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Bayesian Classification for Data From the
Same Unknown Class

Hung-Ju Huang and Chun-Nan Hd¥ember, IEEE

Abstract—in this paper, we address the problem of how to clas- homologous set might be used to aid the classification process.

sify a set of query vectors that belong to the same unknown class. However, standard classification algorithms are not designed to
Sets of data known to be sampled from the same class are naturally take advantage of this knowledge.

available in many application domains, such as speaker recogni- . . .
tion. We refer to these sets atiomologous setsWe show how to Due to the robust performance and simple implementation,

take advantage of homologous sets in classification to obtain im- the naive Bayes classifier has become a popular classification
proved accuracy over classifying each query vector individually. tool in recent years. Many applications prefer the naive Bayes
Our method, called homologous naive Bayes (HNB)s based on classifier because of its simplicity. In spite of its simplicity, the

the naive Bayes classifier, a simple algorithm shown to be effec- 56 Bayes classifier achieves comparable performance with

tive in many application domains. HNB uses a modified classifi- | lassifi has C4.5 [31.and tantl toerf
cation procedure that classifies multiple instances as a single unit. popular classifiers such as C4.5 [3],and constantly outperforms

Compared with a voting method and several other variants of naive COmpeting algorithms, on average, in experiments reported in
Bayes classification, HNB significantly outperforms these methods the literature [4]. Remarkably, in KDD-CUP-97, two of the

in a variety of test data sets, even when the number of query vec- top three contestants are based on the naive Bayes classifier
tors in the homologous sets is small. We also report a successful[s]_ Also, Domingos and Pazzani [6] reported an experiment

application of HNB to speaker recognition. Experimental results that d th ve B |assifi ith | classical
show that HNB can achieve classification accuracy comparable to at compare € NAlVe Bayes Classilier with Several ciassica

the Gaussian mixture model (GMM), the most widely used speaker l€arning algorithms on a large ensemble of data sets. Their
recognition approach, while using less time for both training and results also show that the naive Bayes classifier is a good

classification. classification tool.
Index Terms—Classification, machine learning, naive Bayes Previous work has focused on improving the accuracy of
classifier, speaker recognition. naive Bayesian classifiers with a single query vector. No

past study has been devoted to the problem of classifying
homologous sets with the naive Bayes classifiers. In this paper,
we present a method callddbmologous naive Bayes (HNB),
HE PROBLEM of classification is actively researchegvhich allows for the efficient classification of homologous sets
in pattern recognition and machine learning. Researgly the naive Bayes classifier. We empirically compared this
on classification centers on developing classification systemthod with voting and several other extensions of the naive
that correctly recognize unknown patterns. In classical patteBayes classifier, which we will describe later. Experimental
recognition [1], the input to a classifier is a single query vectoesults show that HNB outperforms all other methods. Further
and the output is a class label for that query vector. Howeveahalysis shows that, to improve the classification accuracy, the
suppose we know that a set of query vectors belong to the sagtiger extension methods require large homologous sets, while
class. For example, a botany student discovers a plant she H&8 can significantly improve the result accuracy even when
never seen before. In order to identify the plant’s species, sihere is only one pair of query vectors in each homologous set.
collects several leaves to provide input to a classifier. Obvi- Our application of the HNB method to speaker recognition
ously, the output class labels for these leaves should all be greved to be successful. In this type of application, we usu-
same. We refer to a set of query vectors sampled from the saalg have prior information that large sets of query vectors come
class as @omologous setSuch samples are readily availablérom the same unknown speaker.
in many other applications, such as speaker recognition [2].The remainder of this paper is organized as follows: Section I
The combined information from multiple query vectors in @eviews the naive Bayes classifier. Section Ill presents several
approaches to classifying homologous sets. Section IV empiri-
" -+ received March 14. 2001 revised AUGuSt 2. 2001 Octoh cally compares the performance of the different methods. Sec-
ZOOJ?n;r?grll\lpovr:r%%Z(raG, Zg(r)cl. This work’vl\’/:\gssippoli?eudsin [’)art by’thecl\(l)at(ie(;ﬁiﬂn v repor?s an apphcgtlon of HNB to speaker re,COintlon'
Science Council of Taiwan, R.O.C., under Grant NSC 89-2213-E-001-031. TRénally, Section VI contains the summary of conclusions.
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@ B. Naive Bayes Classifier With Continuous Variables

