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Acoustic energy confinement in randomly layered structures

Zhen Ye?
Department of Physics, National Central University, Chungli, Taiwan 32054, Republic of China

Pi-Gang Luan®
Institute of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan 30043, Republic of China

(Received 6 September 2001; accepted for publication 7 January 2002

Radiation from acoustic sources located inside randomly layered structures is studied using the
transfer matrix method. It is shown that in contrast to the periodically layered cases where the
radiation can be either enhanced or inhibited depending on the frequency and the characteristics and
the material composition of the structures, in the random structures the radiation is always inhibited.
The degree of inhibition depends on the acoustic frequency, number of random layers, and the
randomness and acoustic parameters of the structures. Both spherically and cylindrically random
structures are considered. The results point to the possibility of designing sonic waveguide devices
that will not suffer from the energy loss caused by radiation, thus allowing effective energy
confinement or long-range energy propagation. 2@)2 American Institute of Physics.

[DOI: 10.1063/1.1455683

I. INTRODUCTION tively simple to handle yet do not compromise the generality,
making them an ideal system for understanding more com-
When placed in spatially structured media, the radiatiorplicated situations with vector wave propagation. For in-
or transmission of optical or acoustic sources will be modustance, the recent results on acoustic propagation in water
lated, a fact of both fundamental importance and practicalith parallelly placed air cylinders make it possible to study
significance. The structure-modulated transmission, calleche ubiquitous phenomenon of wave localizatioin an un-
waveguide propagation, is the backbone of modern optoeleg@recedented detailed and manageable malitéthe local-
tronics and acousto-optics systems. Designing proper wavézation of optical waves has posed a long standing problem
guide devices that can convey information without or withand a subject of much debdteSecond, the research is mo-
little energy loss thus has been and continues to be a primgvated by potential applications in acousto-optic fiber
motivation for theoretical studies of wave radiation anddevices?® Third, it is relatively easy to manufacture hetero-
propagation in spatially structured media. structures with large contrast in acoustic impedance. This
Much effort has been focused on effects of metal andallows not only the study of strong scattering, but the use of
dielectric interfaces, which can be constructed in either plathe properties of the strong scattering in situations such as
nar, cylindrical, or spherical forms, on optical transmissionnoise reductior
and radiatiorf.® The optical transmission or radiation in pe- In the previous articlé® the acoustic radiation from a
riodic structures has attracted particular attention in differensource located inside periodically layered spherical cavities
areas of applied physics, as in the periodic situations théas been considered. It is found that significant enhancement
interaction between propagating waves and structurally perier inhibition of the radiation is possible by varying the
odicity can be either constructive or destructive, leading tcacoustic parameters and the periodicity of the structures of
significant enhancement or inhibition, respectively. In theseéhe guides. The analysis predicts well-defined peaks and
situations, the waveguides act as a filter that selects particulaodes in the cavities. The fact that wave transmission in the
frequencies for propagation. Understanding of optical propaperiodical situations is only possible for certain ranges of
gation in periodicity has been vital to the design of opticalfrequency is useful as it is of help in devising apparatuses
devices including optical fibers, semiconductor lasers, hetsuch as filters. For applications such as energy transport,
erojunction bipolar transistors, quantum well lasers, filtershowever, it is desired that no or little energy be radiated for
and resonators®~1! any frequencies. In other words, devices are designed so that
Propagation of acoustic waves in spatially structuredenergy is confined inside the devices. In this article, we con-
media has also drawn attention recenfly'® The investiga- ~ sider acoustic radiation from acoustic sources located inside
tion of acoustic counterparts not only paves the way for thegandomly layered structures. The structures can be of spheri-
possible design of acoustic devices, but the acoustic modetsl and cylindrical geometries. We show that the radiation is
themselves are advantageous in a number of situations. Firsahibited for all frequencies for any given randomness, and
as they are of a scalar nature, the acoustic waves are releaves are confined in the structures. The confinement or
localization effect becomes increasingly significant as the
| A randomness increases or the acoustic contrast increases for a
ectronic mail: zhen@phy.ncu.edu.tw . .
bAuthor to whom correspondence should be addressed; electronic maiiven randomness. These features hold for both spherical or
pgluan@cc.nctu.edu.tw cylindrical structures. The results may be of help in the de-
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pi(N=AG (k) +B,G (kir),

