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The twisted cube TQn, is derived by changing some connection of hyper-
cube Qn according to specific rules. Recently, many topological properties of
this variation cube are studied. In this paper, we consider a faulty twisted
n-cube with both edge and/or node faults. Let F be a subset of V(TQn) 5
E(TQn), we prove that TQn−F remains hamiltonian if |F| [ n−2. Moreover,
we prove that there exists a hamiltonian path in TQn−F joining any two
vertices u, v in V(TQn)−F if |F| [ n−3. The result is optimum in the sense
that the fault-tolerant hamiltonicity (fault-tolerant hamiltonian connectivity
respectively) of TQn is at most n−2 (n−3 respectively). © 2002 Elsevier Science (USA)

Key Words: hamiltonian; hamiltonian connected; fault-tolerant; twisted
cube.

0. INTRODUCTION AND NOTATION

The architecture of an interconnection network is usually represented by a graph.
We use graphs and networks interchangeably. There are a lot of mutually conflict-
ing requirements in designing the topology of interconnection networks. It is almost
impossible to design a network which is optimum from all aspects. One has to
design a suitable network depending on the requirements and its properties. The
hamiltonian property is one of the major requirements in designing the topology of
networks. Fault tolerance is also desirable in massive parallel systems that have
relatively high probability of failure.
A network is represented as an undirected graph in this paper. For the graph
theoretic definition and notation we follow [5]. G=(V, E) is a graph if V is a finite
set and E is a subset of {(a, b) | (a, b) is an unordered pair of V}. We say that V is
the vertex (or node) set and E is the edge (or link) set. Two nodes a and b are adja-
cent if (a, b) ¥ E. A path is a sequence of nodes such that two consecutive nodes are



adjacent. A path is represented by Ov0 Q v1 Q v2...Q vk−1P. We also write the path
Ov0 Q v1 Q v2...Q vk−1P as Ov0 Q P1 Q vi Q vi+1...Q vj Q P2 Q vt Q vt+1...Q vk−1P,
where P1=Ov0 Q v1...Q viP and P2=Ovj Q vj+1...Q vtP. A path is a hamiltonian
path if its nodes are distinct and they span V. A cycle is a path with at least three
nodes such that the first node is the same as the last node. A cycle is called a hamil-
tonian cycle if it traverses every node of G exactly once. A graph is hamiltonian if
it has a hamiltonian cycle. Let G0=(V0, E0) and G1=(V1, E1) be two graphs.
Following the definition [17], the Cartesian product of G0 and G1, denoted by
G0×G1, is the graph with the vertex set V0×V1 such that (x, y) ¥ E(G0×G1) with
x=(vx0 , v

x
1) and y=(v

y
0 , v

y
1) if and only if either (v

x
0=v

y
0 and (v

x
1 , v

y
1) ¥ E(G1)) or

(vy1=v
y
1 and (v

x
0 , v

y
0) ¥ E(G0)).

Since node faults and link faults may happen when a network is used, it is prac-
tically meaningful to consider faulty networks. The vertex fault-tolerant hamiltoni-
city and the edge fault-tolerant hamiltonicity, proposed by Hsieh et al. [10],
measure the performance of the hamiltonian property in the faulty networks. The
vertex fault-tolerant hamiltonicity, Hv(G), is defined to be the maximum integer k
such that G−F remains hamiltonian for every F … V(G) with |F| [ k if G is hamil-
tonian and undefined if otherwise. Obviously, Hv(G) [ d(G)−2 where d(G)=
min{deg(v) | v ¥ V(G)}. Similarly, the edge fault-tolerant hamiltonicity, He(G), is
defined to be the maximum integer k such that G−F remains hamiltonian for every
F … E(G) with |F| [ k if G is hamiltonian and undefined if otherwise. Again, it is
obvious that He(G) [ d(G)−2. Many topological properties of graphs have been
studied [9, 10, 12, 13, 15, 16]. In [10], Hsieh et al, showed that an arrangement
graph An, k remains hamiltonian if the parameters n and k satisfy some conditions
and the total number of edge and/or vertex faults is not more than a certain
amount, for example, k(n−k)−2, n−3, or k. In [12], Latif et al. demonstrated
that an n-dimensional hypercube with at most n−2 link faults is hamiltonian. In
[13], Rowley and Bose showed that, with slight modification, a base-d undirected
de Bruijn graph with at most d−1 edges faults is hamiltonian. In [15], Sung et al.
demonstrated that a double loop network, which is a digraph with n nodes and 2n
links, with a node or a link fault is hamiltonian. In [16], Tseng et al. proved that an
n-dimensional star graph with at most n−3 edge faults is hamiltonian. In [9],
Huang et al. proposed a preliminary result of our current study in this paper.
In this paper, we consider a more general parameter. The fault-tolerant hamilto-
nicity, Hf(G), is defined to be the maximum integer k such that G−F remains
hamiltonian for every F … V(G) 2 E(G) with |F| [ k if G is hamiltonian and
undefined if otherwise. Obviously, Hf(G) [min{Hv(G),He(G)} [ d(G)−2. For
technical reasons, we also introduce the term fault-tolerant hamiltonian connectivity.
A graph G is hamiltonian connected if there exists a hamiltonian path joining any
two vertices of G. The fault-tolerant hamiltonian connectivity, Ho