If = is a continuous variable, a conventional approach is to
assume that(z|c) = N(x; pte, 02), whereN (x; pi., o2) is the
probability distribution function of a normal distribution. In this
case, training involves learning the paramejerande,. from
the training data [8]. This approach has been shown to be less

@ ¢ ¢ 0 @ effective than discretization wherix|c) is not normal, and dis-
cretization is often used. Generally, discretization involves par-
Fig.1. Naive Bayes classifier, where the predictive features ¢», ..., z;)  titioning the domain ofr into % intervals as a pre-processing
are conditionally independent given the class attribule ( step. Then we can treatas a discrete variable with possible
values and conduct the training and classification as described
features by selecting clasghat maximizes the posterior prob-In Section ”',A' o . . .
ability More pr.ec'lsel_y, lef; be_ thejth dlscretlz.e.d mtgrval'. Tralmng
and classifying in the naive Bayes classifier with discretization
is to usep(x € I;|c) as an estimate gi(z|c) in (1) for each
plelx) o p(e) H p(zle) @ continuougs variajb|le). This is equivalenE tl) )aSSL(Jrr)ling that after
pex discretization, the class-conditional densityxdias a Dirichlet

wherez is a predictive feature (variable) in and p(z|c) is prior. This assumpt_ion is callemirichletdiscretizatio.n assump-
the class-conditional densitpf = given classc. Let @ denote tON: This assumption holds for all well-known discretization
the vector whose elements are the parameters of the density¥thods, including ten-bin, entropy-based [12], among others.
p(x|c). In a Bayesian learning framework, we assumefieatn  (S€€ [13] for a comprehensive survey). _ o
be learned from a training data set. This estimation is at the hearPinCe it has been shown to be less effective than discretization
of training in the naive Bayes classifier. when the distribution of a continuous variable is not normal, we
The naive Bayes classifier can handle discrete variab/@4!St select a discretization method for our experiments. In our
and continuous variables when assuming that their priors &f@Vvious work [14], we explained why well-known discretiza-
Dirichelet distribution and normal distribution, respectively [8]tion methods, such as entropy-based, big# and ten-bin, work
In the following section, we describe the learning procedurdé!l for naive Bayes classifiers with continuous variables, re-

method “ten-bin” for partitioning continuous variables in all of

our experiments. This method merely divides the range of ob-
served values for a variable into ten equal-size bins. However,
Supposer is a discrete variable wittk possible values. In other discretization methods can also be used.
principle, the class labelof the data vectox dictates the prob-
ability of the value ofc. Thus, the appropriate probability distri-
bution function is a multinomial distribution and its parameters
are a set of probabilitie; , 6s, .. .6}, such that for each pos- We start by showing that a classifier must deliberately take ad-
sible valueX;, p(x = X;|c) = §; andY"%_, 6, = 1. Now, let vantage of the knowledge that all data have the same unknown
0 = (6, 62, ...6;), a Dirichlet distribution [9] with parame- class label; otherwise, the knowledge will not improve the ex-
tersas, ..., ay as the prior fod. Given a training data set, we pected accuracy, and this is generally the case regardless of the
can update(z = X;|c) using its expected value number of query vectors in the homologous set and the number
of classes that we want for classifying the data. Consider a clas-
sifier which classifies one query vector into one of thelasses,
@ + Yo ) with accuracyr. Suppose this classifier classifigsquery vec-
P @) tors individually. The expected value of the accuracy can be de-
rived from the following:
wheren. is the number of the training examples belonging to

A. Naive Bayes Classifier With Discrete Variables

IIl. CLASSIFYING A HOMOLOGOUSSET

) :X =
(e = X o) = St

classe, y.; is the number of class examples whose = X mo
anda = oy +- - -+ay. Since a Dirichlet distribution is conjugate E = Z — p(yi) 3
to multinomial sampling, after the training, the posterior distri- i=0
bution of@ is still a Dirichlet, but with the updated parameters mo m ‘ ‘
beinge; +.; for all 5. This property allows us to incrementally = Z < ) o™ 1l - o) 4)
train the naive Bayes classifier. i—o ™M m—t

