IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 4, APRIL 2002

373

A Secure Fault-Tolerant
Conference-Key Agreement Protocol

Wen-Guey Tzeng

Abstract—When a group of people want to communicate securely over an open network, they run a conference-key protocol to
establish a common conference key K such that all their communications thereafter are encrypted with the key K. In this paper, we
propose a provably secure fault-tolerant conference-key agreement protocol under the authenticated broadcast channel model. We
show that a passive adversary gets zero knowledge about the conference key established by the honest participants under the
assumption of a variant Diffie-Hellman decision problem. We also show that the honest participants can agree on a common
conference key no matter how many participants are malicious. Furthermore, we show that even if the broadcast channel is not
authenticated, our protocol is secure against impersonators under the random oracle model.

Index Terms—Conference key, provable security, fault tolerance.

1 INTRODUCTION

WHEN a group of people want to communicate securely
over an open network, they run a conference-key
protocol to establish a common conference key K such that
all their communications thereafter are encrypted with
key K. The first type of conference-key protocol, called
conference-key distribution, is that a chairman selects a
conference key and distributes the key to the participants.
The second type of conference-key protocol, called con-
ference-key agreement, is that all participants together
compute a common key without a chairman. The latter one
is suitable for distributed environments. Conference-key
protocols are also designed for various types of network
connection, such as the ring connection, the star connection,
the broadcast connection, etc. The conference keys of a
conference-key protocol are either predistributed or
dynamic. The conference key is fixed for a particular group
of participants in a predistributed conference-key protocol,
while it is different for each session in a dynamic
conference-key protocol. The predistributed conference-
key protocol often lacks of flexibility.

In this paper, we propose a provably secure fault-
tolerant conference-key agreement protocol under the
authenticated broadcast channel model. The adversary that
attacks our protocol can be either active or passive. An
active adversary (malicious participant) tries to disrupt
establishment of a common conference key among the
honest participants, while a passive adversary tries to learn
the conference key by listening to the communication of
participants. We tolerate the case that a malicious partici-
pant gets the conference key since the malicious participant
can simply behave properly to get the key. We consider

o The author is with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan 30050.
E-mail: tzeng@cis.nctu.edu.tw.

Manuscript received 27 Jan. 2000; revised 25 July 2001; accepted 26 July
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111322.

fault tolerance because, sometimes, the conference is
emergent and delay or destruction of the conference can
cause serious damage. We show that a passive adversary
gets no information (zero knowledge) about the common
conference key established by the honest participants under
the assumption of a variant Diffie-Hellman decision
problem. We also show that the honest participants can
agree on a common conference key no matter how many
participants are malicious.

We can relax the requirement of the broadcast channel
being authenticated. An attacker may try to impersonate a
participant if the broadcast channel is not authenticated.
Following a general practice in provable security, we show
that our protocol is secure against impersonators in the
random oracle model [1]. The basic technique is to use a
signature scheme that is “existentially unforgeable” [24].

Computing a conference key is a special case of secure
multiparty computation in which a group of people
evaluate a function f(ki, ks, --) securely, with each person
possessing a private input k;. Therefore, it is possible to
have a secure conference-key agreement protocol by the
generic construction for secure multiparty computation.
However, there are some distinct features in the conference-
key agreement protocol. First, there are no private channels
between participants, which is a general assumption in
secure multiparty computation. Second, a cheater’s goal in a
conference-key agreement protocol is to disrupt conference-
key establishment among the honest participants. This is
quite different from the goal of cheaters in secure multi-
party computation. Third, in multiparty computation, when
a cheater is found, the cheater’s secret z;, which is shared
into others, is recovered by honest participants so that
evaluation can proceed. In conference-key agreement, since
a cheater’s (session) secret is not a necessity in computing a
conference key, the cheater is simply excluded from
participating when found.