f(G), is defined to
be the maximum integer k such that G−F remains hamiltonian connected for every
F … V(G) 5 E(G) with |F| [ k if G is hamiltonian connected and undefined if
otherwise. Obviously, Ho

f(G) [ d(G)−3. A graph G is called k-fault-tolerant
hamiltonian (k-fault-tolerant hamiltonian connected, respectively) or simply k-hamil-
tonian (k-hamiltonian connected, respectively) if it remains hamiltonian (hamiltonian
connected, respectively), after removing at most k vertices and/or edges.
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Among all interconnection networks proposed in the literature, the hypercube Qn
is one of the most popular topologies. Twisted cube [8], TQn, is derived by chang-
ing some connections of hypercube Qn according to specific rules. Recently, many
topological properties of this variation cube have been studied: In [8], Hilbers et al.
first defined the twisted cubes. In [1], Abraham and Padmanabhan proved that the
twisted cube supported a better performance than that of the hypercube, although
it is an asymmetry network. In [2], Abuelrub and Bettayeb demonstrated that a
complete binary tree can be embedded in the twisted cube. In [6], Chang et al.
showed that the connectivity of the twisted cube TQn, is n, the wide diameter and
the fault diameter are Kn2L+2, and the twisted cube is a pancyclic network. All these
results indicate that the performance of TQn is better than that of Qn in the condi-
tions mentioned in those papers.
In this paper, we prove that TQn still remains hamiltonian (hamiltonian con-
nected, respectively), even if it has up to n−2 (n−3, respectively) edge and/or node
faults. This result is optimum in the sense that the fault-tolerant hamiltonicity (fault-
tolerant hamiltonian connectivity, respectively) of TQn is at most n−2 (n−3,
respectively). Therefore, Hf(TQn)=n−2 and Ho

f(TQn)=n−3, for n \ 3 and n is
odd. In contrast with the hypercube, the grid, the mesh, and the torus, the fault-
tolerant hamiltonicity property of the twisted cubes is much better. For hypercube
network Qn, it is proved in [12, 14] that the vertex fault-tolerant hamiltonicity of
Qn is equal to 0 and the edge fault-tolerant hamiltonicity of Qn is equal to n−2.
Thus, the fault-tolerant hamiltonicity of Qn is equal to 0 if n \ 2. For the grid [3],
the mesh [11], and the torus [4, 7] with 2n vertices, because they are bipartite
graphs, there are no hamiltonian cycles even if there is only one vertex fault in these
graphs. Therefore, the vertex fault-tolerant hamiltonicity of these graphs is equal to
0. So the fault-tolerant hamiltonicity of these graphs with 2n vertices is equal to 0.

1. TWISTED CUBE AND ITS PROPERTIES

The vertex set of the twisted n-cube TQn, is the set of all binary strings of length
n. Let u=un−1un−2...u1u0 be any vertex in TQn. For 0 [ i [ n−1, we define the ith
parity function Pi(u)=ui À ui−1 À · · · À u0, where À is the exclusive-or operation.
When twisted cube was first defined by Hibers et al. [8], the authors only con-
sidered twisted n-cubes TQn for odd values of n exclusively. Following the defini-
tion in [8], we can recursively define TQn as follows: A twisted 1-cube, TQ1, is a
complete graph with two vertices 0 and 1. Suppose that n \ 3. We can decompose
the vertices of TQn into four sets, TQ

0, 0
n−2, TQ

0, 1
n−2, TQ

1, 0
n−2 and TQ

1, 1
n−2 where TQ

i, j
n−2

consists of those vertices u with un−1=i and un−2=j. For each (i, j) ¥
{(0, 0), (0, 1), (1, 0), (1, 1)}, the induced subgraph of TQ i, jn−2 in TQn is isomorphic
to TQn−2. Edges which connect these four subtwisted cubes can be described as
follows: Any node U=un−1un−2 · · · u1u0 with Pn−3(U)=0 is connected to V=
vn−1vn−2 · · · v1v0, where V=ūn−1 ūn−2un−3 · · · u1u0 or V=ūn−1un−2un−3 · · · u1u0; a node
U with Pn−3(U)=1 is connected to V, where V=un−1 ūn−2un−3 · · · u1u0 or V=
ūn−1un−2un−3 · · · u1u0. TQ3 and TQ5 are shown in Figs. 1 and 2, respectively.
From the definition, we have the following lemma.
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FIG. 1. Twisted 3-cube TQ3.