In practice, we usually choose the Jaynes prior [2Q]= m—1 p '
a = 0 for all j and havej(z|c) = y.,/n.. However, when - Z Mm=Zr T ym—iq )i (5)
the training data set is too small, this often yiefi{g|c) = 0 — m  (m—i)l!

and impedes the classification. To avoid this problem, another —1
popular choice i;axj = 1 forall j. This is known asmoothing _ Z (m —1)! m=i(] _ g)i (6)
or Laplace’s estimat§l1]. :
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Tl om—1 s . 2) Local Avg (LAvQ)
= Z <m 1 L) o™ (1-0) (") In this method, for each featusg, we compute the av-
i=0 " .
erage of the class-conditional probabiljiyz|c) of all
m—1 m—1 - ] membersx; € X and use the result as the class-condi-
=0y o T (1 -o) 8 tional probabilityp(x;|c) of the featurex;. Then we can
— m—1—1

obtainp(c|X, O) as follows:

=UZ< ? .)gzia_o)i 9)

izo Nt . > p(zale)
=o(c+(1-0o)™ (10) p(c|X, O) x p(e H = (16)
=ad (11) =1
wherey; denotes the event that there aguery vectors which  3) Max
are classified incorrectly, and the expected value is the weighted The “Max” method estimates(c|x;) for eachx; €
average of the probabilities gf. “m — 1" is replaced by from X and selects the maximum probability @g| X, O) as
(8) and (9) and the binomial theorem [15] is used to derive (10)  follows:
from (9).
On the other hand, suppose we know thatith@ectors ac-
tually belong to the same class and take them as one object. We p(cX, O) O(max < H pwule ) a7
therefore classify this object using the same classifier. The ex-
pected value of the accuracy is 4) Local Max (LMax)
m 0 In this method, the class-conditional probability
By = p(yo) + —p(y1) 12) p(xi|c) for each featurex, is estimated by selecting the
m /1 0 /1 maximump(zy|c) among all members; € X. Then
- <1> 1-0) 4+ — <0> (1-0) (13) we can obtaip(c|X, O) as follows:
=0. 14 LI
- pelX. 0) xp(o) [| whx(plaal). (1)
The expected values of the above two cases are the same. This =1

implies that the prior information, indicating that query vectors

come from the same class, does not automatically improve thee classification rule of the above methods is to pick the class
accuracy. ¢ that maximizeg(¢| X, O).

A. Voting, Averaging, Maximum, and Their Variations B. Homologous Naive Bayes (HNB)

There are several intuitive extensions for the naive Bayes clasThe above four methods are based on the idea that we can
sifier to classify homologous sets. One method is voting, whi@@mbine the estimation gf(c|x;) to obtainp(c|X, O), by av-
uses the naive Bayes classifier to classify each member in #f@ging or by selecting the maximum values. In fact, we can
homologous set and selects the class label predicted most oféiiive a method purely from the Bayes rule and independence

LetX = {x, ..., x,} be ahomologous set of query vectorg@ssumptions as follows:
with the same unknown class lakeand each query vectoy
in X hasr featuregz, ..., z:,). We assume thaty, ..., x,,  p(cX, O) =p(c|x1, X2, ..., X, O) (19)
are dravyn independentlyand the symboD denotes the prior  p(O)p(x1, X2, ..., Xn, Olc)
information that all members in the homologous set have the = (x5, = %, O) (20)
same unknown class label. According to the Bayesian decision PAXL, %2, oo iy
theory, we should classify this homologous set by selecting the xp(e)p(X1, X2, - .-, Xn, Olc) (21)
classc that maximize X, O), the probability ofc given

¢ (<X, O). the probabilty ofc g = p(p(x|)p(xele, 0 )p(xsle, X1, x2) -+

X andO. We can derive four “extension” methods to estimate

p(c|X, O) for classifying the query vectors in a homologous P(Xnle, X1, X2, .-, Xn—2, Xn1)
set. p(0|ca X1y, X2y « ooy Xn—1, Xn) (22)
1) Avg -
The “Avg” method estimates(c|x;) for eachx; € X PlOpGarle)peele)p(n-1le)p(enlc)
) as follows: p(Ole, X1, Xa, ..., Xn—1, Xn) (23)

=p(e)p(x1le)p(xzlc) - - - p(Xn-1]e)p(xn|c) (24)

=p(e)pe(X1)pe(X2) *+  pe(Xn—1)pc(Xn).  (25)

