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Full-Wave Analysis of Discontinuities in 
Conductor-Backed Coplanar Waveguides 

Using the Method of Lines 
Shyh-Jong Chung, Member, ZEEE, and Tun-Ruey Chrang 

Absfmct- A three-dimensional analysis using the method of 
lines with nonequidistant discretization is described to investigate 
the discontinuities in shielded conductor-backed coplanar wave- 
guides (CBCPW’s). An extended approach concerning the treat- 
ment of the boundary conditions at the input and output ports 
is proposed in which the reflection and transmission coefficients 
can be directively obtained in a single calculation. The validity 
and convergence of the numerical results are checked and gaps 
with various shapes in CBCPW’s are analyzed and compared. 
Finally, the frequency response of a simple step discontinuity is 
calculated as an application to unsymmetrical structure. 

I. INTRODUCTION 

OPLANAR waveguides (CPW’s) possess several advan- C tages over the conventional microstrip lines for mono- 
lithic or hybrid MIC applications. First, the characteristic 
impedance is primarily determined by the ratio of slot width 
and the center conductor, so size reduction is possible with- 
out limit. Second, they are virtually nondispersive and the 
radiation caused by discontinuities is reduced greatly. For 
open-circuited microstrip and CPW with similar sizes, the 
radiation loss of the latter is 20 to 40 dB less than that 
of the former [ 11. Third, active devices can be easily inserted to 
the lines without using the via-hole technique. This simplifies 
the fabrication process and eliminates the inductions caused 
by the via holes. Fourth, it is easy to make transitions from 
CPW to other transmission lines, which makes for more 
flexibility in the design of circuits [2]. 

Several authors have paid their attentions to the analyses 
of the dispersion and impedance characteristics of coplanar 
waveguides, e.g., [3]-[6], but only a few tackle the discontinu- 
ity problems [7]-[Ill. Naghed and 1. Wolff [7] calculated the 
equivalent capacitance of coplanar waveguide discontinuities 
using the static finite difference method. Simons and Ponchack 
[8] obtained the equivalent circuit models by experiments. 
Among the full-wave analyses, Kuo and Itoh [9] applied the 
mode-matching technique to characterize the step junctions of 
shielded coplanar waveguides. Jackson [ 101 used the integral 
equation technique, with electric current bases, to consider the 
mode conversion at the open end of a finite-width conductor- 
back coplanar waveguide. By using the same technique, but 
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with the bases of equivalent magnetic currents in the slots, 
Drissi et al. [ l l ]  analyzed the equivalent resistance and reac- 
tance of a CPW short end. 

In this paper, we develop a Fortran program to study 
the discontinuities in the shielded conductor-backed coplanar 
waveguides using the method lines [12]. This method is 
well suited for analyzing three-dimensional resonators and 
periodic structures [13], [14]. But for the calculation of scat- 
tering parameters, additional treatment must be handled in 
the boundary conditions associated with the input and output 
ports. Worm [ 151 tackled the microstrip discontinuities by 
introducing inhomogeneous boundary conditions to the input 
port and assuming a short or an open circuit at the output port 
to obtain a homogeneous boundary condition. In his approach, 
three calculations of matrix equations were needed to obtain 
the whole scattering parameters. Chen and Gao [16] as well 
as Wu et al. [17] considered the same discontinuity problem, 
using hybrid boundary conditions. In the first case the incident 
and excited waves were tackled individually and in the second 
case only the reflection coefficient (&I) was shown. 

In the present analysis we use the inhomogeneous boundary 
conditions but treat the reflection and transmission coefficients 
as unknowns. Two more equations are searched and added to 
the matrix equation obtained by the conventional procedure of 
the method of lines. The reflection and transmission coefficient 
are directively obtained from a Gaussian elimination without 
backsubstitution. 

11. FORMULATION 

Fig. 1 shows a discontinuity structure in the transition of two 
shielded conductor-backed coplanar waveguides. The wave- 
guides are assumed to be single-moded and extend uniformly 
to infinity in the +z and -z  directions, respectively. Let a 
wave (odd mode) propagate toward the discontinuity from 
z = -00, some of the power is reflected back to z = -00, 
and the other transmitted to z = 00, both carried by the single 
propagation modes of the waveguides. Near the transition 
region higher order modes are excited, but vanish at the places 
far from the discontinuity. By considering the symmetries in 
the x direction of the structure and the incidence condition, 
one may put a perfect magnetic conductor (PMC) at the plane 
of 2 = A, and thus reduce the solving space to the half region 
of x > A. 
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Fig. 1. Discontinuity in shielded conductor-backed coplanar waveguides. 
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Fig. 2. Nonequidistant discretization in reduced solving region. 

The two independent field components E,  and H, in each 
separate layer shown in Fig. 1 should satisfy the Helmholtz 
equation 

where Ik stands for either E, or H,, and k 2  = IC: (upper 
layer) or ~,.k? (lower layer). 