Lemma 1.1. Both the subgraph induced by TQ0, 0n−2 2 TQ1, 0n−2 and the subgraph
induced by TQ0, 1n−2 2 TQ1, 1n−2 are isomorphic to TQn−2×K2 where K2 is the complete
graph with two vertices. Moreover, the edges joining TQ0, 0n−2 2 TQ1, 0n−2 and TQ0, 1n−2 2
TQ1, 1n−2 form a perfect matching of TQn.

2. HAMILTONIAN CYCLES IN FAULTY TWISTED CUBE

Let G0 and G1 be two graphs with the same number of nodes, and let M be an
arbitrary perfect matching between the nodes of G0 and G1; i.e.,M is a set of edges
connecting the nodes of G0 and G1 in a one to one fashion.In this paper, we define a
connection graph G0 ÀM G1 as follows, where G0=G1=G. It has two copies of G

FIG. 2. Twisted 5-cube TQ5 labeled with decimal number.
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connected by a matching M; these two copies of G, denoted by G0 and G1, are
called two sides of G0 ÀM G1 which has vertex set V(G0 ÀM G1)=V(G0) 2 V(G1)
and edge set E(G0 ÀM G1)=E(G0) 2 E(G1) 2M. The matching edges connecting
G0 and G1 are called crossing edges. For each node u of G, u0 and u1 are used to
denote its two copies in G0 and G1, and are called corresponding nodes of G0 and G1.
We also say that the corresponding node of u0 is u1. Observe that the product graph
G×K2 is also a connection graph G ÀM G. Using the above terminologies, G×K2
has two sides G0 and G1 connected by matching M={(u0, u1) | u ¥ V(G)}. Also
TQn=(TQn−2×K2) ÀM (TQn−2×K2) for a specific perfect matchingM.
We will prove that the twisted n-cube TQn, for n \ 3, has a hamiltonian cycle
even if it has up to n−2 vertex and/or edge faults. In fact, we will prove a stronger
result: TQn is (n−2)-hamiltonian and (n−3)-hamiltonian connected for n \ 3. The
basic idea of our proof is by induction on n, and the outline of our proof is as
follows: First, we observe that TQ3 is 1-hamiltonian and hamiltonian connected.
Then, assuming the result is true for TQk, for 3 [ k [ n, we show that TQn×K2 is
(n−1)-hamiltonian and (n−2)-hamiltonian connected. Finally, we prove that
TQn+2=(TQn×K2) ÀM (TQn×K2) is n-hamiltonian and (n−1)-hamiltonian con-
nected, and this completes the induction proof. To start our induction, let us look
at the twisted 3-cube TQ3.
In Figs. 3a and 3b, there are two different but equivalent layouts of TQ3, where
the binary node labels are represented by their corresponding decimal numbers. By
the node symmetry of TQ3, it is a simple matter to check that TQ3 is indeed hamil-
tonian connected. For example, ‘‘0-1-3-2-4-5-7-6,’’ ‘‘0-6-2-4-5-1-3-7,’’ ‘‘0-1-3-7-6-2-4-
5,’’ and ‘‘0-1-3-2-6-7-5-4’’ are hamiltonian paths between nodes and 6, 0 and 7, 0
and 5, and 0 and 4, respectively.
Again by the symmetry of Fig. 3b, we can check that TQ3 is 1-hamiltonian. For
example, if node 1 is faulty, then ‘‘0-6-2-3-7-5-4-0’’ is a fault-free hamiltonian cycle.
Moreover, ‘‘0-4-2-3-1-5-7-6-0’’ is a hamiltonian cycle not using edges (0, 1), (2, 6),
(3, 7) and (4, 5). Therefore, we have the following lemma.

Lemma 2.2. Twisted 3-cube TQ3 is hamiltonian connected and 1-hamiltonian.

As another example, TQ5 shown in Fig. 2 is labeled by a decimal number. We
can show that TQ5 is 2-hamiltonian connected and 3-hamiltonian by applying
Theorem 2.2. However, to get some intuition about the results, we check some cases

FIG. 3. Equivalent layout of TQ3.
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that TQ5 is 2-hamiltonian connected. For example, if nodes 0 and 16 are faulty, ‘‘1-
3-2-6-7-5-4-12-8-9-11-10-14-15-13-21-17-19-23-22-18-20-28-29-25-24-30-26-26-27-31’’
and ‘‘1-5-4-2-3-7-6-30-26-27-31-29-28-24-25-17-21-20-18-19-23-22-14-8-9-11-10-12-
13-15’’ are fault-free hamiltonian paths between nodes 1 and 31 and nodes 1 and
15, respectively. Moreover, we can also check that TQ5 is 3-hamiltonian. For
example, if nodes 0, 8, and 16 are faulty, then ‘‘1-3-2-6-7-5-4-20-21-23-22-18-19-17-
25-24-30-26-27-31-28-12-1 3-15-14-10-11-9-1’’ or ‘‘1-3-2-6-7-5-4-12-13-15-14-10-11-9-
25-24-30-26-27-31-29-28-20-21-23-22-18-19-17-1’’ is a fault-free hamiltonian cycle
in TQ5.
To prove Theorem 2.1, we shall make use of the structure of TQn×K2. Let TQ

0
n

and TQ1n be the two sides of TQn×K2; each side TQ
i
n (isomorphic to TQn) has 2

n

nodes, i=0, 1. And TQ0n and TQ
1
n are connected by matching corresponding nodes.

