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ABSTRACT: The stability-robustness analysis for linear systems with state-space models is 
considered, The jiindamental problem of linear control systems subject to unstructured 

perturbations is addressed, and the results are extended to the consideration oj’linear control 
systems subject to linear structured perturbations. A modtjied time-domain Lyapunov-based 
method of stability-robustness analysis is proposed where iterative interpolations of quadratic 
Lyapunov,functions are considered. By use oj'the proposed method, less conservative allowable 

perturbation bounds are obtained, and the resulting Lyaapunov matrices possess structural 
injormations closely related to the perturbation-susceptible characteristics of’ the nominal 
system state matrix. The robustness behaviour of‘ a vertical takeof and landing (VTOL) 

aircraft control system, designed by use of the LQ R state:jeedback method, is illustrated. 

Notation 

We denote the identity matrix by I and the all zero matrix by 0. Given a vector XE [w”, 
we take (Ix11 = (x’x)‘!‘. This induces the matrix norm 11 MI1 = omax(M) where omax(.) 
denotes the operation of taking the largest singular value. The following matrix operations 
and matrix relations are denoted : 

P>O square symmetric matrix P being positive-definite 
Pa0 square symmetric matrix P being positive-semidefinite 

P>Q square symmetric matrices P and Q that satisfy P-Q > 0 

P>Q square symmetric matrices P and Q that satisfy P-Q 2 0 

square-root of positive-semidefinite matrix 
symmetric portion of square matrix 
matrix formed by replacing each entry of a matrix by its modulus value 
positive-semidefinite matrix formed by replacing each eigenvalue of a symmetric 
matrix by its modulus value 

I. Introduction 

In the analysis and design of robust control systems, the fundamental problems 
are that the assumed mathematical model for the systems are always inexact, and 

that the parameters of the systems may deviate away from their nominal values. 

Thus, it is desirable to be able to determine: (i) to what extent a nominal system 

remains stable when subject to a certain class of perturbations, and (ii) in what 

way a nominal controller compensator can be adjusted to rectify the perturbation- 
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susceptible characteristics of the control system. This is called the quantitatiw 
stability-robustness problem (I-17). 

The published literature on the quantitative stability-robustness analysis of linear 
systems can be categorized into two perspectives : (i) the,frequency-domuin analysis 
(l-7) which is based on the transfer-function representation of a system, and (ii) 
the time-domain analysis (S-16) which is based on a state-space representation of 
a system. The main approach in frequency-domain analysis is to extend the classical 
single-input single-output stability margins to multiple-input multiple-output sys- 
tems by use of the singular-value decomposition method. In particular. singular- 
value decomposition of the return-difference transfer matrix of a stable feedback 
control system has been considered, and the tolerable gain and phase changes 
of an unstructured perturbation in frequency domain has been determined by 
Mukhopadhyay and Newsom (5). On the other hand, the time-domain approach 
is more amenable to the consideration of the structured perturbations in the form 
of parameter variations and nonlinearities (17). This paper treats the stability- 
robustness analysis in the time domain. 

Starting with Pate1 et al. (S), considerable effort has been given to the reduction 
of conservatism in time-domain quantitative measures of robustness (9--16). In 
these contributions, the structural information of the perturbation is algebraically 
manipulated with the fundamental stability-robustness conditions which were 
derived for the case of unstructured perturbations. The fundamental stability- 
robustness conditions are the Lyapunoz4ased result of Pate1 and Toda (9) and the 
rootlocus-based result of Qiu and Davison (14), which are the two main techniques 
of the time-domain robustness analysis. Presently, the rootlocus-based approach 
(1416) is known to produce less conservative measures of robustness where linear 
perturbations are considered. However, the capability of the Lyapunov-based 
approach (9913) in dealing with nonlinear time-varying perturbations should not 
be overlooked. It has been argued that, the robustness measures indirectly derived 
from the quadratic Lyapunov functions are usually conservative (15). Nevertheless, 
the Lyapunov-based methods possess the exclusive feature of accompanying the 
robustness measure with a quadratic Lyapunov function. Thus, research on the 
Lyapunov-based stability-robustness analysis is conducted in this paper. 

In Section II, we present the formulation of the problems concerning the use of 
quadratic Lyapunov functions for the stability-robustness analysis of linear state- 
space models with the associated unstructured and structzlred perturbations. It is 
shown that, the unstructured robustness-measure problem is fundamental to the 
stability-robustness analysis of a structurally perturbed system. Once an unstruc- 
tured robustness-measure problem is solved, a pair of Lyapunov matrices is 
obtained, then the structured perturbation bounds can be derived by algebraically 
manipulating the Lyapunov matrices with the structured perturbations. A distinct 
feature of our approach is that, iterative interpolations of quadratic Lyapunov 
functions are considered to produce less conservative unstructured robustness 
measures. The extension of the structured perturbations is similar to the results 
developed by Zhou and Khargonekar (12), but less conservative robustness mea- 
sures are achieved for control systems subject to structured perturbations. 

In Section III, we show how to apply the interpolations of quadratic Lyapunov 

940 
Iourna, of the Frankhn lnst~tute 

Pergamon Press Lid 



Stability-robustness Analysis 

functions to achieve less conservative unstructured robustness measures. It is a 
mathematical fact that, the Lyapunov-based unstructured robustness measure is 
obtained by examining the perturbation-susceptible structure of the resulting 
Lyapunov matrices. A correct suggestion is that, the resulting Lyapunov matrices 
possess meaningful information concerning the structural content of perturbations 
to which the nominal system matrix is particularly susceptible. Thus, instead of 
producing the unstructured robustness measure alone, the perturbation-susceptible 
structure of the resulting Lyapunov matrices is explicitly derived. By use of the 
proposed method, improvements in robustness measures and the properties of the 
explicitly derived perturbation-susceptible structure are illustrated in Section IV by 
two examples. 

Section V illustrates the application of the proposed robustness analysis to a 

vertical takeoff and landing (VTOL) aircraft control system which has been designed 

by use of the LQR state feedback method in both (13) and (18). It is shown that, 
in reaction to the perturbation-susceptible structure of the VTOL control system, 
the LQR state-feedback design can be modified to produce more robust results. 

II. Problem Formulation and the Main Results 

Consider the following dynamical system with perturbations : 

dx(t)/dt = Ax(t) +f(x(t), t), (1) 

where AE [w”“” is the stable nominal system matrix, and f(x(t), t) is a vector 
perturbing function with ,f(O, t) = 0 for all time t. The main problem is to study 
the stability of the perturbed system described by Eq. (1) for various kinds of 
perturbations. We begin with a review of some results on robust stability due to 
Pate1 and Toda (9) and Zhou and Khargonekar (12). 