S p(0) [[ plale)

=1 =1
p(clX, O) n . (15)
1A feature vector may depend on other feature vectors in real situations/¥€ ¢an simplify (_22) and (23) pecause of the ?—SSUmption
they come from the same class. that all members inrX are drawn independently. Singg is
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TABLE | TABLE I
TEST DATA SETS AVERAGE ACCURACIES(TOP) AND STANDARD DEVIATIONS (BOTTOM)
UsSING DIFFERENT NAIVE BAYES CLASSIFICATION METHODS WHEN
DATA SET CLASS  NUMBER OF VARIABLES  DATA THE SIZE OF A HOMOLOGOUSSET IS TWO
NUMBER CONTINUOUS DISCRETE  SIZE DATA SET HNB VoTiné Avé LAve Max LMax SNB
AUSTRALIAN 2 6 8 690 AUSTRALIAN | 94.74 8544 89.04 90.59 86.40 87.14 85.37
BREAST 2 30 0 569 BREAST 98.92 94.87 94.21 97.67 94.82 9446 95.96
CHESS 9 35 3106 CHESS 91.84 88.19 90.88 89.87 89.40 86.67 87.68
CRX 93.62 85.80 90.43 92.39 88.91 87.93 86.74
CRX 2 690
GERMAN 81.72 76.01 77.22 76.51 76.87 73.79 76.52
GERMAN 2 4 0 1000 GLASS 73.91 61.74 73.04 70.43 7174 63.48 63.48
GLASS 7 214 HEART 90.74 83.53 86.03 88.09 85.15 8573 82.71
HEART 2 8 270 HEPATITIS | 93.33 84.67 91.33 89.33 91.21 90.00 86.33
HEPATITIS 9 13 155 IRIS 100.0 98.00 100.0 98.00 98.0 100.0 97.11
IRIS 3 4 0 150 LETTER 91.80 73.57 86.53 84.75 85.26 84.02 73.07
PIMA 83.25 77.13 81.93 77.67 79.47 75.53 76.31
LETTER 26 16 0 20000 SONAR 91.50 79.00 78.25 86.50 77.75 79.50 80.23
PIMA 2 8 0 768 VEHICLE 65.56 60.97 61.83 63.17 6048 60.97 61.05
SONAR 2 60 0 208 WAVEFORM | 88.42 72.10 79.31 83.78 79.03 78.87 72.59
VEHICLE 4 18 0 846 WINE 98.75 96.25 98.33 99.16 98.33 98.75 97.31
WAVEFORM 3 21 0 5000 AVERAGE | 89.21 81.15 85.24 85.86 84.19 83.12 81.45
WINE 3 13 0 178 BEST 14 0 1 1 0 1 0
DATA SET HNB Voting Avec LAve Max LMax SNB
logically implied by the event that, ..., x, are of class:, AUSTRALIAN | 240 1.67  3.11 207 397 378 3.01
p(O|c, X1, X2, -0, Xne1, Xn) — 1 and we can reduce (23) BREAST 1.74 2.32 1.55 2.08 278 214 171
and (24). For the sake of being concise, we rewrite (24) ¢ CHBESS 116 181 130 200 154 150 1.17
(25). Finally, since the naive Bayes classifier assumes that =~ Ccrx 344 316 291 437 357 433 2.59
features are independent given clas@5) can be decomposed  GERMAN 224 191 279 019 3.10 198 240
by the fo||owing equations: GLASS 6.45 6.68 7.48 577 7.08 398 6.79
HEART 301 327 501 536 282 38 3.09
(25) Ip(C)pc(ﬂiu, T2, ..., 3711*)13(:(3721, T2, ..., 3321)) HEPATITIS 5.96 581 521 6.80 434 537 6.05
IRIS 0.00 315 0.00 6.00 6.00 000 446
e PelTnly Tn2s s Tnr) (26) LETTER 0.50 0.76 042 040 0.65 037 0.52
= p(O)pe(a1)pe(t12) -+ o1y )pe(ar) - - PIMA 244  3.04 224 255 282 282 3.56
SONAR 561 7.34 652 6.04 6.84 522 6.21
Pe (Tn(r—1)) Pe(®nr) (27) VEHICLE 346 211 433 511 378 1.80 1.62
noor WAVEFORM | 1.29 151 149 131 150 150 1.94
=p(c) H H Pe(x). (28) WINE 1.90 291 276 166 204 266 246

t=1 =1

Therefore, the classification rule i ick cl max- ) .
imiieeso(gé)t ?Ng a::S;I fr?ifsomeltjh?)uso:r?ollgo;ojsﬁg\% BZyesgous set. We first partitioned the data by class. Then, each class