There has been intensive research on conference-key
protocols. For example, conference-key distribution proto-
cols (with a chairman) have been studied in [4], [10], [11],

0018-9340/02/$17.00 © 2002 IEEE



374

[18], predistributed conference-key protocols have been
studied in [5], [6], [21], and conference-key agreement
protocols have been studied in [16], [18], [19], [30], [31].
Most proposed protocols focus on privacy of conference
keys and message efficiency for various types of network
connection. Nevertheless, they do not have the capability of
fault tolerance so that a malicious participant can easily
mislead other participants to compute different keys. On
the other hand, Klein et al. [17] proposed a fault-tolerant
conference-key agreement protocol. However, the protocol
is quite inefficient and its security is not rigidly proven.
Burmester and Desmedt [8] proposed an efficient (two-
round) protocol (Protocol 3) for the broadcast channel with
ki, ko, .. ky) = ghtethekatthki mod p. They showed that
an eavesdropper cannot compute the common conference
key if the Diffie-Hellman decision problem is intractable. In
contrast, an eavesdropper gets zero knowledge about the
common conference key in our protocol if a variant Diffie-
Hellman decision problem is hard. In the modified Protocol 7
(authenticated key distribution), they used an interactive
proof for authenticating sent messages to show that the
protocol is secure against impersonators. Nevertheless, the
number of rounds in the protocol is proportional to the
number of participants. Furthermore, both protocols cannot
withstand the attack of malicious participants.

2 MoDEL

A user in the system is a probabilistic polynomial-time
Turing machine. Each user U; has a secret information z;
and a corresponding public information y;. The system has
a public directory that records the system’s public para-
meters and each user’s public information that can be
accessed by everyone. All users are connected by an
authenticated broadcast network such that the messages
sent on the network can be identified and cannot be altered,
blocked, or delayed. Therefore, everyone can send and
receive the message on the network without interruption.
No private channel exists between users. A group of users
who want to establish a conference key is called the set of
participants. A participant may be malicious in any way.
There are two types of adversaries that are both
probabilistic polynomial-time Turing machines. A passive
adversary who is not a participant listens to the broadcast
channel and tries to learn the conference key established by
the honest participants. An active adversary who is a
participant tries to disrupt establishment of a common
conference key among the honest participants. An active
adversary mainly sends “malicious” messages into the
broadcast channel to fool an honest participant into
believing that he has computed the same conference key
as that of other honest participants, while he has not indeed.
We don’t care about the possibility that two or more
cheating participants collaborate and result in one of them
or other malicious participants not being able to compute
the key. This includes the following case: A malicious
participant U; sends “malicious” messages, but all honest
participants compute the same key. Another malicious
participant, U;, though receiving an incorrect key, still
claims that he has received the correct key. We tolerate this

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 4, APRIL 2002
case since this type of collaboration between U; and U; does
no harm to the honest participants.

A conference-key agreement protocol is secure if it can
withstand attacks of passive and active adversaries. For
security against a passive adversary, we mean that the
adversary alone can construct a view that is computation-
ally indistinguishable from the real conversation occurred
among the participants. For security against an active
adversary, we mean that if the adversary does not follow
the protocol in any way, the probability that he can disrupt
establishment of a common conference key among honest
participants is negligible.

3 DESIGN PRINCIPLES

Our protocol is component-based, that is, our protocol uses
cryptographic modules as building blocks. Component-
based design has many merits. First, because of using
modular design, it is easy to upgrade the components of the
protocol in case better components, in either efficiency, cost,
or security, are available. Also, in case security flaws are
found in a component, we can replace the component only
and need not abandon the whole established system.
Second, it is easier to apply strong security analysis on the
protocol. Since each component has a single security goal,
we can analyze each component in the focused security
features. Third, it is flexible and suitable for use in a large
system. A conference may be called among the participants
all over the world. Flexibility of component-based design
allows each user to choose adequate components for each
conference session. Therefore, component-based design is
suitable for large and heterogeneous systems.

The idea of our design is to decompose the target
function f of the secure multiparty computation into
n subfunctions f;, 1 <4 < n. Each participant, U;, handles
one subfunction, f;, independently. If participant U; sends
out messages such that any other participant cannot
evaluate f;, U; is a cheater. The other participants exclude
U; from participation and restart the protocol. This process
continues until all cheaters are found.