Result 1. Robustness bounds for unstructured perturbations (9) 

Let the perturbing vector function described in Eq. (1) be unstructured per- 
turbations, i.e. an exact expression off(x(t), t) cannot be written explicitly, and a 
measure of perturbing magnitude is given by 

kit = ~ax(lI.f(~~~)Illll~ll~, (2) 

where the Max operates over all (x, t) E KY+ ’ with nonzero x. It is shown in (9) that 
the unstructurally perturbed system described by Eqs (1) and (2) is stable if 

p/ < l/~,ll,X(P,) = 111, 

where P, is the unique matrix that satisfies the Lyapunov equation 

(3) 

A’P,+P,A = -21. (4) 

We note that, in the Lyapunov-based analysis of allowable perturbation bounds 
given in (S-13), the Lyapunov-matrix pair (P,,I} in the Lyapunov equation (4) 
has been adopted for whatever structured perturbations are considered. Thus, 
the Lyapunov-matrix pair (P,, I} constitutes the Lyapunov-based fundamental 
stability-robustness condition. Followed from the Lyapunov-matrix pair {P,, I}, 
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the Lyapunov-based robustness bounds for structurally perturbed linear dynamical 
systems are generalized in the work of Zhou and Khargonekar (12). 

Result 2. Robustness bounds for linear structured perturbations (12) 

Let the perturbing vector function described in Eq. (1) be linear structured 
perturbations, i.e. 

.f(-x(t), t> = E(t)x(t) = C ki(t)Etx(t), (5) 
i= I 

where Ei E IR” x’1 are constant matrices, kj(t) are uncertain time-varying parameters, 
and the magnitudes of k,(t) are assumed to vary in the intervals around zero, i.e. 
k,(t) E [-q, E,]. It is shown in (12) that the structurally perturbed system described 
by Eqs (1) and (5) is stable if, 

(i) form 3 2, 

W,(t)1 < l/~mtlx 1 [PiI,,, =a,, j= l,L...,m; ( 1 ,= I 

or (ii) for m = 1, 

W,(t)1 < WmaX(P,)r (7) 

where matrices Pi are defined by algebraic manipulations of the perturbation 
matrices E, given in Eq. (5) with the Lyapunov-matrix pair (P,, I} given in the 
Lyapunov equation (4), i.e. 

P, = [PIE,],, i = 1,2,. . . ,m. (8) 

Instead of confining ourselves to work within the fundamental stability-robust- 
ness condition specified by the Lyapunov-matrix pair {P,,I} in the Lyapunov 
equation (4), our main result is started with the advent of a modified fundamental 
stability-robustness condition specified by the Lyapunov-matrix pair {P, Q> such 
that the following Lyapunov equation is fulfilled : 

A’P+PA = -2Q, (9) 

where matrix Q E R ‘ix” is symmetric positive-definite, and matrix PE UT’“” is the 
symmetric positive-definite solution of the Lyapunov equation. Given Lyapunov- 
matrix pair {P, Q} that fulfills the Lyapunov equation (9), the unstructured quan- 
titative measure of robustness is given in the following theorem. 

Theorem I 
Given Lyapunov matrices P and Q that fulfill the Lyapunov equation (9), the 

unstructurally perturbed system described by Eqs (1) and (2) is stable if, 

pLr < Mm {~'Q-dlPx//} = pL, (10) 

where the Min operates over all x E R” with I/x /I = 1. The unstructured robustness 
bound pL is also given by 
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pL = l/Max{llQ~'~*yIl llPQ~"*~ll), (11) 

where the Max operates over all y E [w” with II y II = 1. 
Proof: Since V(x) = x’ Px is a Lyapunov function of the stable nominal system 

matrix A, a sufficient condition for the stability of the perturbed system (1) is 

(Ax+f)‘Px+x’P(Ax+f) $0, (12) 

for all x E iw” with /Ix 11 = 1. Following the Lyapunov equation (9), we have 

f’Px < x’Qx, (13) 

which is sufficiently justified by 

Ilfll IIW dx’Qx. (14) 

Given the magnitude of perturbation pf defined in Eq. (2), we have 

of d x’QxI{IIPxII IIxII>, (15) 

and the allowable upper bound on the magnitude of perturbation is given by Eq. 

(10). 
By making the replacement of 

n = Q-“2y/l(Q-“2yII, (16) 

the relation given in (15) becomes 

or < l/(lIQp”*~II lIPQ-“2~ll)> (17) 

and the allowable upper bound on the magnitude of perturbation is given by Eq. 

(11). n 

Remark (1) 
Given matrices P and Q that fulfill the Lyapunov equation (9), the unstructured 

robustness bound ,u~ defined in Eq. (11) can be determined numerically. Thus, the 
unstructured quantitative stability-robustness problem amounts to the judicious 
choice of matrix Q in the Lyapunov equation (9) such that less conservative 
unstructured robustness bound (pL) is achieved. This issue is treated in Section III 
and the Appendix. 

On the other hand, given Lyapunov-matrix pair {P, Q} that fulfills the Lyapunov 
equation (9), the quantitative measure of robustness for structurally perturbed 

linear dynamical systems is given in the following theorem. 

Theorem II 

Given matrices P and Q that fulfill the Lyapunov equation (9), the structurally 
perturbed system described by (1) and (5) is stable if 

j= 1,2 ,...,m; (18) 

where matrices P, are defined by algebraic manipulations of the perturbation 
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matrices E, given in Eq. (5) with the Lyapunov-matrix pair {P, Q} given in the 
Lyapunov equation (9), i.e. 

P, = Q- ‘!‘[PEJ,Q- Ii*, i = 1,2,. . , m. (19) 

Proof: We will show that V(.u, t) = X’PX is a Lyapunov function of the struc- 
turally perturbed system under the condition given in Eq. (18). 

A simple computation shows that 

dV,dt = 2x’Q’il(~,k&)P,-1) Q’!‘x. (20) 

It is clear that dV/dt < 0 if 

gmax(;, i.(t)pi) < 1. 

Note that, for all i = 1,2,. . . , m and for all EE [- 1, 11, we have 

[P& -&Pi B 0. 

Thus, 

117 ,>Z 

,T, Iki(t)l P’ilps 3 C k,tt)P,, 
I= I 

and 

Hence, Eq. (18) implies (21). 

(21) 

(22) 

(23) 

(24) 

n 

III. Devivation of the Robustness Related Pevtuvbation Stvuctuve 

Let the perturbation-susceptible structure of the matrices P and Q in the Lyapu- 
nov equation (9) be taken into consideration in the analysis of stability robustness, 
the robustness-relatedperturbation structure of a nominal system matrix A is defined 
in the following definition. 

