory are presented in Sec. III.
Concluding remarks are summarized in Sec. IV.
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as I(t) =Id, +I„sin(2rrft) with driving frequency f. F,
and F„are Langevin noise sources with zero means that
respectively arise from spontaneous emission and from
the discrete nature of the carrier generation and recom-
bination.

The small-signal response of rate equations behavior is
similar to that of a parallel underdamped oscillator [19].
The dynamical response can actually be characterized by
two key parameters, the relaxation-oscillation frequency
fRo and damping factor g, which are given by

' 1/2
rA

2' eV
(3)

g=( 1/r, + As, +s,e„1/r~+pI I,h/eVs, )/4~f Ro,
where

I,h=eV[no+(I Arz) ']/r, ,

s, = I r (Id, —I,„)/e V .

(4)

X=F(X;m )+g, XEIR (6)

where m =I„/I,h is the modulation index and g is
Langevin noise with

( g(t) ) 0, (g;(t)g~(t+&) ) =&~fi(r) (7)

K j is the noise strength. X is al lowed to be a periodic
solution of the noise-free system with X*(t+T)=X*(t),
where T is the period. For small deviation gd=X —X*,
Eq. (6) can be linearized here about X so as to obtain

i)q=[DF(X*;m )]gd+g', (8)

From the literature, the order of the damping factor is
around 0.1 for the In-Ga-As-P laser. As regards to the
wide-band Langevin noise, the output noise spectrum can
be expressed as

A 1 [f + (2'Ro ) I
z(f fRo ) +(2'Rof )

2

where A 1 is the normalized constant as in Eq. (3.71) of
Ref. [20]. The 3-dB bandwidth Af3 du in the frequency
response can be easily predicted to be about 2ilf Ro.

As the modulation index is increased to a certain level,
a sequence of dynamical bifurcations may be observed.
The transitions related to the qualitative change of dy-
namic behaviors are generally able to be identified from
the time evolution, phase portrait (s, n), and its Fourier
spectra. Besides that, the Floquet theory is further em-
ployed here for examining the instability of optical inten-
sity [14,21] so as to clarify the features of bifurcations.
Equations (1) and (2) are rewritten for the sake of brevity
as

ferred to as the Mathieu equation. The exact solution
can be obtained using the Floquet theory. The external
noise functions as a factor in kicking the system away
from the limit cycle. The stationary solution X* can be
found here by using the Newton-Raphson algorithm and
the Floquet multipliers p can be obtained from the eigen-
values of the Jacobian DF(X*). In the observed case, the
lowest period in the coefficients is also equal to T. The
homogeneous solution yd in Eq. (8) then satisfies the
property of

d( t + T)=PI'd (t) . (10)

then the bandwidth of the noise spectra is approximately
equal to a /2' (Hz), the new peak position f„ is at
f„=f b,f, and the —peak height is equal to s/o. Th. e.

noise spectrum can therefore be characterized from the
site of a Floquet multiplier within the unit circle plane.

Accordingly, the finding of the stationary solution is
the first task. To trace quickly the stable and unstable
solutions, the Newton-Raphson algorithm is used here
[22]. As in the periodically forced systems we can define
a Poincare section with point X'=(s(t), n(t)) stroboscop-
ically sampled at t =2im/co, where i is an integer. The
corresponding map Pz(X')~X'+' is called a Poincare
map. X* now becomes a fixed point of Pz with the rela-
tion of Px(X" ) =X*. The fixed point X* can be calculat-
ed by iterating from an initial guess X using the relation
of

X' ' =X'—(DH(X') ) 'H(X')

where H(X)=X Pz(X) an—d th—e superscript i indicates
the interaction count as Pz(X) is smooth. Knowing the
fixed point, the onset point of instability and the type of
bifurcation can be determined from the eigenvalue of the
Jacobian DF(X*), i.e., Floquet multipliers. The results
are detailed in the following sections.

The photo density and carrier density in Eqs. (1) and
(2) are further normalized for numerical purposes by
defining P =s /so and N = n /n, h with constant
so = I (r /r, )n, h and the threshold carrier density
n, h =&,I,h le V. The rate equations then become [12]

The stability of the stationary solution X* can then be
identified from the criterion with p lying inside the unit
circle, i.e., ~p 1. An instability occurs with 1M crossing
outside the unit circle. The period-doubling bifurcation
occurs when a single p is crossing the unit circle at —1

and the Hopf bifurcation occurs when a pair of p and p*
are moving across the unit circle. Moreover, the noise
spectrum can be predicted from the situation of the p
value [21]. If the multiplier p is expressed as

p =exp( oT /2) ex—p(i 2n b fT ) = ~1M ~
exp(i 8),

where DF is the matrix of periodic functions with each
term defined as

de
di

I (t) N o——N — (1 —eP )P +F„', (12)I,h 1 —6

BF;
(DF),

&

=
BXj g

(9)
dP 1

dt 7-
(13)

X—5
(1 —eP)P P+PN +F,', —

1 —6

Equation (8) is linear with periodic coefficients and is re- where
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F„' =F„/(n, „V)

+N+ (1+eP )P
Ith 1 —5

w, At Vn, h

1/2

X„',

ther determined by averaging over 64 spectral com-
ponents for the sake of improving the accuracy. This
yields an error of less than approximately 1 dB.