Suppose that each participant U; holds a secret, z;,
1 <i < n. They need to evaluate a function f to get the
conference key K = f(ki, ks, ..., k,), where k; is a randomly
selected secret (subkey) of U; for the conference session. In
our protocol, we let each participant U; handle a function f;
and the conference-key function is

f(khk?? .. '7k7l) = Efi(klak27 .. '7k7z)7

where f;(ki, ko, ..., k) = k;. Since the result k; of f; is
independent of other parameters k;, j # ¢, participant U; can
broadcast messages so that other participants can evaluate
fi in a secure computation way.

As mentioned previously, our protocol is component-
based. It contains the following components:

1. Component of secure multiparty computation for f;,

2. Component of k; commitment and verification.

Our conference key agreement protocol has the follow-
ing four stages:



TZENG: A SECURE FAULT-TOLERANT CONFERENCE-KEY AGREEMENT PROTOCOL 375

1. Secret distribution and commitment: Using the
paradigm of secure multiparty computation, each
participant U; broadcasts ; so that any participant
U; can compute fi(...,k;,...) =k; from @; and his
secret ;. Since the computation is secure, no passive
adversary shall get any information about ;. Also,
U; broadcasts ¢; that commits to k; so that other
participants can verify the correctness of k;.

2. Subkey computation and verification: U; computes
K of all other participants Uj, j # i. When U; gets &,
he can use ¢; to check whether ¥/ is correct.

3. Fault detection: If the above verification is not
correct, U; asks U; to reveal information about
commitment ¢ and messages @; so that all partici-
pants can determine whether U; is cheating. If U;
detects a cheater, he deletes the cheater from his
participant set and restarts the protocol.

4. Conference-key computation: When no faults are
detected, add all subkeys together to get the
conference key.

Actually, each participant U; can use a different method for
securely computing f; and committing to k; as long as the
methods are known by other participants.

4 A CoNCRETE PrRoTOCOL

The system has public parameters:

e p:alarge prime number that is 2¢ + 1, where ¢ is also
a large prime.
e H:a one-way permutation from Z, to Z,.
e g a generator for the subgroup G, = {i’|i € Z;} of
quadratic residues of Z.
Each user U; has two parameters:

e DPrivate parameter z;: a number in Z;.
e Public parameter y; = ¢ mod p. Since ¢ is a prime
number, y; is a generator for G,.

The protocol starts with an initiator calling for a
conference for a set U of participants. Without loss of
generality, let U = {U;,Us, ..., U,} be the initial participant
set. Each U;, 1 <1 < n, knows U.

1. Secret distribution and commitment: Each partici-
pant U; does the following;:

a. Randomly select R;, K; € Z,,5; € Zy.

b. Compute a polynomial h;(z) (over Z,) of
degree n that passes points (j, yf’ mod p mod g),
1<j<n,and (0, K;).

c. Compute and broadcast

wij = hi(n+j)mod q,1 < j<n,
a; = g" mod p,

7 = ¢ mod p,

& = S, (H(K;) — vix;) mod g.

2. Subkey computation and verification: Each parti-
cipant U; does the following for j # i

a. On receiving wy, 1 <1<n, and «;, compute
polynomial 2/,(z) (over Z,) of degree n that passes
(n+lLwy), 1 <l<nand (i,a] mod pmod g).

. Let K = h/,(0) mod g.

c. Check whether (v;,6;) is the ElGamal
signature of H(K!) by U; ie., check
whether ¢""") mod'p = y;fjfyj’ modp. If so,
broadcast Vi; = “success.” Otherwise, broad-
cast Vj; = “failure.”

3. Fault detection: Each participant U; does the

following for j # i:

a. On receiving Vj; = “failure” for some U;: Uj
claims that U; itself is faulty.

i. Output R;, K;, S;.
b. On receiving Vj,, = “failure”: U; claims that U,,,
m # 14, is faulty.

i. Wait for U,’s fault detection messages
Rm» Kma Sm»
ii. If Uy’s fault detection messages are not
received, set U, as a malicious participant.
ili. On receiving R,,, K,,, S, check whether
Wity L <m < n, qm,ym, and 6, are correct,
i.e., check whether «,,, = g™ mod p, whether
there is an n-degree polynomial over Z,
passing points (0, K,,), (I, yf’"’ mod p mod q),
and (n+lLwyy), 1<1<n, and whether
(Ym, 6m) is the ElGamal signature of U, on
H(K,,). If so, set U; as a malicious partici-
pant. Otherwise, set U,, as a malicious
participant.
c. Restart the protocol by deleting malicious
participants from his participant set U.
4. Conference-key computation: If no faults are
detected in the fault detection stage, each participant
U; computes the conference

K= (K{1 + K;Z 4+ 4 K;,”) mod g,
where the current participant set is

v ={U,,U,,...,U; }.