Dtlfinition (1) 
Consider a stable nominal system matrix A. Let matrices P and Q fulfill the 

Lyapunov equation (9) and bring forth the unstructured robustness bound pL 
defined in Eq. (11). The robustness-related perturbation structure of the nominal 
system matrix A is the unity-rank matrix ,U~ZIU”, where u and w are unit vectors 
within IR”, such that the Lyapunov function X’PX of the nominal system matrix A 
fails being a Lyapunov function of the perturbed system matrix A+P~uw’. 

Given matrices P and Q that fulfill the Lyapunov equation (9), the existence of 
the robustness-related perturbation structure pLc’w’ can be proved by the following 
theorem. 
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Theorem III 
Let pi_ be the unstructured robustness bound derived by use of Theorem I with 

matrices P and Q that fulfill the Lyapunov equation (9). There exist unit vectors 
v and w within KY’ such that, treating the unity-rank matrix prvw’ as a perturbation 
to the nominal system matrix A, the function X’PX fails being a Lyapunov function 
of the perturbed system matrix A + pLLvw’. 

Proqf: The unstructured robustness bound pr is given in Eq. (11) for a specific 
ye R” with /I yI( = 1, i.e. 

PL = l/iIIQ-“‘~11 llPQ~“‘~l/}> (25) 

and V(x) = x’Px is a Lyapunov function of the stable nominal system matrix A. 
Let unit vectors u and w be chosen as : 

v = PQ- ‘“y/IIPQ- “‘yll, (26) 

and 

w = Q- “‘y//IQ-“‘ylj. (27) 

Employing the quadratic function V(x) on the perturbed system matrix A f pLvw’, 
we have 

dV(x)/dt = ~x’(A’P+~~wv’P)x. (28) 

Following the Lyapunov equation (9), we have 

dV(x)/dt = 2x’( - Q + pLwv’P)x. (29) 

We will show that, given relations (25), (26) and (27), the choice of x = w nullifies 
the right-hand part of Eq. (29) which causes V(x) to fail being a Lyapunov function 
of the perturbed system matrix. 

Following Eqs (25) and (26), we have the following two relations : 

~‘Qw = IIyI12/lIQ-“2~l12, (30) 

Thus, 

V’PW = IIPQ~“2y(l/llQ~“2yll. (31) 

w’(-Q++Lwv’P)w = -I/IJQ-‘~2yl12+~LIJPQ-‘:2yJI/IIQ-”2yll = 0. (32) 

a 

Remark (2) 
It is shown implicitly in Definition (1) and Theorem III that, given matrices P 

and Q that fulfill the Lyapunov equation (9), the unstructured robustness bound 
(pL) is derived by examining the perturbation-susceptible structure of the Lyapunov 
matrices. The suggestion is that the Lyapunov matrices possess meaningful infor- 
mation concerning the structural content of perturbations to which the nominal 
system matrix A is particularly susceptible. Presumptively, the less conservative way 
the unstructured robustness-measure problem is solved, the closer the robustness- 
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related perturbation structure is related to the perturbation-susceptible structure 
of the nominal system matrix A. This relation is illustrated by examples given in 
Section IV. 

Remark (3) 

Iterative procedures have been devised such that the proper sequential choice of 
matrix Q in the Lyapunov equation (9) is made and a less conservative unstructured 
robustness bound (~1~) is obtained along the process. The proposed procedure is 
developed with the discovery of some interpolating properties of Lyapunov equa- 
tions. Theoretical developments and two algorithms for the generation of the 
Lyapunov matrices P and Q are given in the Appendix. 

We note that, following Definition (1) and Theorem III, the robustness-related 
perturbation structure of the nominal system matrix A is derived by replacing the 
perturbation f(x(t), t) denoted in the perturbed system (1) by a linear unity-rank 
perturbation, i.e. 

./-(x(r), r) = pc,nw’x(t), (33) 

where v and w are unit vectors within R’. 
Let V(x) = X’PX remain a Lyapunov function for the system (1) perturbed by 

Eq. (33), then 

(A+~LLv~~‘)‘P+P(A+~Lvw’) < 0. 

Following the Lyapunov equation (9), relation (34) becomes 

r~‘P+Pvw’ < 2p~‘Q, 

or 

Q- “‘(wv’P+Pv~‘)Q~‘~~ < 2~~~1. 

Thus, there are two relations to be satisfied for all XE iw” with 

x’Q “+Dcw’Q- I;~_x < pc 1, 

and 

(34) 

(35) 

(36) 

1, i.e. 

(37) 

(38) 

which constitute the procedure for deriving the robustness-related perturbation 
structure P~ZN’. 

Algorithm I 
Given matrices P and Q that fulfill the Lyapunov equation (9), we have : 

Step 1. Initially, let x be the first singular vector of the matrix Q-‘12P2Qp ‘I’. 
Step 2. Given x, let w and c’ be correspondingly the left first and right first singular 

vectors of the matrix Q- “‘xx’Q_ ‘;‘P. Equivalently, we have 

Iv zz Q-“‘-t_/ilQ-“‘xl/, (39) 

~1 = PQ~“2x/(lPQ~“‘xII, (40) 

Journal of the Frankhn Institute 
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and an intermediate value of the unstructured robustness bound ,nL is 

given by 

,u’_ = {]]Q-“‘xl] ](PQ-“2~]]}~‘. (41) 

Step 3. Following v and w given in Eqs (39) and (40), let new x be selected as the 
first singular vector of the matrix Q- “2[Pv~‘],Q- I”, and repeat Step 2 
until a convergent condition is detected. 

Algorithm I converges to the condition of XE R” being the first singular vector 
of the matrix [Q- “2P2Qm “‘xx’Q_ ‘Is. The successful convergence of Algorithm I 
is assured by examining a matrix relation given in the following theorem. 