S (i=1,2,.), (4)
where T means taking the complex conjug@teandB; are

pe pe coefficients to be determined by boundary conditions, and
byc, G is the Green's function in theth dimension and is
@ () written as
imTHY (kir), d=2
GO(kir)={ . 5
g g (ki kiei"/kir, d=3. ©
Za I

\v_// Note that the Green’s functioB(¥ also represents the wave

transmitted from the unit source without the presence of the
layered structures; its complex conjugate represents the in-
ward moving wave.

To solve for the unknown coefficientd; and B;, we
invoke the boundary conditions that require that the pressure
sign of wave processing devices such as resonators or effie|d and the radial displacement be continuous across the
cient energy guides. interfaces. Consider an arbitrary interfaceRaiThe wave on

the inner(<) and outer>) sides of the interface are, respec-
tively, denoted by

FIG. 1. Conceptual layout for spherical and cylindrical cavities.

Il. FORMULATION OF THE PROBLEM

. . . L P< >(r):A< >G(d)(k< M +B. >G<d)f(k< =), (6)
We consider a unit acoustic source located inside a lay- ' ' ’ ' '

ered structure, which can be either spherical or cylindricallhe coefficientsA andB on the two sides of the interface can
geometry. The conceptual layout is sketched in Fig. 1. Thée related by the usual boundary conditions
most inner and outer radii of the structureRs and Ry, o (@'
respectively. BetweeR,; andRy, there ardN—2 randomly A<-GT(k<R)+B-G™ (k<R)
placed interfaces. The boundary Rt (i=1,2,...N) is de- _ d it
noted as theth interface. Thesd—2 interfaces argan- =A-GO(k-R)+B-G'V (k-R), ™
domlylocated betweeir; and Ry . The further parameters and
are as follows. The sound speed and the mass density inside
R, arec, and_pl, whilg the .sound speed and mass density of _<[A<G(d)’(k<R)+ B<G(d)T”(k<R)]
the surrounding medium, i.e., outsiy,, are denoted by pP<
and p, respectively. The sound speed and mass density be-
tween theith and the (+ 1)th interfaces are;. 1, p;+,. We = —>[A>G<d)(k>R)’+ B>G<d>f"(k>R)], (8)
defineg;=p;/p andh;=c;/c. The parameterg; andc; are P>
acoustic contrast parameters.

The Helmholtz wave equation inside the structure is

(V2+kD)p(r)=—4mw89r), for r<Ry, (1)

where V? is the usual Laplacian operatds; is the wave
number K;=w/c;), andSis the Dirac delta function repre- .
senting the source. The superscdgefers to the dimension. with

For spherical structures= 3, while for cylindrical structures G9(k_R) G(d)f(k< R) -1
d=2. The wave equation outside the structure is

wheres means the derivative, e.g3(®" (x) =dG(@(x)/dx.
Equations(7) and(8) can be written in the matrix form

A A
o] =T[5, ®

T(R)={ k . K y
(V2+K?)p(r)=0, for r>Ry, ) p—iG“’) (k-R) p—ie“‘)* (k_R)
with k= w/c. Similarly, the wave equations for the random @ ot
media betweelR; andRy are G¥(k-R) G (k-R)
. X 10
(V2+ki2)p(r)=0, for i=2,3,..N, k—>G(d),(k>R) k_>G(d)T"(k>R) (19
and P> P>