By the method of lines [12], the fields are discretized in 
the x and z directions and evaluated on the e-lines (for E,  
component) and h-lines (for H, component). Fig. 2 shows 
the locations of these lines in the reduced half space (Ax < 
2A, 0 < z < 1). It is noticed that the lines are made denser in 
the discontinuity region to consider the large variation of the 
field. At the input port ( z  = 0) and the output port ( z  = Z), 
the excited higher order modes are assumed to vanish so that 
only the dominant modes exist. This is also assumed to hold 
at the planes of z = h,l and z = 1 - h,N shown in Fig. 2. 

The boundary conditions at the input port (z = 0) are 

E,(,=o = (1 - R)e,i (2) 

(3) 

and at the output port (z = 1) are 

where e,i(ez0), hzi(h,,), and are the modal fields 
and the propagation constant of the input (output) coplanar 
waveguide, which are calculated by the method of lines with 
one-dimensional discretization. R and T are the unknown 
voltage reflection coefficient and transmission coefficient, re- 
spectively. 

Based on the boundary condition (2)-(5) and following 
procedures similar to [12] and [15], one may obtain the finite 
difference expression for the derivations of E, and H, with 
respect to z as follows; 

where the vectors E, and H ,  are the sampled values of E,  
and H, on the e-lines and h-lines, respectivFly, which are 
unknowns; €3 denotes the Kronecker products; be = TZe€3Txe, 
b h  = TZh €3 r ,h;  rZe(rxe) and r , h ( r , h )  are diagonal ma- 
trices associated with the nonequidistant discretization in the 
z(x) direction, both turning into unit matrices for equidistant 
discretization [12] [15]; and 

with 0 being the zero vector and 

The finite difference expressions for the derivatives of E, 
and H,  with respect to x are the same as those in [15]. By 
the transformations En, = T",;'Ez and zn, = T",LIH,, 
one can transfer (1) to uncoupled differential equations: 
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' ( r z h  8 r;:) { T H : ,  - (1 - R)H', , }  (19) 

where f h  and T ,  denote the normalized eigenvector matrices 
of i),& and P,,, and A:, and A:e denote their eigenvalue 
(quasi-) diagonal matrices, respectively. A:, and A:, are the 
counterparts of A:, and 

By casting the solutions of (18) and (19) into the Maxwell's 
equations to obtain the other tangential field components, and 
employing the boundary condition at the interface of the two 
layers, one gets an inhomogeneous matrix equation in the 
transformed domain. This equation is then transformed back 
to the spatial domain to get 

in the x direction. 

After taking into account that the currents (tangential electric 
fields) vanish on the slot (conductor) region, a reduced matrix 
equation is obtained: 

(21) 

If we assume that the numbers of e-lines and h-lines on 
the slot region are Ne and N h ,  respectively, then there will 
be Ne + Nh linear equations in (21) but with Ne + Nh + 2 
unknowns. (Remember that R and T are treated as unknowns.) 
To obtain two additional equations we consider the currents at 
the planes of z = h,l and z = 1 - hzN. At these planes 

Jzlz=h,l = (e-jpzhzl - Rejpzhz1 >j,i (22) 
Jzlz=l-hzN = T, jpohzN j , ,  (23) 

where j , ;  and j , ,  are the z-directed modal currents of the 
input and output CPW's modes, respectively. 

With (22) and (23), we may get two more sets of equations 
from (20): one corresponds to the currents at the plane of 
z = h,l, the other to those of z = 1 - h,N. By averaging 
these two sets of equations individually, the required two 
equations are obtained. These equations together with (21) 
form a square matrix equations, which are then solved by the 
method of Gaussian elimination without backsubstitution to 
get the reflection coefficient R and transmission coefficient T .  

111. NUMERICAL RESULTS 

In this section we present some numerical results derived 
form the above formulation. The structure parameters are 

" I  

rad./mm 
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l (mm) 

Fig. 3. Phase of the transmission coefficient as a function of the distance ( I )  
between input and output ports. f = 15 GHz, j3; = Po = 0.835 rad/". 

wi = w, = 0.4 mm, and si = so = 0.1 mm. For the 
nonequidistant discretization, there are N, e-lines and N, + 1 
h-lines placed across the slot in the x direction, and Ng e-lines 
and Ng + 1jzi h-lines across the gap in the z direction, both 
with a constant subinterval between any two adjacent e- and h- 
lines. For lines outside the slot (in the x direction) and the gap 
(in the z direction), this subinterval increases as geometrical 
series with the quotient q of successive subintervals being a 
constant. ( q  equals 1.2, except for the lines in the x direction 
between the slot edge and the PMC, where q equals 1.1.) 

As a numerical check, Fig. 3 illustrates the variation of the 
phase delay from the input port to the output port for a through 
CPW, as a function of the distance between the two ports. 
Although not shown here, the magnitude of the transmission 
coefficient T is always calculated to 1, and that of the reflection 
coefficient R calculated to 0 (both exact to five digits). It 
is noticed that the results form a line with a slope equal to 
0.835 rad/", which is exactly the same as the propagation 
constant p of the incident mode. This verifies the validity of the 
programming and the treatment of the source-based boundary 
conditions. 