Theorem IV 
Consider the symmetric positive-definite matrix given by 

M = Qm ‘/2p2Q- “2/@rQ- ‘/2pzQ- ‘12-4 +Qp ‘/@fQm lx), (42) 

where vector XE R” with 1(x1( = 1 and positive-definite matrices P. Q E R”“” are 
given. If crmaX(M) = 2, then, for all z E R” with ]Jz I( = 1, 

]]PQ--“2~]] ]lQp”2x/( >, /IPQp”2z]] ]jQ~“‘z]]. (43) 

Proof: Since x’Mx = 2 and cmax(M) = 2, we have 

2 > z’Mz = ]]PQ~‘~2z1]2/]lPQ-“2x]~2+ ]]Q-“2z]/2/]]Q~‘12x]]2. (44) 

Thus, 

(IIPQ~“2~IIIIIPQ~ li2xll - IIQ-‘i2~II/I(Q--‘i2~II}2 

d 2-2(I/PQ--‘~22~~/~~PQ~“2~/l)(l/Q-”22/~/IIQ-’~2xIJ), (45) 

which makes 

(]]PQ-“2z/1 l~Q~“2zl()/(/lPQ-‘,12x(l ]lQ-‘!‘x]]) < 1. (46) 

IV. Properties of the Robustness Related Perturbation Stvuctuve 

Employing Algorithm Al (or A2) of the Appendix, matrices P and Q that fulfill 
the Lyapunov equation (9) are chosen to produce less conservative unstructured 
robustness bound pLL defined in Eq. (11). By use of Algorithm I, the perturbation- 
susceptible structure of the resulting Lyapunov matrices P and Q is explicitly 
derived, while the unstructured robustness bound (pLL) is achieved. Since the quan- 
titative robustness-bound measure problem for unstructurally perturbed systems 
is formulated with the least knowledge concerning the structural content of the 
perturbations, the resulting Lyapunov matrices possess structural properties closely 
related to the perturbation-susceptible characteristics of the nominal system matrix. 
This relation is illustrated by the use of Example 1. 

On the other hand, given the Lyapunov matrices P and Q, Theorem II is 
employed to derive the robust stability bounds (6,) for structurally perturbed 
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systems. As long as the robustness-related perturbation structure ~t,v~’ is closely 
related to the genuine perturbation-susceptible structure of the nominal system 
matrix A, the result of producing less conservative unstructured robustness bounds 
(p,J attributes to the generation of less conservative structured robustness bounds 
(6,). By use of the proposed method, Example 2 is given to demonstrate the 
improvement in the analysis of quantitative robustness measures for perturbed 
systems described by Eq. (1). 

E,xumple 1 
Consider a perturbed system described by Eq. (1) with the nominal system matrix 

given by 

(47) 

The perturbation-susceptible structure of matrix A can be obtained by observation, 
which is approximately given by 

0 1’ 
p&otc; = 0.1 Ml 10’ 

Employing Algorithm Al of the Appendix, the iterative process produces a 
sequence of Lyapunov-matrix pairs (Pi, Q,} that fulfill the Lyapunov equation (9). 
Let each pair of the matrices P, and Q, be used in Algorithm I, a sequence of the 
robustness-related perturbation structure {pLIz’,+t ;) [defined in Definition (1) ; also 
referred to as the perturbation-susceptible structure of the Lyapunov matrices P, 
and Qi] is obtained. Additionally, a matchness index x G z$z’,w$M.~, is computed to 
indicate the closeness of the robustness-related perturbation structure [,u~,z:,w$) to 
the genuine perturbation-susceptible structure given in Eq. (48). The results are 
summarized in Table I. 

Note that, by reducing the conservatism in the unstructured robustness bounds 

TABLE I 

Utz,str.uctured robustness measures und rulues of 

nmtchness index,filr E,xanlple 1 

Iterations A., x 

Initial Q = I 0.0194 0.0981 
1st 0.0347 0.6342 

2nd 0.0492 0.8733 
3rd 0.0616 0.9411 
4th 0.0714 0.9659 
5th 0.0779 0.9760 
6th 0.0813 0.9798 
7th 0.0823 0.9807 
8th 0.0824 0.9808 
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(pL), the robustness-related perturbation structure ~cLLz’~’ consistently approaches 
the genuine perturbation-susceptible characteristics of the stable nominal matrix 
(i.e. the matchness index x approaches 1). By use of the proposed method, the 
process converges to the robustness-related perturbation structure given by 

(49) 

Note also that Algorithm A2 of the Appendix converges to the same result in one 
iteration. 

Example 2 
Consider a perturbed system described by Eq. (1) with the nominal system matrix 

given by 

Employing Algorithm A2 of the Appendix, the iterate process converges to a 
Lyapunov-matrix pair (P, Q}, where 

and 

(50) 

Q = 

5.2361 2.6180 

2.6180 1 2.6180 ’ 

P= I 2.1817 1.3090 

1.3090 1 3.0544 . 

(51) 

(52) 

(A) Unstructurally perturbed case. Let matrices P and Q in Eqs (51) and (52) 
be used in Algorithm I, the unstructured robustness bound (pt.) is obtained. The 
results are summarized in Table II. Obviously. the proposed robustness bound (p, ) 
is less conservative than the bound (,u,) given by Result 1 from Ref. (9). 

(B) Structurally perturbed case. For systems (1) perturbed by a single unity- 
rank linear perturbation, it is advisable to always conduct the stability-robustness 
analysis using the rootlocus-based techniques (1416) which give exact bounds of 
stability robustness. In this example, by use of the Lyapunov-based techniques, 
structured robustness measures are derived and compared for those rank-2 linear 

TABLEII 

Unstructured robustness meusures _for 
E,xcrmple 2 

Result 1 Theorem I 

PI PL 
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TABLE III 

Structured robustness bounds.for Example 2 

Result 2 Theorem 11 
6, 6, 

[; :] and [: A] 
[‘: :] and [: Y] 
[: b] and [R ;] 

0.4805 0.7868 

1 .oooo 1.1790 

0.3820 0.4973 

0.5000 0.7073 

0.3028 0.3574 

0.3246 0.4288 

perturbations where two entries of the nominal system matrix A in Eq. (50) are 
independently subject to variations. 

Let matrices P and Q in Eqs (51) and (52) be used in Theorem II, the structured 
robustness bound (6,) is obtained. The results are summarized in Table III. Obvi- 
ously, the proposed robustness bounds (6,) are less conservative than the bounds 
(8,) given by Result 2 from Ref. (12). 