Recall that, for each node u of TQn, u0 and u1 are used to denote correspond-
ing nodes of TQ0n and TQ

1
n. These notations are used extensively throughout

Theorem 2.1.

Theorem 2.1. Let n be a fixed odd integer and n \ 3. If TQn is (n−2)-
hamiltonian and (n−3)-hamiltonian connected, then TQn×K2 is (n−1)-hamiltonian
and (n−2)-hamiltonian connected.

Proof. Let Ec be the set of crossing edges; that is, Ec={(u0, u1) | -u ¥ TQn}. Let
F be a faulty set, F0=F 5 TQ0n, F1=F 5 TQ1n, and Fc=F 5 Ec. And the cardi-
nalities of F0, F1, Fc are f0, f1, fc, respectively. In the following, we shall use the
notation HP i(u i, v i) (P i(u i, v i)respectively) to denote a hamiltonian path (a path,
respectively) in the graph TQ in−Fi joining u

i and v i for i=0, 1, and HC i to denote
a hamiltonian cycle in TQ in−Fi for i=0, 1.
First, we prove that TQn×K2 is (n−1)-hamiltonian. We will prove that
(TQn×K2)−F has a hamiltonian cycle if F … (V(TQn×K2) 2 E(TQn×K2)) and
|F|=n−1 with the following two cases.

Case 1.1. fi=n−1 for some i=0, 1. (All faults are on one side. See Fig. 4a).

Without loss of generality, we assume that f0=n−1. Since TQ
0
n is (n−2)-

hamiltonian, there exists a hamiltonian path HP0(u0, v0) joining some two vertices
u0, v0 in TQ0n−F. Since TQ

1
n is hamiltonian connected, there exists another hamil-

tonian path HP1(u1, v1) in TQ1n, where u
i and v1 are the corresponding nodes of u0

and v0, respectively. Then, Ou0QHP0(u0, v0)Q v0Q v1QHP1(v1, u1)Q u1Q u0P
forms a hamiltonian cycle in (TQn×K2)−F.

Case 1.2. fi [ n−2 for i=0, 1. (All faults are scattered over Ec, TQ
0
n, or TQ

1
n.

See Fig. 4b.)

Since 2n \ n, there exists an u0 ¥ V(TQ0n) such that u
0, (u0, u1), u1 ¨ F. Since TQ0n

(TQ1n, respectively) is (n−2)-hamiltonian, there exist at least n−f0 (n−f1, respec-
tively) edges incident to uo (u1, respectively) in which each edge is on some hamil-
tonian cycles in TQ0n−F0 (TQ

1
n−F1, respectively). Now, we have at least n−f0

(n−f1, respectively) hamiltonian cycles and each hamiltonian cycle passes through
an edge incident to u0 (u1) in TQ0n−F0 (TQ

1
n−F1, respectively). Because f0+f1+fc

=n−1, (n−f0)+(n−f1)=2n−f0−f1=n+(n−f0−f1)=n+1+fc > n. By the
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FIG. 4. Illustration for Theorem 2.1.

pigeonhole principle, u0 (u1, respectively) has a neighboring node v0r (v
1
r , respec-

tively) such that v0r and v
1
r are corresponding nodes, v

0
r , (v

0
r , v

1
r ), v

1
r ¨ F, and (u

0, v0r )
((u1, v1r ), respectively) are on some hamiltonian cycles HC

0 (HC1, respectively) in
TQ0n−F0 (TQ

1
n−F1, respectively). Therefore, HC

0 2HC1 2 {(u0, u1)}, {(v0, v0r )}−
{(u0, v0r ), (u

1, v1r )} forms a hamiltonian cycle in (TQn×K2)−F.
In the following, we prove that TQn×K2 is (n−2)-hamiltonian connected. We
will prove that there exists a fault-free hamiltonian path between every pair of ver-
tices x i and y j ¥ V((TQn×K2)−F), where F … (V(TQn×K2) 2 E(TQn×K2)) and
|F|=n−2, for i, j ¥ {0, 1}. We prove this part by the following cases.

Case 2.1. i ] j, and fk=n−2 for some k=0, 1. (x i and y j are on different
sides, and all faults are on one side. See Fig. 4c.)