The matrixT is called the transfer matrix.
Ri-1<r<Ri, ®) For a system consisting of multiple interfaces, the trans-
with ki = w/c;. mission and reflection coefficients can be related through a
Before going into the details of the problem we make aconsecutive product of the transfer matrices at all the inter-
detour to consider a more general transmission through afaces. We denote the resulting matrix by. Therefore, the
arbitrary interface. The general solution to wave equationsvaves inside and outside the layered structure are related
such as those in Eq§l), (2), and(3) can be written as through
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Ain) (Aout) 105

=M , 11

Bin Bout ( )

where
N m m 100

11 12
M= T(R)= . o

iHl (R ( Mag mzz) =

Now we come back to the problem. Inside the most in- 107 |

ner interface, the transmitted wave from the source is subject
to reflection from the interface &;. The total wave can be
expressed as
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— Spherical
— = Cylindrical

10 : . ' '

p(r)=GD(kyr)+pgr(r), for 0<r<R,, (12) e 0 5 10 15 20 25 30
where the first term is the transmitted wave from the source, (b) — Spherical
and the second term is the reflected wave. Since the reflectec — - Cylindrical
wave must be finite at the origin, it can be written as 10*

Pr(1)=—QG (k1) + QG (kyr). w | | o [

10° 1], I I ! | 1

The negative sign in front of the first term asserts that the e :||I'||III ,|i!}||| i}’i|'lil}|!“li'|"l
reflected wave remains finite at the origin. Thus the total ‘l””i'” | | 1|| ”lllli | H'I{'H",
wave inside the layered structure is 10° WARERAR MU R m‘ MR

() =(1-Q)G(kyr)+ QG (kyr), (14)
which givesA;,=1—Q andB;,=Q. Another observation is 10_20 5 10 P 20 25 30
that there is no reflected wave outside the layered structure, kR

i.e., beyondRy, we have

Bou=0, for r>Ry. (15)
flection.
Taking these into consideration, Ed.1) becomes reflection
1- M1 Mpo| (A
( QQ :( )( gut_ (16) o301 2
My My, o oo |1-Q|?=
This equation yields the solutions
My
Q Mg+ My’
1 (23) in Ref. 14.
Aout= m11+_m21.

From these solutions, the radiated acoustic intensity can be TR=|A,d, RF=|Q|.

computed from

Iout(r):m

2m\3791
pC

ky paC

FIG. 2. Transmission and reflection coefficients as a function of frequency
in terms ofkR, for periodically layered cavitiesia) transmission andb)

oS | Aout| 2

2w\3°9 1 )
+(—) —|QJ*. (21

1

We note some typographical errors about Eg%), (22), and

(17) We define thunnormalized transmission TR) and re-
flection (RF) coefficients as follows

(22

It will become clear that when randomness is added, the
1 (273 9| An? transmission will be inhibited for all frequencies. The energy
e pd-1 - (18 will be confined inside the layered structure. With the ran-

dom layers, the energy flow in the radial direction decreases

The reflected intensity is

277) 3-d |Q|2

K T (19

1

IR(r):—Zplcl

Ill. NUMERICAL RESULTS

From Eq.(14), it states that the effective source transmission
intensity is

as the randomness or the number of layers increases, a useful
property for random layered cavities to transport energies.

The situation that the coating layers are periodically
placed for spherical cavities has been considered in Ref. 14.

1 [(27\%91-Q|? For the reader’s convenience, we replot the results in Fig. 2.
Is(r)= AT L (200 In the computation, the layered structure is constructed as
A—-M-W-M-W-—---—W, where A represents the air

Energy conservation states

inside the cavity, i.e., the air fills the spaceR;, M refers
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to the coating material whose acoustic impedance,is,,, . (2) N=100, 9,=2, h,=2 N (b) N=200, g,=2, h,=2
andW refers to another coating material and we assume it to 1 — om0 b — a0
be similar to that of the surrounding medium, i.e., the water. " ey 10° ey
We defineg=g,=pn/p andh=h,=c,/c. Here we take 10

the acoustic contrasts as,/p=2, c,,/c=2. The parameters E
for air arep,/p=0.00129,c,/c=0.23. The horizontal bars
represent the interfaces. There are 30 interfaces. The thick- o
ness of each layer is set to be identical and equalR,0.2
thus the total thickness of the layered materials is
29X 0.2R;.