V. Robustness Behaviour of a Vertical Takeoff and Landing Aircraft 

Consider the control system of a vertical takeoff and landing (VTOL) aircraft 
given in (13) and (18). The linearized model of the VTOL aircraft in the vertical 
plane is described by 

dx(t)/dt = (F+AF)x(r) + (G+AG)u(t). (53) 

The components of the state vector x E Iw4 and the control vector u E a82 are given 

by 

X , horizontal velocity (knots) 

X2 vertical velocity (knots) 
x3 pitch rate (deg s- ‘) 

x4 pitch angle (deg) 

UI “collective” pitch control 

U2 “longitudinal cyclic” pitch control. 
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Essentially, control is achieved by varying the angle of attack with respect to air 
of the rotor blades. The collective control U, is mainly used for controlling the 
motion of the aircraft vertically up and down. The longitudinal cyclic control u2 is 
basically used to control the horizontal velocity of the aircraft. For typical loading 
and flight conditions of the VTOL aircraft at a speed of 135 knots, the matrices F 
and G are given by 

- 0.0366 0.027 1 0.0188 

- 

0.4555 

0.0482 - 1 .OlOO 0.0024 - 4.0208 
F= 

0.1002 0.3681 0.7070 1.4200 1 ’ - 

0 0 1 0 

and 

(54) 

A standard Riccati equation is employed in both (13) and (18) such that the 
nominal state-feedback control, that stabilizes the nominal closed-loop system, is 

given by 

u(t) = Kx(t) = -(rR) ‘G’Sx(t), (56) 

where the matrix S satisfies the algebraic equation 

F’S+SF+H = SG(rR))‘G’S, (57) 

and the scalar variable r serves as the design variable while weighting matrices H 
and R are given. 

It is known that, even for optimal control problems where the system parameters 
are completely known, the choice of the weighting matrices H and R in the algebraic 
Riccati equation (57) is not an easy one. A commonly followed procedure, that 
relates these weighting matrices to the subjective criterion of the pilot, is to make 
matrices H and R diagonal with the elements of the matrices inversely proportional 
to the square of the maximum allowable variations of the state variables and 
control variables respectively. Thus, as proposed by Narendra and Tripathi (Hi), 
we choose 

r 1125 0 0 01 

(58) 

and 

R= [‘f5 ,;9] 

Vol. 330. No. 5, pp. 939-966, 1993 
Printed in Great Br~taln 

(59) 

951 



Horng-Giou Chen and Kuang- Wei Hun 

Applying the proposed method of robustness analysis, the robustness behaviour 
of the VTOL aircraft control system is given in the following. 

(A) Unstructurally perturbed case. If the LQR state feedback is employed, then 
the nominal closed-loop system matrix is given for each value of r as 

A(r) = F+GK = F-G(rR) ‘G’S. (60) 

Employing Algorithm I and Algorithm A2 of the Appendix on the nominal system 
matrix A(r), unstructured robustness bounds (,u~) are obtained and the results are 
summarized as shown in Fig. 1. Obviously, the proposed robustness bounds (pr) 
are less conservative than the bounds (,u,) given by Result 1 from Ref. (9). 

We note that the unstructured robustness bound (1~~) is optimized for control- 
weighting parameter r at near 1.34. The attainable unstructured robustness bound 
is 0.294. Note also that r = 1 was arbitrarily selected by Narendra and Tripathi 
(18) without the robustness analysis shown in Fig. 1. 

(B) Structurally perturbed case. As the airspeed changes, significant variations 
take place in the elements F32, FX4 and G,, of the nominal state matrix F and the 
input matrix G given in Eqs (54) and (55), respectively. As given in (18) that, for 
range of airspeed from 60 to 170 knots, in-phase variations of elements F32, F,, 
and GZ, are observed such that 

IAF3?1 = 0.302; IAF1+, = 1.300; lAGI,/ = 2.567. 

The perturbed closed-loop system is given for each value of r as 

dx(t)/dt = [A(r)+E(r)]x(t), 

where A(r) is given in Eq. (60), and 

(61) 

(62) 

Unstructured 

robust measure 

FIG. I. Unstructured robustness bounds for VTOL aircraft control system designed by use 
of LQR method with weighting matrices given in Eqs (58) and (59). 
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E(r) = AF-AG(rR)-‘G’S (63) 

For in-phase variations given in Eq. (61), the perturbation matrix can be expressed 
as 

r0 0 0 0 

0 0 0 0 
E(r) = k,(OEi = k,(t) o o.302 o 1 3oo 

0 0 0 0 

IL -k,(t) 2.567 o 0 0 0 o 0 0 1 (rR)-‘G’S 

(64) 

Thus, the matrix pair {A(r), E(r)} denoted in Eq. (62) constitutes the problem of 
robustness analysis for structured perturbations. 

Employing Theorem II and Algorithm A2 of the Appendix on the structurally 
perturbed problem specified by the matrix pair {A(r), E(r)} denoted in Eq. (62), 
the robustness bounds (6,) are obtained and the results are summarized in Fig. 2. 
Obviously. the proposed robustness bounds (6,) are less conservative than the 
bounds (6,) given by Result 2 from Ref. (12). 

We note that the structured robustness bound (6,) is optimized for control- 
weighting parameter r at near 160. The attainable structured robustness bound is 
0.939. Note also that in this example the value of structured robustness bound (6,) 
greater than 1 is required to assure the stability of the closed-loop control system 
described by Eq. (62). Thus, for the design of the LQR state feedback, the weighting 
matrices [given in Eqs (58) and (59)] proposed by Narendra and Tripathi are not 
adequate (18). 

Structured 
robust measure 

0.8 -. 

0.6 -- 

0.2 - 

O--. 
-4 

10 
-2 

10 10° IO2 r 

FIG. 2. Structured robustness bounds for VTOL aircraft control system designed by use of 
LQR method with weighting matrices given in Eqs (58) and (59). 
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(C) Robustness-relatedperturbation structure of the VTOL control system. Given 
weighting matrices specified in Eqs (58) and (59) with weighting parameter r = 1, 
the closed-loop nominal system matrix is obtained from (60), i.e. 

- 0.442 1 - 0.3055 0.1475 -0.1275 

-0.8779 
A= 

- 14.2802 0.4727 0.5195 

3.4356 12.3970 . (65) - 1.8964 -4.0941 

0 0 1 0 

1 
Applying Algorithm I and Algorithm A2 of the Appendix, the robustness-related 
perturbation structure of the matrix A given in Eq. (65) is derived, i.e. 

which is proposed to represent the perturbation-susceptible structure of the closed- 
loop system matrix A. 

Since the stability of the matrix A given in Eq. (65) is particularly susceptible to 
the robustness-related perturbation structure given in Eq. (66), then the deficiency 
of the VTOL aircraft control design can be analysed by examining impulse 
responses of a system described by : 

dx(t)/dt = (A+E)x(t) +od(t), (67) 

and 

y(t) = w’x(t), (68) 

where A is the matrix given in Eq. (65), z’ and 1%’ are the column matrices that 
constitute the perturbation-susceptible structure given in (66), s(t) is the Dirac 
impulse function, and E is the perturbation matrix obtained from (5.12). By use 
of computer simulation, Figs 3-5 illustrate the impulse responses of the system 
described by Eqs (67) and (68), i.e. the horizontal velocity x,, the vertical velocity 
x2 and the composite output signal y. Examining the nominal case (1.35 Mach), it 
is observed that both x, and .x2 are well-regulated responses, while y exhibits 
underdamped characteristics. 