Without loss of generality, we assume that i=0, j=1, and f0=n−2. Since TQ
0
n

is (n−2)-hamiltonian,there exists a hamiltonian cycle HC0 in TQ0n−F. Let
HC0=Ox0Q u0Q P0(u0, v0)Q v0Q x0P where u0, v0 are the vertices incident to x0

and P0(u0, v0) is a path between u0, vo. Because TQ1n is hamiltonian connected, there
exists a hamiltonian path between every pair of vertices of TQ1n. If u

1 ] y1, where u1

is the corresponding node of u0, then Ox0Q v0Q P0(v0, u0)Q u0Q u1Q
HP1(u1, y1)Q y1P forms a hamiltonian path joining xo and y1 in TQn×K2−F.
Otherwise, v1 ] y1 and then Ox0Q u0Q P0(u0, v0)Q v0Q v1QHP1(v1, y1)Q y1P
forms a hamiltonian path joining x0 and y1 in TQn×K2−F.
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Case 2.2. i ] j and both f0, f1 [ n−3. (x i and y j are on different sides, and all
faults are scattered over Ec, TQ

0
n, or TQ

1
n. See Fig. 4d.)

Without loss of generality, we assume that i=0 and j=1. Because 2n \ n+1 for
n \ 3, there exists vertices u0, u1 ¨ (F 2 {x0, y1}) and (u0, u1) ¨ F. Since both TQ0n
and TQ1n are (n−3)-hamiltonian connected, n−3 \ f0 and n−3 \ f1, the graphs
TQ0n−F0 and TQ

1
n−F1 are hamiltonian connected. Thus there exist hamiltonian

paths HP0(x0, u0) and HP1(u1, y1) in TQ0n−F0 and TQ
1
n−F1, respectively. There-

fore, Ox0QHP0(x0, u0)Q u0Q u1QHP1(u1, y1)Q y1P forms a hamiltonian path
joining x0 and y1 in TQn×K2−F.

Case 2.3. i=j and fi=n−2. (x i, y j, and all faults are on the same side. See
Fig. 4c.)

Without loss of generality, we assume that i=j=0. Let f be a fault of F. Since
TQ0n is (n−3)-hamiltonian connected, TQ

0
n−(F−{f}) contains a hamiltonian path

HP0(x0, y0). Thus TQ0n−F contains two node-disjoint paths P
0(x0, u0) and

P0(v0, y0) where P0(x0, u0) 2 P0(v0, y0)=HP0(x0, y0)−{f}. Because TQ1n is
(n−3)-hamiltonian connected and n−3 \ 0, there exists a hamiltonian path
HP1(u1, v1) in TQ1n−F1. Therefore, Ox0Q P0(x0, u0)Q u0Q u1QHP1(u1, v1)Q
v1Q v0Q P0(v0, y0)Q y0P forms a hamiltonian path in (TQn×K2)−F.

Case 2.4. i=j and fi [ n−3. (x i and y i are on the same side, but not all faults
are on the same side with x i and y i. See Fig. 4f.)

This case can be proved in a similar way to Case 1.2. Without loss of generality,
we assume that i=j=0. Because 2n \ n+1, there exists u0, u1 ¨ (F 2 {x0, y0}) such
that (u0, u1) ¨ F. Since TQ0n is (n−3)-hamiltonian connected and n−3 \ f0, there
exist n−1−f0 edges incident to u0 in which each edge is on some hamiltonian path
HP0(x0, y0) in TQ0n−F0. On the other hand, because TQ

1
n is (n−2)-hamiltonian

and n−2 \ f1, there exist n−f1 edges incident to u1 in which each edge is on some
hamiltonian cycle in TQ1n−F1. Since f0+f1+fc=n−2, there exist n−1−f0+
n−f1−n=1+fc vertices, denoted by a

0
i for 1 [ i [ 1+fc, such that (u

0, a0i ) is on
some hamiltonian path in TQ0n−F0 and (u

1, a1i ) is on some hamiltonian cycle in
TQ1n−F1. Hence, there exists an edge (a

0, a1) ¨ F such that (u0, a0) is on some
hamiltonian path HP0(x0, y0) in TQ0n−F0 and (u

1, a1) is on some hamiltonian
cycle HC1 in TQ1n−F1. Therefore, (HP

0(x0, y0) 2HC1 2 {(u0, u1), (a0, a1)})−
{(u0, a0), (u1, a1)} forms a hamiltonian path joining x0 and y0 in (TQn×K2)−F.
This theorem is proved. L

From Lemma 1.1, TQn+2=(TQn×K2) ÀM (TQn×K2) for some perfect match-
ing M. Let G be the graph TQn×K2. The graph G ÀM G has two copies of G,
denoted by G0 and G1. So G0 ÀM G1=G ÀM G. Moreover, the graph G0 (G1,
respectively) itself has two copies of TQn, denoted by TQ

00
n and TQ

10
n (TQ

01
n and

TQ11n , respectively).
Remarks about the notations used below are required. In Theorem 2.1, we con-
sider the graph TQn×K2=TQ

0
n ÀM TQ1n, where TQ0n and TQ1n are connected by

matching corresponding nodes. That is, M={(u0, u1) | -u ¥ TQn}, where we use u0
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and u1 to denote corresponding nodes of TQ0n and TQ
1
n. In the following theorem,

we consider the graph TQn+2=G0 ÀM G1, where G=TQn×K2. The matching M,
however, does not connect corresponding nodes of G0 and G1; it does connect the
nodes of G0 and G1 in pair and such a pair of nodes are called matching nodes.
Instead of using superscript, e.g., u0 and u1, we shall use small letters with subscript
0 (subscript 1, respectively) to denote the nodes of G0 (G1, respectively), e.g., x0 and
u0, etc. (x1 and u1, etc., respectively). The same letters with different subscripts 0
and 1 are used to denote matching nodes; e.g., the matching node of u0 is u1. Again,
these notations are used extensively throughout the following theorem.