(HNB). Note that the training procedure of the above metho%o.Up was divided into five parts for running fivefold cross vali-

remains unchanged as the standard naive Bayes classi %?On El?]t.lr}each tESt selt, we rand:)rn ly drfwtv;o to rt_lr]Lee test
described in Section 1. examples to form a homologous set in our test data. Then, we

trained the naive Bayes classifier with the training sets and used
the six different methods to classify the test data for each data
set.

To evaluate the methods described in Section Ill, we selectedye report the average and standard deviations of the accu-
several data sets from UCI ML repository [16] for our experiracies after running fivefold cross validation on each data set.
ments. Results obtained with these data sets are widely reportggle Il gives the results of classifying homologous sets with
inthe machine learning literature. Table I lists information abowjyo query vectors and Table IIl gives the results of classifying
each set. homologous sets with three query vectors. Located at the top

L of these two tables are the accuracies achieved by different
A. Classifying Small Homologous Sets methods, whereas at the bottom are the standard deviations

In the first experiment, we investigated the performance of the accuracies. The results in Table Il reveal that HNB

the methods when there are two or three elements in a homalotperforms the other methods in all data sets except one

IV. EMPIRICAL RESULTS
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TABLE Il
AVERAGE ACCURACIES(TOP) AND STANDARD DEVIATIONS (BOTTOM)
USING DIFFERENT NAIVE BAYES CLASSIFICATION METHODS WHEN
THE SIZE OF A HOMOLOGOUSSET IS THREE

DATA SET HNB Voting Avc LAve Max LMax

AUSTRALIAN | 97.16 9440 90.52 93.88 87.54 78.58

BREAST 99.27 98.42 9291 98.36 96.36 93.27 ]

CHESS 94.19 93.09 90.14 90.38 90.33 85.05

GRX 95.00 92.61 90.43 92.75 89.57 91.16 ]

GERMAN 86.02 81.88 78.01 76.22 77.60 171.79 A e mmim s m e

GLASS 80.71 6829 80.71 70.00 80.71 65.41 oss| e ]

HEART 95.00 93.03 86.97 89.09 85.60 85.61 |z Nolbwselns)

HEPATITIS | 95.00 86.33  92.00 94.00 92.00 91.00 e Tesmotomokgon s ¥

IRIS 100.0 100.0 100.0 100.0 100.0 100.0 _ o . o o

Fig. 2. Accuracies in classifying homologous sets using different sizes in the

LETTER 96.85 86.42 90.57 91.24 87.81 88.03 data set “Chess.”

PIMA 88.39 85.74 83.71 7899 78.37 7432

SONAR 93.95 82.80 86.05 91.05 82.10 75.52 accuracy is 0.5 when one of the results is correct. Therefore, the

VEHICLE 73.44 66.75 64.25 T1.25 66.50 60.12 expected accuracy of the classifier when using voting is

WAVEFORM | 94.61  77.71 82.14 87.45 80.96 79.42

WINE 100.0 98.63 99.09 99.09 98.63 98.63 E e = <§) oxo+ <f) 50(1-0)

AVERAGE 92.64 87.07 87.67 88.25 86.27 85.53

BEST 15 1 1 1 1 1 =o’+o(l-o)

= 0.
DATA SET HNB Voring Ave LAve Max LMax
AUSTRALIAN | 3.38  3.37 321 268 285 410 This shows that when we only know of two query vectors
BREAST 145 128 232 1.06 229 2.19 having the same unknown class label (i.e., the size of a homol-
CHESS 1.19 162 1.79 1.87 252 1.96 ogous set is two), the expected accuracy will not be improved
CRX 2.76 278 379 234 3.03 2.93 by voting. The experimental results given in Table 1l match our
GERMAN 307 396 256 251 238 1.38 gnalysis. The accuracies of the two methods (SNB and voting)
in most data sets are close.