III. NUMERICAL RESULTS

F,' =F, /(so V)

(1+eP)P+P+PN
1 —5

~ AtVso

1/2

Xn

the constants 5=n o /n, „and the normalized gain
suppression factor e= e„&so. The fourth-order Runge-
Kutta algorithm with time step At and the fast-Fourier-
transform (FFT) processor are employed here for finding
the time evolution and frequency spectrum of the output
photon density, from which the influences on the bistabil-
ity and PD can be identified. These noise processes are
assumed to be Gaussian random processes. In the Mar-
kovian assumptions, the autocorrelation and cross corre-
lation functions of F, and F„are proportional to Dirac 5
functions and can be expressed as [23]

(F„(t)F„(t')) = V25(t t'), —

(F,(t)F, (t') ) = V25(t t'), —

(F„(t)F,(t') ) =yoV„V, 6(t t'), —

(14a)

(14b)

(14c)

where V„and V, are the respective variances of F, and
F„, and yo is the correlation coefficient. The variances
can be expressed as follows:

V„=I /e + n V/r, + A ( 1+e„i )( n + no )s V, (lsa)

V, =sV/r +I A(1+e„is)(n+no)sV+I APnV/r, ,

(15b)

In the following, the thresholds in two specific cases
with normalized gain suppression factor @=0 and 0.01
are presented, which are closely related to the cases in
Al-Ga-As and In-Ga-As-P semiconductor lasers [12].
For the sake of comparison, the typical values of the oth-
er parameters are chosen as ~ =6 ps, v., =3 ns,
p=5X10, and 5=0.692 as identical to Refs. [10] and
[12]. The normalized dc bias and ac modulated currents
are defined as Ib =Id, /I, h and m =I„/I,„; m is also
denoted as the modulation index. During the search for
the transitions, the modulation frequency f and the
modulation index m are varied with Ib at a fixed value.
The relaxation-oscillation frequency fRo under dc bias,
approximately equal to 1.512 GHz in the observed case,
can serve as a landmark in the parameter space during
the search for the various transitions.

The possible transitions in the less-damped case with
normalized gain suppression factor e=0 [or g—=0.0469
from Eq. (4)] and without Langevin noise in Eqs. (12) and
(13) are first presented to elucidate the rich variety of
dynamical behaviors. The boundaries in I fspace for a-
typical case with dc bias current of Ib =1.5 is shown in
Fig. 1. The dynamical behaviors in output photon densi-
ty include multiple and submultiple spiking, a period
doubling route to chaos, and hysteresis, whereas the self-
pulsation phenomenon is not observed. Their relevant
transitions have been detailed in Ref. [24]. Generally
speaking, at the modulation level beyond I=0.5, the

V„V, = —tI APnV/r, +I A(l+E„is)(n+no)sV] . (15c)

The correlation coefficient yo approaches unity under the
single-mode operation condition. The expressions for the
variance apparently resemble rather closely the right-
hand sides of the rate equations except that all terms be-
come positive signs, because, physically, each term in the
rate equations acts as a source of Gaussian noise. In nu-
merical computation the stochastic functions F, and F„
in any particular time interval At can be replaced by
F„=V„/b, t '~ X„and F, = V, /b, t '~ X„with X, and X„
denoting a Gaussian random variable of zero mean and
unit variance. The noises X„and X, are generated within
the computer. The time interval At is chosen to be
b, t = T/128, where T is the period of the driving current.
This ascertains that the noise spectrum is approximately
white within 2f as of interest in the simulation. The re-
quired CPU time in a computer work station (HP-720) is
approximately 16 ms for the simulation of one cycle. The
calculation has been extended to 16 384 cycles and the
first 100 cycles are discarded for removal of transients.
The power spectra is calculated by using a fast Fourier
transform with 32 768 points. The power spectra are fur-
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PD2

C

PD3t

~ O50-

0
0 0.50 1.00 1.50 2,00 2.50

Modutotlon Frequency (GHz)

FIG. 1. Two-dimensional state diagram with modulation in-
dex and modulation frequency as controlled variables at fixed dc
bias Ib =1.5. Curve MS is the boundary of hysteresis jump of
the mth spiking state; the dashed lines denote the downward
jump. Curves PD and PF are the boundaries of period dou-
bling and period four of the mth spiking state, respectively.
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FIG. 2. U-shaped thresholds of period doubling with (a)
@=0.0 and (b) @=0.01.