Theorem 2.2. Let n be a fixed odd integer for n \ 3. If TQn is (n−2)-
hamiltonian and (n−3)-hamiltonian connected, then G0 ÀM G1 is n-hamiltonian and
(n−1)-hamiltonian connected, where G0=G1=G=TQn×K2.

FIG. 5. Illustration for Theorem 2.2.
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Proof. Applying Theorem 2.1, we know that G=TQn×K2 is (n−1)-hamilto-
nian and (n−2)-hamiltonian connected. Let Ec be the set of crossing edges; that is,
Ec={(u0, u1) | (u0, u1) ¥M}. Let F be a faulty set, F0=F 5 G0, F1=F 5 G1, and
Fc=F 5 Ec. And the cardinalities of F0, F1, Fc are f0, f1, fc, respectively. In the
following, we shall use the notation HP i(ui, vi) (P i(ui, vi), respectively) to denote a
hamiltonian path (a path, respectively) in the graph G i−Fi joining ui and vi for
i=0, 1, and HC i to denote a hamiltonian cycle in G i−Fi for i=0, 1.
In order to prove that G0 ÀM G1 is n-hamiltonian, we will prove that
(G0 ÀM G1)−F has a hamiltonian cycle, if F … (V(G0 ÀM G1) 2 E(G0 ÀM G1)) and
|F|=n with the following two cases.

Case 1.1. fi=n for some i=0, 1. (All faults are on one side. See Fig. 5a.)

Without loss of generality, we assume that f0=n. Since G0=TQn×K2 is
(n−1)-hamiltonian, there exists a hamiltonian path HP0(u0, v0) joining some two
vertices u0, v0 in G0−F. Since G1=TQn×K2 is hamiltonian connected, there exists
another hamiltonian path HP1(u1, v1), where u1 and v1 are the matching nodes of
u0 and v0. Then, Ou0 QHP0(u0, v0)Q v0 Q v1 QHP1(v1, u1)Q u1 Q u0P forms a
hamiltonian cycle in (G0 ÀM G1)−F.

Case 1.2. fi [ n−1 for both i=0, 1. (All faults are scattered over Ec, G0, or
G1. See Fig. 5b.)

Without loss of generality, we assume that f0 \ f1. Because f0+f1 [ n and
f1 [ f0 [ n−1 for n \ 3, therefore f1 [ n−2. Since G0 is (n−1)-hamiltonian
and n−1 \ f0, there exists a hamiltonian cycle HC0 in G0−F0. And G1 is
(n−2)-hamiltonian connected and n−2 \ f1, G1−F1 is a hamiltonian-connected
graph. Since 2n+1 > 2n+1 for n \ 3, there exist two vertices u0, v0 such that edge
(u0, v0) is on HC0 and u0, v0, u1, v1, (u0, u1), (v0, v1) ¨ F. Thus, there exists a
hamiltonian path HP1(v1, u1). Let HC0=Ov0 Q u0 Q P0(u0, v0)Q v0P. Then,
Ou0 Q P0(u0, v0)Q v0 Q v1 QHP1(v1, u1)Q u1 Q u0P forms a hamiltonian cycle in
(G0 ÀM G1)−F.
Then, we prove that (G0 ÀM G1) is (n−1)-hamiltonian connected. In other
words, we will prove that there exists a fault-free hamiltonian path between every
pair of vertices xi and yj ¥ (V(G0 ÀM G1)−F), where F … (V(G0 ÀM G1) 2
E(G0 ÀM G1)) and |F|=n−1 for i, j ¥ {0, 1}. We prove this part by the following
cases.

Case 2.1. i ] j and fk=n−1 for some k=0, 1. (xi and yj are on different
sides, and all faults are on one side. See Fig. 5c.)