GLASS 648  6.28 558 444 558 614 In Table 111, we grouped three query vectors in a homologous
HEART 244 333 407 376 407 3.50 set. The results show that though the performance of voting is
HEPATITIS 6.71 6.05 6.00 800 6.00 831 improved, the performance of HNB is improved even more and
IRIS 0.00 0.00 0.00 0.00 0.00 0.00 becomes the best of all methods for all data sets. In the next
LETTER 0.47 0.61 0.75 0.61 079 0.50 subsection, we discuss how the performance of HNB scales to
PIMA 367  3.65 220 3.61 258 429 increasing sizes of homologous sets.
SONAR 6.00 6.85 6.23 5.15 496 7.25 B. Classifying Large Homologous Sets
VEHICLE 5.21 3.75 4.51 5.00 4.99 5.28

A large homologous set increases the chances that a naive
Bayes classifier correctly classifies a majority of the query
WINE 000 291 272 272 208 2091 vectors, thus ameliorating the performance of voting. In order
to compare the performance of HNB and voting with different
sizes of homologous sets, we selected three large data sets
(Wine, “LAVg"). In this table, we also list the accuracies Ot“Chess'” “Letter,” and “Waveform,” see Table | for their
the standard naive Bayes classifier (SNB), which classifiggormation) and repeated the same procedure as in the first
one query vector at a time. When comparing the effectivenesgeriment for different sizes of homologous sets (from 1 to 50
of the standard naive Bayes classifier with others, we sge100). Note that when the size of a homologous set is 1, both
that HNB achieves remarkable improvement. In contrast, theNB and voting are reduced to an SNB. This case serves as the
improvement by other methods is not only minor, but in somggseline for performance evaluation.
cases, the performance is worse than the SNB. Figs. 2—4 plot the resulting curves, which show that the per-
Let the accuracy of a classifier given a query vectorshe formance of voting improves as the size of homologous sets in-
Suppose there are two query vectors with the same unknoereases, but the curves of HNB grow faster. HNB reaches per-
class label and the voting method is applied to classify thefiect accuracy with less than 20 query vectors in the homologous
In our implementation of voting, if the two results disagree, wsets. In contrast, voting requires many more vectors in order to
randomly pick one as the final result. In this case, the expectethch the same performance.

WAVEFORM 1.27 1.62 213 1.35 0.84 0.98
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— ' - ' ' ' : TABLE IV
ACCURACIES OF THEAPPLICATION TO SPEAKER RECOGNITION
NUMBER OF SPEAKERS
4 SIZE OF 2 5
HOMOLOGOUS SET HNB VOTING HNB VoTING
1 2 90.34+1.38 80.02+2.24 | 70.97+1.72 58.77+2.00
5 98.70£0.43 94.75+1.89 | 89.32+1.35 78.18+2.36
1 10 100.0+0.00 97.80+1.56 | 97.28+0.67 90.44+1.47
] 20 100.040.00 100.0+0.00 | 99.68+0.29 97.04+1.79
________________________________________________________ 50 100.040.00 100.0+0.00 | 100.040.00 99.40+0.48
ok ——  HNB ] 100 100.0+0.00 100.0+0.00 | 100.0£0.00 100.0+0.00
-~~~ Voting
-- NB (base line)
0.65 i L s i L n 1 N 1 NUMBER OF SPEAKERS
5 10 15 20 25 30 35 40 45 50
The size of Homologous Set SIZE OF 10 15
. L. . i i i i HOMOLOGOUS SET HNB VOTING HNB VOTING
Fig. 3. Accuracies in classifying homologous sets using different sizes in tt
data set “Letter.” 2 50.29+1.91 37.97+1.42 | 42.68+1.57 30.37:£0.79
‘ , . ‘ , . _ 5 72.9142.78 54.62+2.31 | 65.50+2.26 44.91+0.15
T o --- PEEE 10 87.00+2.30 67.40+2.47 | 81.84+2.43 57.65+1.11
/’/_,_- 20 96.04+1.98 78.9242.28 | 93.47+£2.34 70.32+1.32
095 P B
. 50 99.40+0.96 87.40+3.15 | 98.20+1.68 79.46+2.27
o ] 100 100.0+0.00 88.00+4.60 | 99.33+0.84 82.80+2.77
0.85 // 1 . . .
35 /! reported in this paper is a subset of the TCC-300, a speech
/ . . . . .
osf | | database in Mandarin Chinese maintained by many research
/ institutes in Taiwan. We used the speech data recorded at
078, 1 the National Chiao-Tung University. All speech signals were
R I digitally recorded in a laboratory using a personal computer
o7t T Vet ' with a 16-bit sound blaster card and a headset microphone. The
""" NB (base fine) sampling rate was 16 kHz. A 30-ms Hamming window was
BB e P @ applied to the speech every 10 ms, allowing us to obtain 100