5 SECURITY ANALYSIS

We show security of the above protocol in correctness,
fault tolerance, and withstanding the attack of passive
adversaries.

5.1 Correctness and Fault Tolerance

For correctness (completeness) of our protocol, we show
that if all participants follow the protocol, they compute a
common conference key.

Theorem 5.1 (Correctness). If all participants follow the
protocol, they compute a common conference key.

Proof. From the broadcast messages of participant Uj,
participant U; can compute the polynomial £;(z) mod g
passing points (n+ 1, w;), 1 <1< n, and

(4,0 mod p mod ).



376

U; then computes K; = h;(0)modgq. By verification
messages 7; and ¢;, U; can check whether K; is
correct. Since, for fixed «; and ¢;, the signed text
H(K;) € Z, is unique, all participants compute the
same Kj;. Thus, they compute the same conference
key K = (K;+ K+ -+ K,) mod q. O

For fault tolerance (robustness), we show two things:

1. Any malicious participant U; who tries to cheat
honest participants into accepting different K; will
be excluded from the participant sets of all honest
participants.

2. An honest participant will not be excluded from the
participant set of any other honest participant.

Note that it does not matter that a malicious U; causes other
malicious participants to compute different K.

Lemma 5.2. Any malicious participant U; who tries to cheat
honest participants into accepting different K, shall be
excluded from the participant sets of all honest participants.

Proof. Malicious participants can deviate from the protocol
in two ways. First, a malicious participant U; sends
“wrong” wy,1 <1< n, o, 7y, and §; so that two honest
participants U; and U, compute different ;. In this case,
one of them, say Uj, shall send Vj; = “failure” since ; and
0; cannot be the ElGamal signature of two different K;s.
Then, U; has to broadcast R;, K;, and S; for verification.
Every honest participant verifies whether o; = g™ mod p,
(7, 6;) is the signature of H(K;) and the polynomial
passing (n+1,wy),1 <1<n, and (0,K;) also passes
points (4, yf mod pmod ¢),1 < j <n. Since the honest
U; claims that K; is wrong, for all participants, at least
one of the above check cannot hold. Therefore, all honest
participants exclude U; from their participant sets.

Second, U; sends V;; = “failure” to claim that U; is
malicious, while U; is indeed honest. In this case, U;
broadcasts R;, K, and S} to prove his honesty. Since U; is
honest, all honest participants decide that U; is malicious.
Therefore, the malicious U; is excluded by all honest
participants. ]

Lemma 5.3. No honest participant excludes any other honest
participant from his participant set.

Proof. Since an honest participant U; follows the protocol,
his broadcast messages make all participants compute
the same K;. Even if some malicious participant U;
claims that he is faulty, he can send R;, K;, and S; to
prove his honesty. Therefore, no honest participant shall
exclude U; from his participant set. ]

By the above two lemmas, we can show that all honest
participants compute the same conference key even if the
majority of the participants are malicious.

Theorem 5.4 (Fault tolerance). All honest participants have the
same participant set and thus compute the same conference key
no matter how many participants are malicious.

Proof. By the above two lemmas, each honest participant’s
participant set consists of two types of participants:
honest participants and those participants U; who,
though deviating from the protocol, make all honest

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.4, APRIL 2002
participants compute the same K;. Therefore, all honest
participants compute the same conference key. O

5.2 Security against Passive Attackers

A passive attacker (eavesdropper) tries to learn information
about the conference key by listening to the broadcast
channel. We show that an eavesdropper cannot get any
information about K; of U; by demonstrating that the
attacker’s view of the messages broadcast by U; on the
broadcast channel can be simulated without knowing
secrets x; and K.