Without loss of generality, we assume that i=0, j=1, and f0=n−1. Since G0 is
(n−1)-hamiltonian, there exists a hamiltonian cycle HC0 in G0−F. Let HC0=
Ox0 Q u0 Q P0(u0, v0)Q v0 Q x0P, in which u0, v0 are the vertices incident to x0 and
P0(u0, v0) is a path between u0, v0. Because G1 is hamiltonian connected, there exists
a hamiltonian path between every pair of vertices of G1. If u1 ] y1 where u1 is the
matching nodes of u0, then Ox0 Q v0 Q P0(v0, u0)Q u0 Q u1 QHP1(u1, y1)Q y1P
forms a hamiltonian path joining x0 and y1 in (G0 ÀM G1)−F. Otherwise, v1 ] y1
where v1 is in the matching nodes of v0, and then Ox0 Q u0 Q P0(u0, v0)Q v0 Q v1 Q
HP1(v1, y1)Q y1P forms a hamiltonian path joining x0 and y1 in (G0 ÀM G1)−F.
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Case 2.2. i ] j and both f0, f1 [ n−2. (xi and yj are on different sides, and all
faults are scattered over Ec, G0, or G1. See Fig. 5d.)

Without loss of generality, we assume that i=0 and j=1. Because 2n+1 \ n+2
for n \ 3, there exist two vertices u0, u1 ¨ (F 2 {x0, y1}) and (u0, u1) ¨ F. Since both
G0 and G1 are (n−2)-hamiltonian connected, and n−2 \ f0 and n−2 \ f1, the
graphs G0−F0 and G1−F1 are hamiltonian connected. Thus there exist hamiltonian
paths HP0(x0, u0) and HP1(u1, y1) in G0 and G1, respectively. Therefore,
Ox0 QHP0(x0, u0)Q u0 Q u1 QHP1(u1, y1)Q y1P forms a hamiltonian path
joining x0 and y1 in (G0 ÀM G1)−F.

Case 2.3. i=j and fi=n−1. (xi, yj, and all faults are on the same side. See
Fig. 5e.)

Without loss of generality, we assume that i=j=0. Let w be a fault of F. Since
G0 is (n−2)-hamiltonian connected, G0−(F−{w}) contains a hamiltonian path
HP0(x0, y0). Thus G0−F contains two node-disjoint paths P0(x0, u0) and P0(v0, y0)
where P0(x0, u0) 2 P0(v0, y0)=HP0(x0, y0)−{w}. Because G1 is (n−2)-hamilto-
nian connected and n−2 \ 0, there exists a hamiltonian path HP1(u1, v1) in G1.
Therefore, Ox0 Q Po(x0, u0)Q u0 Q u1 QHP1(u1, v1)Q v1 Q v0 Q P0(v0, y0)Q y0P
forms a hamiltonian path of (G0 ÀM G1)−F.

Case 2.4. i=j and both f0, f1 [ n−2. (xi and yj are on the same side, and all
faults are scattered over Ec, G0, or G1. See Fig. 5f.)

Without loss of generality, we may assume that i=j=0. Since G0 is
(n−2)-hamiltonian connected and n−2 \ f0, there exists a hamiltonian path
HP0(x0, y0). Because 2n+1 \ 2n for n \ 3, there exists an edge (u0, v0) on the path
HP0(x0, y0) such that u1, v1, (u0, u1), and (v0, v1) are not in F. Since G1 is
(n−2)-hamiltonian connected and n−2 \ f1, there exists a hamiltonian path
HP1(u1, v1) in G1. Thus, (HP0(x0, y0)2 {(u0, u1), (v0, v1)}2HP1(u1, v1))−{(u0, v0)}
forms a hamiltonian path joining x0 and y0 in (G0 ÀM G1)−F.

Case 2.5. i=j and fk=n−1 for k ] i. (xi and yj are on the same side, but all
faults are on the other side.)

Without loss of generality, we may assume that i=j=0 and f1=n−1. We will
prove this case by the following subcases.

Subcase 2.5.1. x1 ¨ F or y1 ¨ F, where x1 and y1 are the matching nodes of x0
and y0, respectively. Without loss of generality, we may assume that x1 ¨ F. (See
Fig. 5g.)

Since G1 is (n−1)-hamiltonian, there exists a hamiltonian cycle HC1=
Ox1 Q u1 Q P1(u1, v1)Q v1 Q x1P. Because G0 is (n−2)-hamiltonian and n−2 \ 1,
G0−{x0} is a hamiltonian-connected graph. Let HP0(z0, y0) denote a hamiltonian
path joining z0 and y0 in G0−{x0} for every node z0 in G0−{x0}. If u0 ] y0, where
u0 is the matching nodes of u1, then Ox0 Q x1 Q v1 Q P1(v1, u1)Q u1 Q u0 Q
HP0(u0, y0)Q y0P forms a hamiltonian path in (G0 ÀM G1)−F. Otherwise, v0 ] y0,
and then Ox0 Q x1 Q u1 Q P1(u1, v1)Q v1 Q v0 QHP0(v0, y0)Q y0P forms a hamil-
tonian path in (G0 ÀM G1)−F.
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Subcase 2.5.2. x1 ¥ F and y1 ¥ F. The discussion of this case is a little compli-
cated. Since G1 is (n−1)-hamiltonian and f1=n−1, there exists a hamiltonian
cycle HC1 in G1−F1. Moreover, there are two consecutive nodes a1 and b1 on this
cycle HC1, such that their matching nodes a0 and b0 are on different sides of
G0=TQn×K2, say a0 ¥ TQ

00
n and b0 ¥ TQ

10
n , where TQ

00
n and TQ

10
n are the two

sides of G0. Let HC1=Oa1 Q P1(a1, b1)Q b1 Q a1P.