Figure 2 indicates the followind1) Periodically layered & o e @ e T ea
structures select particular frequencies for transmission, i.e., = o=
at these frequencies the transmission is greatly enhat@ed. e
The spectral valleys in which transmission is greatly inhib- =
ited are equivalent to the forbidden bands observed in regular
lattice solids. These valleys are called forbidden frequency

(¢) N=100, g,=10, h,=5 (d) N=200, g,=10, h =5

bands. It is known from the previous results that these for- 0 10 2 30 0 10 20 2
bidden bands are caused by Bragg reflection for a periodic =~ (e)N=100,g,205,h =05 . (ON=200,g,205,h,=05
structure** (3) The reflection is also significantly enhanced ™ E——; ° —
at certain frequencies, and the separation of the reflection 1 " anto 10" ey

peaks is almost constar(@) It is interesting to see that the
results for both spherical and cylindrical geometries are
qualitatively similar. The transmission and reflection peaks
are only shifted slightly. In the latter discussion, we will
focus on the results for the cylindrical geometry, while the
relevant results for the spherical structure will be added only

when needed. IG. 3. Ti issi function of f in termkBf f
. . 3. Transmission as a function of frequency in term or ran-
Now we consider the randomly Iayered cases. In thécjomly layered cylindrical structures for various disorders, acoustic con-

simulation, the layered structures are constructed in a similafasts, and numbers of random layers. The results shown are for an arbitrary
way as in the periodical structures, except that the interfacesndom configuration.
are randomly placed. To be explicit, the layered structure is
A—-M-W-M-W-—---—W. There areN interfaces, i.e.,
there areN horizontal bars. When there is no randomnesstransmission still seems possible. This is due to the finiteness
the interfaces are equally spaced along the radial directiorin the number of layers. With increasing number of layers,
the distance between the interface®is 0.2R; . In this way,  the inhibition will be extended to low frequenci&8) Fixing
theith interface is located at=R;+ (i—1)D with i rang-  the number of layers and when the randomness is greater
ing from 1 toN. The level of randomness is controlled by the than a certain value, the effect of the variation in randomness
degree of allowing the interfaces to shift from their locationsis not prominent for high frequencies. This is shown by the
for underlying periodical structures. We define the random+tendency that the curves fa&x=0.3 and 1 merge at high
ness asA=|4|/D, where § is the range within which the frequencies, referring to the case in, for exampigand(e).
interfaces are allowed to shift from their locations when(4) Increasing the number of random layers, the transmission
there are no disorders. For example, the location ofithe will be reduced further. In fact, the transmission will decay
interface can be randomly varied with the range betweemxponentially with the number of random layers, as will be
R;+(i—1)D—6 and R;+(i—1)D+ 6. Clearly, the total shown later(5) The above features hold when the acoustic
random is the case that=1. parameters vary(6) For spherical geometry, we obtain re-
The effects of the level of randomness, numbers of ransults similar to Fig. 3, and because of this we do not show
dom layers, and acoustic contrast on the radial transmissiatie results here.
are shown in Fig. 3. As both spherical and cylindrical geom- By increasing the number of random layers, the trans-
etries have similar features, we only plot the results for themission will decrease exponentially. This is illustrated by
cylindrical structures here. The important message from th&ig. 4 for the casgg=h=2. Here the results are averaged
figure is that when the randomness is added, the transmissi@aver 200 random configurations. Here we show the transmis-
is suppressed for all frequencies. In other words, all energiesion versus the number of random layers for four frequencies
are confined inside the structure. In particular, Fig. 3 showsnd four randomness levels. Out of the four frequencies, two
the following: (1) When the randomness is introduced, theare located where the transmission is possible when no ran-
transmission becomes subdued; when the randomness demness is introduced, and one is within and one is within
small, the band effects from the underlying periodic struc-but close to the edge of the forbidden band of the underlying
tures are still noticeable for low frequency bands. This isperiodic structurdSee Fig. 2 It is clear that the increasing
shown by the case oA =0.3. (2) The inhibition is more randomness gradually decreases the transmission in the re-
significant for high frequencies. For low frequencies, thegimes in which the transmission is possible when there is no
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(8) kR,=5.5 (b) kR, =6 1.001 T
° ° o (a) Spherical
1.0008}
107
= £ e { _1.0006}
T Ao <]
i == o 1.0004} 3
10" 0 200 400 600 800 o 0 200 400 600 800 ‘l "‘ |
(c) kR =6.5 (d) kR, =8 1.0002+
10° 10°
107 107%° L
Eo Fo 0.9998 ’
TE SR B 7 10 15 20 25 30
R B e R B e 1.001
! 0’500 200 400 600 800 ! 072000 200 400 600 800
Number of Layers Number of Layers 1.0008 |
FIG. 4. Transmission as a function of the number of random layers for 1.0008}
various frequencies and different randomness o)
c? 1.0004 }
disorder. These regimes may be called pass bands for the :1 0002
underlying periodical structures. This property is also true ‘
for frequencies with, but in the vicinity of, the forbidden
band. Inside the forbidden bands, however, although the
transmission is inhibitedt increases with the added disorder 0.9998 . .
as compared to the case without disordgsse Fig. 4d)]. 10 15 20
This transmission enhancement property has also been ob- kR1