We use tuples of random variables to model the
attacker’s view and the simulated one. We say that the
attacker’s view and the simulated view (transcript) are
computationally indistinguishable if no probabilistic poly-
nomial-time algorithm can tell the sampling source by
observing given samples. Since the simulated view is
constructed without knowing U;’s secrets and is computa-
tionally indistinguishable from the real view, the attacker
gets no information about U;’s secrets.

We need an assumption to show that the simulated
transcript is computationally indistinguishable from the
real one. This assumption is a little stronger than that about
the regular Diffie-Hellman decision problem that is dis-
cussed in some papers [7], [23], [29]. The assumption about
the regular Diffie-Hellman decision problem is that, for any
given y1,y2 € G4 — {1}, the following two tuples of random
variables,

(y1, 72, ¥4 mod p, & mod p)

and

(y17y27u17u2)7

are computationally indistinguishable, where R is ran-
domly chosen from Z, and v; and u, are randomly chosen
from G,. Therefore,

(y1, y2, ¥y mod p mod g, y§ mod p mod q)
and
(Y1, Y2, w1 mod ¢, us mod q)

are computationally indistinguishable. Note that y; and y»
must be quadratic residues of Zy; otherwise, one can tell the
above probability distributions apart. We note that u; mod ¢
and u» mod ¢ do not range all over Z,. Therefore, we need
an assumption about a variation of the Diffie-Hellman
decision problem.

Assumption 1 (Variant Diffie-Hellman decision problem).
Let p=2q+1 and G, be the quadratic-residue subgroup of
7. Given any generators y,y» € G, — {1}, the following two
random-variable tuples are computationally indistinguishable:

(y1,y2, ¥ mod p mod g, y5 mod p mod q)
and

(Z/1>y2,U17U2)7

where R, ui,us € Z,.



TZENG: A SECURE FAULT-TOLERANT CONFERENCE-KEY AGREEMENT PROTOCOL 377

The simulator of the adversary’s view on broadcast

messages of U; does the following:

I. Randomly select wj;€Z,1<j<n, R €Z,
Si ez, 6 €2,
2. Output the simulated transcript:

! / ! ! ! A
Wiy, Wig, - - - Wy, X, Vi O3

_ R — 45
where o = ¢'% mod p and ~; = g° mod p.
We now show, on random variables K, R; € Z,;, S; € Z;‘,

the real view

(wn,wm ce 7wimai»'7i,6i)

and, on random variables

wi; € Zy, 1 <j<n, R, €Z,5; € Z,,6 € Z,

the simulated view
/ / / / ! /
Wig Wigs -« + Wiy @5, % O
are computationally indistinguishable, where

a; = ¢ mod p,

v = ¢° mod p,

6 = S;Y(H(K;) — viz;) mod g,

a; = ¢" mod p,

7 = g% mod g,
and w;; = hi(n+j),1 < j < n, is described in our protocol.
Since, for any v € G, — {1} and & € Z,,

Pr[y; = 70, 6; = bo] = Pr[y; = 70,6} = &] = PEEEIE

we only have to consider the probability distributions for

any B,

Pr[(wi1, Wiz, - -, Win, i) = Bl = 70,6 = &)

and

Pr[(wglvw;w ERRR) w;nV O‘:) = g‘%’ =0, 6; = 60}'

For any fixed o and 6, the random variable Kj is fixed,

say ko. We have

Pr[(w“’ Wi2s - - - Win, ai) = B]% =0, b = 60]
= Prf(wir, wis ., winy ) = FIK: = ko]

and

/

Pr{(wfy, wy, ..., wi,, of) = B]’YZ = 70, 6; = &0

= Pr|(w)y, Wy, ..., al) = 0.
We show that they are computationally indistinguishable.
Lemma 5.5. Under Assumption 1, for any fixed K; = ky € Z,,

on random variables R;, R, wly, wly, ... W, € Z,,

(wﬂ,wm .. ~7wm7041')

and

( / / / l)
Wi, Wigs - -« Wip,
are computationally indistinguishable.