Consider the case that x0 and y0 are on different sides of G0=TQn×K2. Without
loss of generality, we may assume that x0 ¥ TQ

00
n and y0 ¥ TQ

10
n (See Fig. 5h.) Since

TQn is hamiltonian connected, there exist hamiltonian paths HP00(x0, a0) and
HP10(y0, b0) in TQ

00
n and TQ

10
n , respectively. Thus Ox0 QHP

00(x0, a0)Q a0 Q a1 Q
P1(a1, b1)Q b1 Q b0 QHP10(b0, y0)Q y0P forms a hamiltonian path joining x0 and
y0 in (G0 ÀM G1)−F.
Next, consider that x0 and y0 are on the same side of G0=TQn×K2. Without
loss of generality, we may assume that x0, y0 ¥ TQ

00
n . (See Fig. 5i.)

We need to define notations before further discussions. The graph G0=TQn×K2
has two sides, denoted by TQ00n and TQ

10
n . For each node u00 (u10, respectively) in

TQ00n (TQ
10
n , respectively), its matching node with respect to the two sides TQ

00
n and

TQ10n is denoted by u10 (u00, respectively).
Since TQn is (n−3)-hamiltonian connected and n−3 \ 0, there exists a hamilto-
nian path HP00(x0, y0)=Ox0 Q P00(x0, u00)Q u00 Q a0 Q v00 Q P00(v00, y0)Q y0P,
where u00 and v00 are the two adjacent nodes of a0 on this path. Let HP10(z10, b0)
denote a hamiltonian path joining z10 and b0 in TQ

10
n . If u10 ] b0, where u10 is the

matching node of u00 with respect to the two sides TQ
00
n and TQ

10
n , then

Ox0 Q P00(x0 , u00)Q u00 Q u10 QHP10(u10 , b0)Q b0 Q b1 Q P1(b1 , a1)Q a1 Q a0 Q
v00 Q P00(v00, y0)Q y0P forms a hamiltonian path joining x0 and y0 in
(G0 ÀM G1)−F. Otherwise, v10 ] b0 where v10 is the matching node of v00 with
respect to the two sides TQ00n and TQ

10
n , and then Ox0 Q P00(x0, u00)Q u00 Q a0 Q

a1 Q P1(a1, b1)Q b1 Q b0 QHP10(b0, v10)Q v10 Q v00 Q P00(v00, y0)Q y0P forms a
hamiltonian path joining x0 and y0 in (G0 ÀM G1)−F. This completes the induction
proof. L

Now we are ready to prove our main theorem:

Theorem 2.3. The twisted n-cube TQn is (n−2)-hamiltonian and (n−3)-hamil-
tonian connected, for all odd integer n \ 3.

Proof. By Lemma 2.2, TQ3 is 1-hamiltonian and hamiltonian connected. And
TQn+2=(TQn×K2) ÀM (TQn×K2) for some perfect matching M. By Theorems
2.1 and 2.2, and by a simple induction, this theorem follows. L

It is obvious that the fault-tolerant hamiltonicity Hf(G) (the fault-tolerant
hamiltonian connectivity Ho

f(G), respectively) of a graph G is no greater than
d(G)−2 (d(G)−3, respectively), and TQn is a regular graph of degree n. From
Theorem 2.3 above, we have the following result.

Corollary 2.1. Hf(TQn)=n−2 and Ho
f(TQn)=n−3, for all odd integer

n \ 3.

602 HUANG ET AL.



3. CONCLUSIONS

In this paper, we consider a faulty twisted n-cube TQn with edge and/or node
faults. We prove that TQn remains hamiltonian (hamiltonian connected, respec-
tively), even if it has up to n−2 (n−3, respectively) edge and/or node faults. This
result is optimum in the sense that the fault-tolerant hamiltonicity (the fault-
tolerant hamiltonian connectivity, respectively) of TQn is at most n−2 (n−3,
respectively). As far as the hypercube network Qn is concerned, its vertex fault-
tolerant hamiltonicity is 0 and edge fault-tolerant hamiltonicity is n−2, for n \ 2.
Recently, many topological properties of the twisted n-cube have been studied [1, 2,
6, 8, 9]. All these results indicate that the performance of TQn is better than that of
the hypercube in many aspects. Therefore, the twisted n-cube is an attractive alter-
native to the hypercube network.
As noted in this paper, we observe that the fault-tolerant hamiltonicity and the
fault-tolerant hamiltonian connectivity are essential parameters of an interconnec-
tion network [10]. It would be an interesting issue to study more on this subject.
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