served in one-dimensional randomlly layered struct&tés.
The different tendencies of transmission variation for a pa
band and a stop band under the influence of increasing ra
domness may be due to similar mechanisms. In periodic

structures, the formation of pass bands is due to the coherent

addition of phase, whereas the formation of stop bands is duthe underlying periodic structure the localization length de-
to the coherent cancellation of phase. In random structuresreases with increasing frequency and disorders, while well
neither is perfect and thus one has the computed trends. Faiithin the forbidden bands the localization length increases
all frequencies within the pass or forbidden bands, the transwith increasing disorders, in accord with the trends of trans-
mission decreases exponentially with increasing number afission. This table also shows that the localization lengths
random layers, implying that the most energy is localizedare almost identical for the spherical and cylindrical geom-

SEIG. 5. The ratid1—Q|/|Q| vskR; . The solid and dashed lines are for the
I£|)eriodic and random structures, respectively. Hpreh=2 andN=100.

near the transmitting source. etries. Moreover, we also see that for the totally random
The relation between the transmission and the number afonfigurations, the energy confinements can be achieved by
layers can be approximately described as just a few random interfaces. Further simulation indicates
| that the localization length decreases with increasing acous-
| = —oge 2NN, (23 tic contrast.

r We also examine the reflection behavior. The conserva-

The parameteN, represents the effective number of randomtion law in Eq.(21) is rewritten as

interfaces to localize the energy, and is named the localiza- 3—d

. . . T 1 2 1

tion length in terms of the number of interfaces. The local- — _(|1_Q|2_|Q|2)= — _|Aou42_

ization lengths for the cases in Fig. 4 are summarized in 1 P1C1 k pC 24

Table I. It is clear from the table that within the pass bands of (24)
When the radiation is stopped, i.68,,{ — 0, we are thus led
to the relation

11-Q|*>~|QJ%. (25)

The numerical confirmation is shown in Fig. 5, in which the
ratio [1—Ql/|Q| is plotted as a function of frequency in
55 3557 429 180 7.7 3903 442 179 7.7 terms ofkR;. With reference to Fig. 2, we see that the ratio
6.0 1452 208 110 62 1437 204 111 63 4o iaies from one only for frequencies within the pass bands
6.5 124 88 69 55 124 88 70 54 i . . o
8.0 20 21 27 45 20 21 27 a5 forthe regular structures. With added disorders, this ratio is

virtually one for all frequencies.