Proof. By the assumption

R R,
(Y1, 425+ Yn, 9" mod pmod ¢, 1y, mod pmod g, ...,

¥ mod p mod g, g™ mod p)
and

<y Uns gR; mod p)

(y17y27 sy Yn, UL, U,y - -

are computationally indistinguishable, where R;, R, € Z,
and u; € Z;,1 < j<n. Let h; (over Z,) be the n-degree
polynomial passing points (0, k) and (j,u;), 1 <j < n.
By applying a polynomial interpolation on them, we
have that

(Wi, wia, -+, win, g™ mod p)
and
(@51, Wi, - Win, g™ mod p)
are computationally indistinguishable, where

w;; = hi(n + j) mod ¢,1 < j < n. Since, for any @ € Z,
1<j<n, and & € G,

o — R _ (0 =0 0 =

Pr{(w1, Wi, . .., Win, g mod p) = (W, Wy, - . ., Wy,, Gp)]
_ R R _ (=0 =0 0 =
=Pr{(w);, Wy, ..., w,,, g mod p) = (W, Wy, - - -, Wy, Q)]

1
- qn+l )
! !/ ! /

thus (w1, wie, ..., Wiy, ;) and (W), wl,,...,w},,a}) are
computationally indistinguishable. O

Therefore, the simulator outputs a transcript that is
computationally indistinguishable from the real one.

Theorem 5.6 (Privacy). Under Assumption 1, for any
i,1 <@ < n, the real communication transcript of U,

(wilawﬂ, ce 7wimai>7i76i)
and the simulated one

(Wi Wigy -y Wy 047, 67)
are computationally indistinguishable, where random vari-
ables R;,K; € Z,, S, € Z;, and wjy,wy,...,w}, € Z,
! /
Si€Z;,6 € Z,
Proof. This is obvious by Lemma 5.5. O

6 SECURITY AGAINST IMPERSONATORS

Another type of attackers is impersonators (outsiders) who
want to impersonate participants. The “authentication”
assumption for the broadcast channel is to deter these
impersonators. In our protocol, we require the participant
U; to sign H(K;), instead of K;. We note that an outsider,
without knowing U;’s secret x;, can sign a random message
m = —v;ab~' mod p by choosing 7; = ¢y’ mod p and 6; =
—v;:b~' mod ¢ first for a € Z, and b € Z; [22]. If we only
require U; to sign K; = m, the impersonator can share Kj
with other participants even though he cannot compute
other participants” Kjs.



378

We don’t have a rigid proof for our protocol’s strength
against impersonators if the channel is not authenticated.
Nevertheless, we give some explanation for the protocol’s
strength in this case. First, if the impersonator chooses K
first and then signs H(K;), he has to sign a chosen message
H(K;), which is not known to be possible in the ElGamal
signature scheme. Second, if the impersonator chooses m =
H(K;) first, he has to compute K; = H !(m) in order to
share K; with other participants. This occurs with only a
negligible probability under H being a one-way permuta-
tion. Strong evidence shows that this approach (full-
domain-hash-then-sign) is secure against signature forgery,
thus impersonators [2].

In provable security, the random oracle model is some-
times adopted to demonstrate security of a protocol by
assuming that the hash function is actually a random
function. Under the random oracle model, we can relax the
requirement of the “authenticated” broadcast channel since
the signature part of our protocol is “existentially unforge-
able” against the adaptively chosen message attack. There-
fore, we show that, even if the broadcast channel is not
authenticated, our protocol is secure against impersonators
under the random oracle model.

Theorem 6.1. Assume that the broadcast channel is not
authenticated. If computing discrete logarithm modulo a prime
is hard, our protocol is secure against an impersonator’s
adaptively chosen message attack under the random oracle
model.

Proof. The proof follows from that in [24] directly. Under
the random oracle model, we assume that the one-way
permutation H is a true random function, that is,
H(K;) is an independent random variable from K;.
Note that, since the hash result is random now, we
have to put it as a part of the signature. Also, since the
ElGamal signature is “existentially forgeable,” the
chosen message query on K; can be answered as
follows: We first produce an existential forgery (', 7/,
¢') and let i’ be the hash result H(K;).