Summarizing the examinations in impulse responses, we have : 

(i) the LQR state feedback does establish a well-regulated response in accord- 
ance with the state weighting matrix H given in Eq. (58) where x, and x2 
are proportionally weighted to satisfy the subjective criterion of the pilot ; 

(ii) the VTOL aircraft control design is deficient in robustness since an under- 
damped perturbation-susceptible composite output signal y is observed. 
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a. 0.60 Mach 
b. 1.35 Mach 
c. >1.70 Mach 

FIG. 3. Impulse response of the horizontal velocity x, for the composite system described 
by Eqs (67) and (68). The composite system is derived from the control system designed by 

use of LQR method with weighting matrices given in Eqs (58) and (59). 

(D) To robustify the LQR control design. To robustify the LQR control design 
of the VTOL aircraft given by Narendra and Tripathi (ES), it is suggested that the 
composite output signal y be weighted in the state weighting matrix instead of X, . 

Compromising the state weightings on x, and on y, we consider the state weighting 
matrix given by 

J2 

0.2 

-0.1 

a. 0.60 Mach 

b. 1.35 Mach 

c. >1.70 Mach 

FIG. 4. Impulse response of the vertical velocity x2 for the composite system described by 
Eqs (67) and (68). The composite system is derived from the control system designed by 

use of LQR method with weighting matrices given in Eqs (58) and (59). 
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FIG. 5. Impulse response of the composite output signal y for the composite system described 
by Eqs (67) and (68). The composite system is derived from the control system designed by 

use of LQR method with weighting matrices given in Eqs (58) and (59). 

(69) 

(70) 

Applying the proposed method of robustness analysis. for various values of the 
compromising parameter h,,, the robustness bounds of the modified VTOL aircraft 
control system are obtained as shown in Figs 6 and 7. 

Figure 6 displays the unstructured robustness bounds (,ur), where h,, = 0.04 
represents the original design. Note that a slight change in the compromising 
parameter (h, ,) may give considerable improvement in robustness bounds. Figure 
7 displays the structured robustness bounds (6,). Note that by compromising the 
state weightings such that 1z,, + 0, the attainable robustness bound is improved. 

Thus, selecting h,, = 0.02 and r = 0.1, the modified LQR state-feedback design 
is derived by assigning a state-weighting matrix as 

The stabilized closed-loop nominal system matrix is given by 

(71) 
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Unstructured 

robust measure 

FIG. 6. Unstructured robustness bounds for VTOL aircraft control system designed by use 
of LQR method with state-weighting matrix given by Eqs (69) and (70) for some values of 

compromising parameter Iz, ,. 

Structured 
robust measure 

6, 

0.6 

0.6 

0.4 

O/. 
1O-4 10 -2 

loo 102 r 

FIG. 7. Structured robustness bounds for VTOL aircraft control system designed by use of 
LQR method with state-weighting matrix given by Eqs (69) and (70) for some values of 

compromising parameter Iz,, . 
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- 1.3872 -0.5166 1.2706 1.4103 

-4.5836 -43.7041 5.6180 7.9124 
A= ‘2.3583 35.6323 - 13.0510 -19.6257 ’ (72) 

0 0 1 0 1 
which possesses the robustness-related perturbation structure given by 

(73) 

and the structured robustness bound is given by 

& = 1.1601 > 1. (74) 

Since the stability of the matrix A given in (72) is particularly susceptible to the 
robustness-related perturbation structure given in (73), whether or not the modified 
LQR control design is better in robustness can be analysed by examining impulse 
responses of a system described by (67) and (68). Similarly, by use of computer 
simulation, we have Figs 8-10 to illustrate the impulse responses of xi, x2 and y. 
It can be seen that, for all cases, s,, x2 and y are well-regulated responses which 
evidence to justify the robustified LQR control design. 

VI. Conclusions 

In this paper, a modified Lyapunov-based method for time-domain stability- 
robustness analysis has been proposed for linear systems with state-space models. 

a. 0.60 Mach 

b. 1.35 Mach 
c. >1.70 Mach 

FIG. 8. Impulse response of the horizontal velocity X, for the composite system described 
by Eqs (67) and (68). The composite system is derived from the control system designed by 

use of LQR method with state-weighting matrix given by Eq. (71). 
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% 
a. 0.60 Mach 

b. 1.35 Mach 

c. >1.70 Mach 

6 Time(sec) 

FIG. 9. Impulse response of the vertical velocity x2 for the composite system described by 
Eqs (67) and (68). The composite system is derived from the control system designed by 

use of LQR method with state-weighting matrix given in Eq. (71). 

Following the proposed algorithms, Lyapunov matrices are obtained from which a 
less conservative quantitative measure of robustness and a scalar internal feedback 
structure are derived. It has been shown that the derived perturbation-susceptible 
structure of the Lyapunov matrices is closely related to the perturbation-susceptible 

a. 0.60 Mach 
b. 1.35 Mach 
c. >1.70 Mach 

FIG. 10. Impulse response of the composite output signal y for the composite system 
described by Eqs (67) and (68). The composite system is derived from the control system 

designed by use of LQR method with state-weighting matrix given in Eq. (71). 
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property of the nominal system matrix. In addition, the robustification of a VTOL 

aircraft state-feedback control system by use of a modified state-weighting matrix 

has been illustrated. 
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Appendix 

Let A be a stable system matrix, so A’ will be stable. The following Lyapunov equations 
produce two symmetric positive-definite matrices PI and P, : 

A’P, +P,A+2Q, = 0, (Al) 

P2A’+AP,+2Q, = 0, (A2) 

where matrices Q, and QZ are symmetric positive-definite. Simultaneously, we have the 
following alternative expressions of Eqs (Al) and (A2) : 

Py’A’+AP,‘+2P;‘Q,P;-’ = 0, (A3) 

A’P,‘+P,‘A+2P;‘Q2P;’ = 0. (A4) 

Lyapunov equations (Al) and (A4) provide us with two robustness-related perturbation 
structures. As it is defined in the main text, these perturbation-susceptible structures are 
p, v, w’, and pZuZi+l; such that the following relations are fulfilled : 

p,- ‘v,w’, = P,Q; “‘x&Q; I*‘, (As) 

p; ‘zl,w; = Qz “‘x,x;Q, “*P,, (A6) 

where v,, n’,, x,, t’*, MI* and xZ are unit vectors within W”, and 

pr’ = IIP,Qr”*.x, II lIQr”2.~, II > lIP,Q: “*-x/l llQr’~‘.~ll> 647) 

6 ’ = llPZQ:‘,‘x2ii IIQ~‘:*x,li > /IP,Q,“‘.uj/ IlQ; “‘x//, (A8) 

for all XE R” with l/x/l = 1. 
We note that (Al) and (A4) can be interpolated to make new Lyapunov equations, and 

that (A2) and (A3) can be interpolated in a dual manner. 