3-d

TABLE I. Localization length vkR; for various randomnesa.

Spherical Cylindrical

KR\ A 0.1 0.3 0.5 1.0 0.1 0.3 0.5 1.0
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Air cavity Air cavity of magnitude smaller than unity, which reveals the impor-

(a) - —wr tance of the factog,h;% 2 in determiningT as explained

10° ' o TeR before.(3) The width, the position of the central frequencies,

G B

and the depth of the valleys of the transmition curves for the
two cases are almost the sarf®. Comparing Fig. €) with

Fig. 2(@) we find the depth of th& curve valley in Fig. 62

is roughly twice that of the TR curve in Fig(& as expected

0 * R %0 KR (remember thal=|A,,|? and TR=|A,). (5) For the sys-
Water cavity Water cavity tems of spherical shape and randomized systems we have
also checked thd+R=1 relation and got the undoubted
result.

Finally we note that the results in this article bear some
similarities to the Anderson localization in one dimensional
random systems in that no waves can propagate in such a
system??~2° The most significant difference is that in the
present case, the waves are localized near the transmitting
site. In the one-dimensional cases, however, the energy need
FIG. 6. Normalized transmissiofi and reflectionR for two cases already NOt be confined near the sourceand there is a stochastic
explained. The relatiof +R=1 is examined ir(b) and(d). resonance behaviorthat is absent from the present situa-
tions.

Up to now we have discussed the effects of the Iayereéiv' SUMMARY
structures on theainnormalizedtransmission and reflection In this article, we consider acoustic radiation from ran-
coefficients, TR=|A,,J and RF=|Q|, in various situations. domly layered cavities. The results in the present article con-
However, as a result of energy conservation, i.e., 4), vey the information that when a cavity is coated by random
the normalized transmission and reflectibrand R should  layers, virtually no energy can be radiated in the radial di-
satisfy the relatio + R=1,"? which we have not yet exam- rection. The waves are localized mainly inside the cavity,
ined. Before examining this relation we first emphasize theand its decay along the radial direction follows an exponen-
following facts: (1) The layered shells together with the sur- tial law. The results presented here may be useful for design-
rounding medium modifies the strength of the source to théng acoustic “lasers,” resonators, or energy transport. For
effective value (+ Q) [see Eq.14)], which can differ sig- example, suppose there is a cylindrical waveguide. The
nificantly from the original strength of unity2) The effec- propagating wave can be generically writteneis?f(r) in
tive source transmission intensity under this modification the cylindrical coordinates. When the guide is coated by ran-
got a factof 1— Q|?, as indicated in E¢(20). (3) In addition  dom materials, according to the results, no energy can be
to the layered structure itself the mass density raio radiated into the transverse directions, all energies will be
=p,/p and the wave speed ratio,=c, /c between the in- confined inside the guide and can only propagate in the lon-
nermost and outtermost media also influence the values dfitudinal direction, i.e.f(r) decreases with. By adjusting
lout» Is, andlg, as indicated in Eq918)—(20). the coating materials, the energy transport along the longitu-

Now we are ready to examine the relation numerically.dinal axis may be tuned to fit the applications. The results
By definition and from Eqs(17)—(20), T andR are given by may also be useful for designing possible “sonic fibers” in
the acoustic power ratios analogy with the recent all-dielectric optical fib&ror the

| Agul? spherical waveguides, various energies can be stored inside
T:glhcl"z|1 °g|2, the guides by adjusting the coating materials.
|Q|2 ACKNOWLEDGMENT
R= |1-Ql? (26) The work received support from the National Science
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. : « i ; Z. Ye and E. Ping, Solid State Commut00, 351(1996.
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