Assume that an impersonator can impersonate Uj.
Then, he can sign K; with a nonnegligible probability
e. By a probability argument, there exists a set 2 of
(K, S;) such that, for any particular (f;, S;) in Q, the
impersonator can sign K; with S; with a probability at
least ¢/2. We use the impersonator to sign K; into two
different results (Ki,’yi,hl,él(l)) and (K7j7"}/7j7h2,6§2)) with
a nonnegligible probability, where ~; :gsl mod p,
62(” = S; (1 — yizi) mod g, 6§2) = S (hy — yizi) mod g,
and h; and hy are the hash results of H(K;) under the
random oracle model. Since the random factor ~; is used
twice, one can compute U;’s secret z;, which is a
contradiction. O

7 CONCLUSION

Assuming an authenticated broadcast channel, we have
presented a conference-key agreement protocol that is
provably secure against passive and active adversaries
under the assumption of a variant Diffie-Hellman decision
problem. We argue that our protocol is secure against
impersonators if the full-domain-hash-then-sign paradigm

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 4, APRIL 2002

for ElGamal signature is secure. Furthermore, we show that,
even if the broadcast channel is not authenticated, our
protocol is secure against impersonators under the random
oracle model.

Our protocol is efficient. It uses only two rounds to
compute a common conference key after all malicious
participants are detected. Nevertheless, the size of messages
that each participant sends is proportional to the number of
participants. It is interesting to design a provably secure
conference-key agreement protocol with both round and
message-efficiency.

ACKNOWLEDGMENTS

Research supported in part by the National Science Council
grant NSC-88-2213-E-009-058 and by the Ministry of
Education grant Excellence Project 90-E-FA(04-1-4, Taiwan,
Republic of China.

REFERENCES

[1] M. Bellare and P. Rogaway, “Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols,” Proc. First ACM Conf.
Computer and Comm. Security, pp. 62-73, 1993.

[2] M. Bellare and P. Rogaway, “The Exact Security of Digital
Signatures, How to Sign with RSA and Rabin,” Proc. Advances in
Cryptology—Eurocrypt '96, pp. 399-416, 1996.

[31 M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation,” Proc. 20th ACM Symp. Theory of Computing, pp. 1-
10, 1988.

[4] S. Berkovits, “How to Broadcast a Secret,” Proc. Advances in
Cryptology—Eurocrypt ‘91, pp. 535-541, 1991.

[5] R. Blom, “An Optimal Class of Symmetric Key Generation
Systems,” Proc. Advances in Cryptology—Eurocrypt ‘84, pp. 335-
338, 1985.

[6] C.Blundo, A.D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M.
Yung, “Perfectly-Secure Key Distribution for Dynamic Confer-
ences,” Proc. Advances in Cryptology—Crypto ‘92, pp. 471-486, 1993.

[7] D. Boneh and R. Venkatesan, “Hardness of Computing the Most
Significant Bits of Secret Keys in Diffie-Hellman and Related
Problems,” Proc. Advances in Cryptology—Crypto ‘96, pp. 129-142,
1996.

[8] M. Burmester and Y. Desmedt, “A Secure and Efficient Con-
ference Key Distribution System,” Proc. Advances in Cryptology
—Eurocrypt "94, pp. 275-286, 1995.

[9] R. Canetti and A. Herzberg, “Maintaining Security in the Presence
of Transient Faults,” Proc. Advances in Cryptology—Crypto '94,
pp. 425-438, 1994.

[10] C.C. Chang and CH. Lin, “How to Converse Securely in a
Conference,” Proc. IEEE 30th Ann. Int’l Carnahan Conf., pp. 42-45,
1996.

[11] C.C.Chang, T.C. Wu, and C.P. Chen, “The Design of a Conference
Key Distribution System,” Proc. Advances in Cryptology—Auscrypt
'92, pp. 459-466, 1992.

[12] W. Diffie and M. Hellman, “New Directions in Cryptography,”
IEEE Trans. Information Theory, vol. 22, pp. 644-654, 1976.

[13] W. Diffie, P.C. van Oorschot, and M.]. Weiner, “Authentication
and Authenticated Key Exchanges,” Design, Codes and Cryptogra-
phy, vol. 2, pp. 107-125, 1992.