Lemma A 1 
Given Lyapunov equations (Al) and (A2), the following interpolated Lyapunov equa- 

tions are satisfied for all interpolating parameters a, b, c, d > 0, i.e. 

A’X, +X,A+2Y, = 0, (A9) 

X2A’+AX,+2Y2 = 0, (Al@ 

where 

X, = aP, +bPi ‘, (Al 1) 

Y, = aQ, +bP7’QzPi’, (A12) 

X, = cP,+dP;‘, (A13) 

Y, = cQz+dPy’Q,P,‘. (A14) 

Proqf: Equation (A9) is the direct interpolated result of Eqs (Al) and (A4). Equation 
(AlO) is the direct interpolated result of Eqs (A2) and (A3) n 

The interpolated Lyapunov equations (A9) and (AlO) also provide us with two robust- 
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ness-related perturbation structures. These perturbation-susceptible structures v, 6, W’, and 
vzUzM’; such that the following relations are fulfilled : 

vr'c,$, = x,y;':*x,x;yrw, (A13 

v, 'a*$ = ys- ‘I*.f,x;y, ‘:2x,, (Ale) 

where 6 ,, M,,, .f,, C2, KJ, and R, are unit vectors within IX”, and 

VI -’ = llX,Yi”‘X, 11 llYi”2X, /I > ljX,Y,“2Xll llY,“‘X/, (At7) 

V2 -’ = IIX,YT’~‘f211 IIY;“*x,II 3 IIx,Y,‘:*xll IIYi”Z.xll, (Alg) 

for all XE R” with 11x/J = 1. 
The following Lemmas will be useful when interpolating Lyapunov equations are con- 

sidered for improving the unstructured robustness measures. 

Lemmu A2 
Given Lyapunov equations (Al) and (A2) with their robustness-related perturbation 

structures n , t’, ro’, and /lza,n,>, the interpolated Lyapunov equations (A9) and (A 10) defined 
in Lemma Al produce the robustness-related perturbation structures v,z?,W’, and v,F,W; 
such that, for all interpolating parameters LI, b, C, d > 0, 

Min{v,,v2} 2 Min{p,,p,}. (At9) 

Proqf: We shall prove that v, > Min {~,r~2}r and the other relation showing that 
v2 > Min {p,, p2} can be proved in a similar way. 

The robustness-related perturbation structure v ,O, PC’, fulfills the relation given in (Al 5) 
Since it is given in (Al 1) that 

x, = UP, +bP;‘, 

relation (Al 5) becomes 

Defining vectors y , and z, as 

J’, = a’;2Q;:2y, ‘,2x,, 
6421) 

(A22) 

relation (A20) becomes 

v,‘c,$ = P,Q,“2~,~~‘,Q~‘.2+Q;‘~2z,z’,Q,‘!2P,. (~23) 

Thus, by use of the properties given in (A7) and (A8), we have 

-1 
VI = o,,,(P,Q~“2~,~‘,Q~‘i2+Q~‘~2~,~‘,Q~’r2P2), 

G llP,Qi’i2~, II llQl”2~~ II + IIQ; ‘/*z, II lIP2Q; “‘z, II. 

d II.YII*I~P,Q;“‘~,II llQi”2~,ll+Il~,/121/Q,“Z~211 IIP2Q;‘~2x211> 

= IlY,/12~~‘+Il~,/12~~2. w4) 

On the other hand, it is given in (Al2) that 
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Y, = aQ, +~P;‘Q,PF’. 

Followed from (A21) and (A22), it can be shown that 

llY,I12+II~Il12= 1. 

Finally, the relation given in (A24) becomes 

VY’d IIY,IIz/*i’+~~-llY,l12~~;‘, 

and 

vI 2 Min lp,,pz}. 

(A25) 

(A261 

(A27) 

H 

Remark (Al) 
Lemma A2 provides the fact that interpolating Lyapunov equations will not devastate 

the unstructured robustness bound, i.e. Min {v,, v2} > Min {p,, p>}. The Lyapunov 
matrices that bring forth a more conservative result are always improved by the Lyapunov 
matrices that provide a less conservative result. 

Lemma A3 
Given Lyapunov equations (Al) and (A2) with their robustness-related perturbation 

structures I*, v, w’, and p2v2 w;, the interpolated Lyapunov equations (A9) and (AlO) defined 
in Lemma A I produce the robustness-related perturbation structures v , V, 3, and v,z?,u’> 
such that, if either 

(1) pI 2 ,u2 and 

p,o’,P;‘w, < w’,P,‘Q,P,‘w,, C.428) 

or (2) p2 > p, and 

pczw;Pr’a2 < v;P;‘Q,P,‘u,, (A291 

then there are some interpolating parameters a, b, c, d > 0 that make 

Max{v,,v,} > Max{p,,p,}. (A30) 

Proof; Lemma A2 implies the result for the case of pI = p2. We shall prove that v, > ,u, 
while ,r, > p2, and the remaining relation showing that v2 > p2 while ,u~ > p, can be proved 
in a similar way. The proof is divided into two stages : 

Stage 1. The interpolated unstructured robustness bound v, fulfills the relation given in 
(A17), i.e. 

-’ VI = Max{/IX,Y~“*.~I/ llY;‘12xll}, 

where the Max operates over all x E R” with II x /I = 1. Since it is given in (A 11) that 

X, = aP, +bP;‘, 

relation (A 17) becomes 

-1 
VI = Max jllaP,Y, “*x+bP;‘Yr”*xll IIY,‘!*.xll}. 