output contains multiple spikes for f (fRo and submul-
tiple spikes for f)fRo and are closely related to the su-
perharmonic and subharmonic resonance. The curve
PD, is the threshold of period doubling with one spike
state existing from f~o to 2fRo. Thus, it seems to be the
most expected transition in the real experiment because
its threshold is lower than those at other regions [17].
The threshold of PDI basically reveals a U shape, as simi-
lar to that in the Toda oscillator [25], which possesses a
potential well with an exponential form in its dynamical
equation of motion. At the larger damped case with
e =0.01 (rI —=0.0908) the U-shaped threshold is lifted up-
ward as in curve b of Fig. 2. It means that a more
stronger ac current is required for attaining the period

doubling in the higher damping case.
The influences of the Langevin noise on PD are further

examined. First, the Floquet multipliers for both cases
are calculated. The loci of the Floquet multiplier as a
function of m at Ib =1.5 are shown in Figs. 3 and 4 with
@=0 and 0.01, respectively, at three different pumping
frequencies of f=1.5, 2, and 3 GHz. The radius in the
low damped case (e=O) is obviously larger than that in
the high damped case (e =0.01). The loci start from near
8—=0 for f= l. 5 GHz, near 0—=+90 for f =2 GHz, and
near 0—=+180' for f=3 GHz. Actually, we can deduce
that the initial point starts approximately from
8=(j—1)vr if the driving frequency is at f=fRo; j i—s an
integer. As m is increased, the multipliers rotate toward
the negative real axis. The critical modulation index m,
defined with the complex pair merging at a critical value

p, = —exp( oT/2—) on the negative axis is at
m, —=0.615, 0.715, and 0.04 for f= 1.5, 2, and 3 GHz, re-
spectively. The closer to 2fRo the frequency is, the
larger the radius ~p, ~

is. Above the critical index m„ the
multiplier appears as two negative real pairs. One of the
multipliers approaches —1 and causes period doubling.
This kind of transition process is referred to as virtual
Hopf bifurcation, because the complex conjugate pair lies
initially very c1ose to the unit circle, a situation that gen-
erally occurs just before the onset of a Hopf bifurcation.
However, instead of exiting the unit circle, the multi-
pliers move along the circle with radius
~p~ =exp( oT/2), u—ntil they meet on the negative real
axis. m is the onset index for period doubling with one

90
90
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180 po

270
90'

270
90'

180 ~ I Ipo
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270
90

270
90

180 -':. I po

180', I 0o

270

FIG. 3. The calculated loci of Floquet multipliers for @=0
and (a) f= 1.5 GHz, (b) f=2.0 GHz, and (c)f=3.0 GHz.

270

FIG. 4. The calculated loci of Floquet multipliers for
@=0.01 and (a) f=1.5 GHz, (b) f=2.0 GHz, and (c) f=3.0
GHz.
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TABLE I. Calculated values of m„m„, and lp l. 30

f (GHz) m,

a=0

m,

@=0.01 10-

-10—

-30--
(a)

0.615
0.715
0.04

0.64 0.6582 0.635
0.72 0.7929 0.715
0.28 0.8617 0.01

0.73
0.77
0.55

0.5036
0.6443
0.7503

-50
30

10—

of the Floquet multipliers p just passing through the unit
circle. For convenience, the calculated values m„m,
and p, for both cases (e=O and @=0.01) are listed in
Table I.

The noise spectra can thus be predicted from the site of
the multiplier within the unit circle. Figures 5 and 6
demonstrate the corresponding spectra for a=0 and 0.01.
The peak frequencies are centered around the relaxation
oscillation frequency fRo without ac current as in Figs.
5(a) and 6(a). The linewidth of the bumps is easily deter-
mined by b,f3&B=2gfRo (—= 142 MHz in e=O and 275
MHz in @=0.01). The bump shifts toward f /2 as m is
increased. Except for the original bump, there are also a
lot of bumps distributed among both sides of the subhar-
monic frequencies as in Figs. 5(b) and 6(b). This is the
nature of the complex conjugates of Floquet multipliers.
For m ~ m, the noise bump is confirmed to maintain the
same width as that without modulation by comparing
Figs. 5(a) and 5(b) or Figs. 6(a) and 6(b). Physically, the
shiftiness of the bump is that, under the large excitation,
the photon density can deplete more of the carrier densi-
ty and thus requires more time to recover the carrier den-
sity. Consequently, the relaxation oscillation frequency is
decreased. The frequency shift as a function of driving
force m is shown in Fig. 7. The dotted points are ob-
tained by noise spectra, the solid line is from the informa-
tion of angle t9, and the broken line is fitted from the rela-
tion of b f=6fo+dm with b fo=0.488 GHz and con-

(0

O

ccrc

C4

-10—

-50
30

10

-10—

-30

-50
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)

FIG. 6. The noise spectra at a=0.01,f=2 GHz, I& = l. 5 and
(a) m =0, (b) m =0.5, and (c) m =0.75 before period doubling.

stant d=0. 807 GHz. Actually, b,fo is the initial fre-
quency difference between the bump and the driving fre-
quency, i.e., ufo =f fRo. As fo—r the constant d, it is
an implicit function of the damping factor g. The less g
is, the larger d is. It seems that the frequency shift is in
good agreement with the dependence of m .