The convergence behavior of the reflection coefficient as 
a function of the interval size in the gap region is shown in 
Fig. 4. Here P, is fixed to 0.25 and h, = 0.7 h,. It can be 
seen that both of the curves converge to the same value as 
the interval size decreases. The curve of P, = 0.25 enters 
the 0.5% precision region at h, = 16 pm, where N, = 9 and 
Ng = 2. In the following calculations, we set P, = P, = 0.25, 
N, = 10, and the ratio of h,/h, is appropriately chosen from 
0.5 to 1.5 according to the gap width considered. 

For a gap discontinuity shown in the inset, Fig. 5 displays 
the variations of the reflection coefficient R and transmission 
coefficient T as a function of the gap width g. When g = 0, 
the gap vanishes, and all the power is transmitted to the 
output port (IRI = 0, IT1 = 1). As g increases, the gap 
begins to reflect the power. The larger the gap is, the more 
power is reflected back. Only about 1% of the power is 
transmitted when the widths of the gap and slot become equal 
(g = 0.1 mm). Notice that h makes little influence on the 
reflection and transmission coefficients for the range (of h) 

chosen as A = B = 1.778 mm, d = 0.254 mm, cr = 9.7, considered. In all the calculations, IR12+IT12 are always equal 
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Fig. 4. Convergence behavior of the reflection coefficient as a function of 
the interval size in the gap region ( h , )  and the edge parameter (Pz). Gap 
with g = 0.04 mm. P, = 0.25, h ,  = 0.7 h , .  f = 15 GHz. 

Fig. 6. Frequency dependence of the scattering parameters of gap disconti- 
nuities. f = 15 GHz. 
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Fig. 5. Scattering parameters of gap discontinuities as a function of the gap 
width (9) .  f = 15 GHz. 

to 1, which means that power is conserved. Actually, in our 
formulation the power conservation is satisfied no matter what 
the discontinuity is and how rough the discretization has been 
made. 

Fig. 6 shows the frequency dependence of the reflection and 
transmission coefficients for the same structure as in Fig. 5. At 
low frequency, the quasi-static incident field sees an opened 
circuit at the gap, thus almost all the power is reflected back. 
But as the frequency increases, the wave begins to tunnel the 
gap, which makes more power transmitted to the output port. 

The scattering characteristics of two closely spaced CPW 
step discontinuities are illustrated in Fig. 7. This configuration 
may be considered as a gap with a thin conductor connect- 
ing the center conductors of the input and output coplanar 
waveguides. Comparisons can be made between Figs. 7 and 
5. When the gap width g approaches 0, as expected, all the 
incident powers of both structures are transmitted to the output 
ports. But, due to the existence of the connecting conductor, 
the transmitted power in Fig. 7 remains high as g increases, 
which is in contrast to those in Fig. 5. For the same structure, 
Fig. 8 displays the variations of the reflection and transmission 
coefficients as a function of the gap depth h. It is seen that, 
although increased with the gap depth, the reflection power is 
less than 1% of the incident power even when the width of 

E 
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Fig. 7. Scattering parameters of two closely spaced step discontinuities as a 
function of the distance (9 )  between the two steps. f = 15 GHz. 

the connecting conductor shrinks to one fourth of that of the 
CPW’s center conductor. 

As an application to the unsymmetrical structure, Fig. 9 
shows the frequency responses of the reflection and transmis- 
sion coefficients of a step discontinuity. For each frequency 
considered, both the reflection and transmission coefficients 
are obtained in a single calculation. 

IV. CONCLUSIONS 

The method of lines with two-dimensional nonequidistant 
discretization has been used to analyze the discontinuities 
in the conductor-backed coplanar waveguides. An extended 
approach concerning the treatment of the boundary conditions 
at the input and output ports is proposed. In this approach, 
the reflection and transmission coefficients are casted into 
the system equations as unknowns. Two additional equations 
have been found from the current distributions near the two 
ports. The scattering coefficients are obtained directively from 
a Gaussian elimination without backsubstitution. The validity 
of the method has been verified. Numerical results for CPW 
gaps with and without stubs and for two closely spaced CPW 
step discontinuities have been analyzed and compared. 

In the programming of the formulation, a subroutine named 
“MASK is developed to characterize the pattern of the metal 
(solt) in the metal plane. For tackling different discontinuity 
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Fig. 8. Scattering parameters of two closely spaced step discontinuities as a 
function of the gap depth h defined in the inset. f = 15 GHz. 
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Fig. 9. Frequency dependences of the reflection and transmission coefficients 
of a step discontinuity. 

problems, one only need to revise “MASK.” This greatly 
reduces the analysis effort. By the present treatment of the 
boundary conditions, it is possible to deal with discontinuities 
in a multimoded shielded CPW, and this will be handled in 
the near future. 
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