Defining the vector y as 

y = a’/2Q;‘*Y7 1/2x 

relation (A3 1) becomes 

(A31) 

(~32) 
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1’1 ’ = MaxjIIP,Qr’:‘~‘+(b/a)P;‘Q,“‘,yll iiQr’~‘~II}, (A33) 

or 

~7’ = Max{y’Q, ‘~ZjP,+(bla)Py’i_‘Qr’,‘~~‘Qr’~}. 6434) 

Thus, the sufficient condition for justifying v, 3 p, is the existence of parameters a,h > 0 
such that 

for ail vectors YE R” defined by (A32). 
Since it is given in (Al2) that 

Y, = nQ, +bP;‘Q2P2 ‘/ 

then vector ,I’ defined in (A32) is restricted by the following relation : 

J”~+(~/~)~.‘Q~“‘P,‘Q?P~‘QT’~‘I. = 1. (A36) 

Thus, the sufficient condition (A35) for justifying v , > p, is equivalently expressed by 

/[;z’Q,~’ ‘{P, +(b/a)Pi’]‘Qi “‘z-_‘Qi’z 

d {z’z+(b/u)z’Q, “P, ‘QzP; ‘Q: ‘,Iz}~, (A37) 

forallzER”with //z~I = 1. 
For each vector z E R” with 11 z/I = 1, relation (A37) is sufficiently justified by the existence 

of a scaling factors such that 

,r?Q,-’ ‘{P,+(b!a)Pi’}‘Q,“‘z+(l/s)~c~_‘Q,’z 

< 2=‘s+2(b/a)z’Q, “‘P;‘Q,P:‘Q: I,“:. (A38) 

Collecting terms in (A38) that are multiplied by the powers of (h/a), we have 

(b/a)‘s~‘Qr ‘*‘P2 ‘Q; ‘,‘z 

+(hl’a)z’Q~ “{sP,P; ’ +sP- ‘P, -2P? ‘Q,P; ‘}Q; I”z 

< 2-‘;-(l/s)~iz’Qi’,_-sz’Q; “‘P:Q; “2,. (A39) 

Denote relation (A39) as 

C,(3)(h/u)2+Cz(z)(b/a) <C,(z). (A40) 

While C,(Z) > 0 is recognized. the existence of parameters u. h > 0 in (A40) is sufficiently 
justified by either (I) C,(Z) > 0, or (2) Cl(=) < 0 with C,(Z) = 0. In the next stage. we shall 
prove that coefficients in the polynomial (A40) do fulfill the sufkient condition. 

Stage 2. For each vector z E R” with I/z 11 = I, let the scaling factor s be given such that 

sz’Q; “ZPfQr “zz = ]. (A41) 

Knowing from (A17) that 

ILr ’ = IlP,Q,“‘x, II IIQ;’ ‘.Y, I/ 2 llP,Q,“*zll IIQ;‘12zll, 

we have 

1 > /l;z’Q; ‘=s’Q, ‘,2P:Qr Ii22 = (I/&&‘Q~ ‘z. 

Combining (A4l) and (A42), we have 

(A42) 
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2z’ z-(l/s)l~:“‘Q1’~-s-‘Qr”‘P:Qi”‘2 > 0, 

where the equality holds for the case of z = x , 
The condition given in (A28) is 

p,~v’,Pi’rr, < r~‘,Pi’Q~P~‘rz’,, 

where, by definition given in (A5), 

PLr’ = lIP,Q;‘*2.x, II /IQr”2.x, I/> 

U, = P,Q;‘,*x,//lP,Q; “‘x, I/, 

and 

M’, = Q; “2x,/l~Q;‘J2x, //. 

(A43) 

Thus, relation (A28) becomes 

x’,Q~“*P,P~‘Q~“‘.I,/~IP,Q; “2_~,J2 <u’,Q,‘:‘Py’QZP;‘Qr”‘x,. (A44) 

While z = x,, the scaling factor s in (A41) becomes 

XX’,Q;“~P:Q~ ‘x, = I, (A45) 

and relation (A44) leads to 

x’,Q; “‘{sP,P;‘+sP;‘P, -2P; ‘QzP~‘}Q~‘*2~, < 0. (A46) 

Therefore, the coefficients of the polynomial (A40) fulfill the sufficient condition for the 
existence of parameters a, b > 0 that justify the validity of relation (A39). w 

Remark (A2) 
Lemma A3 provides the fact that the unstructured robustness bound can be improved 

by interpolating Lyapunov equations, i.e. Max {v ,, v2} > Max {p ,, pL2} if a certain numerical 
property of the Lyapunov matrices is fulfilled. However, the exact values of applicable 
interpolating parameters remain unknown, and the degree of improvement in the unstruc- 
tured robustness bound is not predictable. This is a common difficulty of analyses by use 
of the Lyapunov-based techniques, since the exact numerical property of a Lyapunov 
equation is not analytically resolvable. 

Nevertheless, the qualitative properties of interpolating Lyapunov equations, dem- 
onstrated in Lemma A2 and Lemma A3, make it possible to create the following two 
iterative procedures that produce less conservative unstructured robustness bounds. These 
algorithms are devised such that, given Lyapunov equations (Al) and (A2) in each iteration, 
(i) the intermediate values of unstructured robustness bounds p, and p’z are nearly equal to 
each other, and (ii) Lyapunov equations (AI) and (A2) are interpolated in a balanced 
manner. 

Algorithm A 1 
Step 1. Assign Q, = Qz = 1. 
Step 2. Equate Lyapunov equations (Al) and (A2) to acquire the matrices P, and P,. 
Step 3. For Y , in (A 12), interpolating parameters a and b are chosen such that 

~m(aQ,) = 1, (A47) 

and 

cr,,,,(bP, ‘Q,P; ‘) = 1. (A48) 

Similarly, for Yz in (A14), interpolating parameters c and dare chosen such that 
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G,,,(~QJ = 1, 

and 

G,,(~P,‘Q,K’) = 1. 
Step 4. Make the replacement of 

Q, = Yt/~,,,m(Y,)> 
and 

Qz = YJG,(Y~, 
and repeat from Step 2 until a convergent condition is detected. 

(A49) 

(A50) 

(A51) 

(~52) 

Algorithm A2 

Step I. Assign Q, = Qz = I. 
Step 2. Equate Lyapunov equations (Al) and (A2) to acquire the matrices P, and P,. 
Step 3. For Y, in (Al2), interpolating parameters a and b are chosen such that 

~m,x(~Q,)~,,n(~Q,) = 1, (A531 

and 

o,,,:,x(bPz ‘Q>P? ‘)a,,,,(hPy ‘Q,P; ‘) = 1. (A54) 

Similarly, for Yz in (Al4), interpolating parameters c and dare chosen such that 

~,nax(~Qzb,,,,(CQ~) = 1, (A55) 

and 

a,,x(dK ‘Q,Py’)~,,,,(dPy’Q,P,‘) = 1. (A56) 

Step 4. Make the replacement of 

Q, = Y,I~nvn(Y,)> (A57) 

and 

QZ = Y,/~,,,n(YJ> (A5g) 

and repeat from Step 2 until a convergent condition is detected. 
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