[14] M. Fitzi, M. Hirt, and U. Maurer, “Trading Correctness for Privacy
in Unconditional Multi-Party Compution,” Proc. Advances in
Cryptology—Crypto '98, pp. 121-136, 1998.

[15] T.L. Hwang and J.L. Chen, “Identity-Based Conference Key
Broadcast Systems,” IEE Proc.: Computers and Digital Techniques,
vol. 141, no. 1, pp. 57-60, 1994.

[16] I. Ingemarsson, D.T. Tang, and C.K. Wong, “A Conference Key
Distribution System,” IEEE Trans. Information Theory, vol. 28, no. 5,
pp. 714-720, 1982.

[17] B. Klein, M. Otten, and T. Beth, “Conference Key Distribution
Protocols in Distributed Systems,” Proc. Codes and Ciphers—
Cryptography and Coding 1V, pp. 225-242, 1995.



TZENG: A SECURE FAULT-TOLERANT CONFERENCE-KEY AGREEMENT PROTOCOL

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[20]
(27]

(28]

[29]

[30]

(31]

(32]

K. Koyama, “Secure Conference Key Distribution Schemes for
Conspiracy Attack,” Proc. Advances in Cryptology—Eurocrypt '92,
pp. 449-453, 1993.

K. Koyama and K. Ohta, “Identity-Based Conference Key
Distribution Systems,” Proc. Advances in Cryptology—Crypto '87,
pp. 175-184, 1988.

K. Koyama and K. Ohta, “Security of Improved Identity-Based
Conference Key Distributioin Systems,” Proc. Advances in Crypto-
logy—Eurocrypt '88, pp. 11-19, 1988.

T. Matsumoto and H. Imai, “On the Key Predistribution System: A
Practical Solution to the Key Distribution Problem,” Proc. Advances
in Cryptology—Crypto '87, pp. 185-193, 1988.

C. Mitchell, F. Piper, and P. Wild, “Digital Signature,” Contempary
Cryptography, The Science of Information Integrity, pp. 325-378, 1992.
M. Naor and O. Reingold, “Number-Theoretic Constructions of
Efficient Pseudorandom Functions,” Proc. 38th IEEE Symp.
Foundations of Computer Science, 1997.

D. Pointcheval and ]. Stern, “Security Proofs for Signatue
Schemes,” Proc. Advances in Cryptology—Eurocrypt '96, pp. 387-
398, 1996.

T. Rabin and M. Ben-Or, “Verifiable Secret Sharing and Multi-
party Protocols with Honest Majority,” Proc. 26th ACM Symp.
Theory of Computing, pp. 73-85, 1989.

R. Rueppel and P. Van Oorschot, “Modern Key Agreement
Techniques,” Computer Comm., 1994.

A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, pp. 612-
613, 1979.

A. Shimbo and S. Kawamura, “Cryptanalysis of Several Con-
ference Key Distribution Schemes,” Proc. Advances in Cryptology
—Asiacrypt '91, pp. 265-276, 1993.

V. Shoup, “Lower Bounds for Discrete Logarithms and Related
Problems,” Proc. Advances in Cryptology—Eurocrypt ‘97, pp. 256-
266, 1997.

D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A Secure
Audio Teleconference System,” Proc. Advances in Cryptology—
Crypto '88, pp. 520-528, 1990.

T.C. Wu, “Conference Key Distribution System with User
Anonymity Based on Algebraic Approach,” IEE Proc.: Computers
and Digital Techniques, vol. 144, no. 2, pp. 145-148, 1997.

Y. Yacobi, “Attack on the Koyama-Ohta Identity Based Key
Distribution Scheme,” Proc. Advances in Cryptology—Crypto ‘87,
pp. 429-433, 1988.

379

Wen-Guey Tzeng received the BS degree in
computer science and information engineering
from National Taiwan University, Taiwan, in
1985 and the MS and PhD degrees in
computer science from the State University
of New York at Stony Brook in 1987 and
1991, respectively. He joined the Department
of Computer and Information Science, Na-
tional Chiao Tung University, Taiwan, in
1991. Dr. Tzeng’s current research interests

include cryptology, information security, and network security.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