At the critical index with repeated multipliers, the
spectra reveal only one bump with peak at f/2. Above
the critical index, the repeated pair split into two nega-
tive real numbers and one of them approaches toward—1. In such a case, the shape of the bump shown in Fig.
6(c) becomes narrower and narrower, but with the max-
imum still fixed at f/2, as the excitation reaches closer

a

O

~ W

0

30
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-30—

-50
30

10—

-10—

-50
30

10—

-10—

(a)

(b)

0.95

0.9

0.85—
0.8

0.75

0.7

0.65

0.6

0.55

0.5 ,;
0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-30—

-50
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)

FIG. 5. The noise spectra at @=0.0, f =2 GHz, II, =1.5 and
(a) m =0, (b) m =0.5, and (c) m =0.75 after period doubling.

Modulation Index m

FIG. 7. The dependence of the peak shift of noise bump on
modulation index for @=0.01. The broken line is calculated
from the relation of frequency shift b f=b fo+dm with
bfo=0. 488 GHz and d=0. 807 GHz. The dotted line is ob-
tained by noise spectra. mc is the critical modulation index
with complex multipliers merging together.
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and closer to the onset point I of period doubling. The
narrowed bump may cause a mistake in identifying the
behavior of period doubling during the real experiment.
As a matter of fact, the true spikes for PD do not extrude
from the noise bump until m ~ m~ as in Fig. 5(c). At the
same time, the level of the noise bump around the f /2 is
significantly suppressed. Note that, if the driving fre-
quency is near the specific frequency 2fRo, PD occurs
easily with only a small amount of excitation because p is
close to the negative axis.

At last, some notes on the line shape of the noise bump
are given. Two spectra formulas are proposed to evaluate
the spectra before onset of period doubling. One is

A, [f +(2rlf„) ]
(16)(f2 f2)2+(2~f f )2

which is similar to Eq. (5) but with fRo replaced by f„.
The other is the Lorentz linewidth as [21]

A2
SL, ( )= (17)

bv +(f f„)—

where A2 is the normalized constant, and Av is half of
the bandwidth. The comparisons are illustrated in Fig. 8.
With regard to the 3-dB bandwidth, both formulas give
almost the same results, whereas the overall shape of the
main bump is more favorable to that predicted from Eq.
(16) (solid line). The constant width of the bump with
m ~m, is confirmed from Figs. 8(a) and 8(b) to be equal
to that with m =0. The linewidth is narrowed and is
proportional to the o. factor as the index is above m, .
This is evidenced in Fig. 8(c) with the fitted linewidth
about 70 MHz for o T/2=0. 106 (i.e., 2hv=cr/2rr—=70
MHz). Although the Lorentz shape cannot fit well to the
whole bump, it is good for the 3/2 bump as predicted in
Ref. [21].

IV. CONCLUSIONS

The noise efFects on the period doubling of the current
modulated semiconductor laser were extensively investi-
gated in this article. Focus was on the most remarkable
range with a U-shaped threshold in the frequency interval

-5 -5

-10

~o 15

~ M

C)
K. 20

-10

~o 15

C)
K -20

-25 -25

-30 -30

Frequency (GHz) Frequency (GHz)

-5
(c)

-10CQ

c -»

~ H

C)
K 20

-25

-30

Frequency (GHz)

FIG. 8. The comparison of the calculated noise spectra with those from the Lorentz shape (curves labeled by L) and AM noise
theory (curves labeled by AM) with f =2 GHz, @=0.01, and (a) m =0, a.T/2=0. 431 (2hv=274. 5 MHz), (b) m =0.5, a T/2=0. 431
(2hv=274. 5 MHz), and (c) m =0.75, o T/2=0. 106 (2hv= 70 MHz).
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between f~o and 2fRo. Conceptually, the laser diodes
could be taken as a current-controlled tunable amplifier
with Langevin noise as a wide-band input signal. It was
indicated that the inherent noise bump in the output
spectrum played as the virtual Hopf precursor for the
period doubling bifurcation. The behaviors of the noise
bump were verified to follow the predictions from the
Floquet multipliers. Once the initial relaxation frequency

and damping factor were determined, the noise process
up to period doubling could be clearly forecasted.
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