feature vectors from 1-s speech data. For each speech frame,
Fig. 4. f\ccuracies |n classifying homologous sets using different sizes in theth a twelfth-order linear predictive analysis and a Iog energy
data set "Waveform. analysis were performed. We filtered the feature vectors whose
log energy values were lower than 30. This can be viewed as
» . a silence-removing process. A feature vector for training or
Speaker recr?gn]non [l?(]_ is the ;r)]roct()ass. of ?qt?mat'c‘_"“hésting contained the 12 linear predictive parameters. More
recognizing who is speaking on the Dbasis of informatiof,, ten sentences were recorded from each subject speaker,
obtained from speech waves. HNB is ideal for this task beca d from each sentence. more than 4000 feature vectors were
we are easily able to sample a set of query vectors from t S racted '
same unknown speaker. Since a large number of query vector%he experimental procedure was conducted as follows. We
can be extracted from a short sentence, and obviously thgse '

vectors come from the same speaker, a speaker recogniti ﬂt?:m% dsfrl]ethﬁ :'V? fﬁngﬁgces_rgoz eva\:crl sr]%ea:L(Ier, olnet f(()jr
system should take advantage of this information. Speakgp.d and the others for training. 1hen, we randomly selecte

recognition can be divided into two categories: “open-se 00 feature vectors from each sentence. Hence, for each

and “close-set.” In “open-set” situations, the test speaker maeeaker there were 4000 feature vectors for training and 1000

not be registered and the system must identify that speakerf%%ture vectors for testing. We ran fivefold cross validation on
“unknown.” while in “close-set” situations. the test Speaké;lifferent numbers of speakers and different sizes of homolo-

must be in the set of registered speakers. Speaker recognifi@S Sets. We report the average and standard deviations of
can also be categorized according to its text dependency [I#§F accuracies in Table IV. The accuracies for both methods
In text-dependent cases, speakers provide utterances of (i&IB and voting) improve significantly in all cases when the
same text for both training and testing. On the other hangizes of homologous sets increase. However, HNB reaches high
text-independent can use same or different text for trainiggcuracy faster than voting. This is consistent with the results
and testing. In this paper, we applied our work to a close-s#t,Figs. 2—4.

text-independent speaker recognition task.

V. APPLICATION IN SPEAKER RECOGNITION

B. Gaussian Mixture Model (GMM)

A. Experiments The most common and successful approaches to close-set,
In this section, we compared HNB with voting in a speakdext-independent speaker recognition include the Gaussian
recognition task. The database used for the experimenisxture model approach (GMM) [19] and the hidden Markov
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model approach (HMM) [20]. In recent speaker recognition TABLE V

evaluations carried out by the National Institute of Standards ACCURACIES OFHNB3%NFB§F'\T"(')\:A)F2§E§iEg§N'Z'NG 16 (ToR) AND
and Technology (NIST), the best GMM-based systems have

outperformed the HMM-based systems [21]. In this section,

. . . S1ZE OF ACCURACY FOR 16 SPEAKERS
we will briefly review the GMM approach to speaker recog- HNB GMM
nition. Then, we will empirically compare HNB and GMM in HOMOLOGOUS SET
Section V-C. 1 31.43+1.09 52.31+1.51

A Gaussian mixture density is a weighted sum\$fcompo- 20 92.90+2.93  99.424+0.78
nent densities and is given by the form [19] 50 07.93+2.95  100.0+0.00
M 100 99.13+1.22  100.0+0.00
pwlX) =" ebi(w) 200 99.50+1.00  100.0£0.00
=t 300 99.58+0.83  100.0%0.00
where w is a d-dimensional random vectorb;(w), 400 100.0+£0.00  100.0£0.00
7= 1, ..., M is the Component denSity amg 7= 1, ..., M 500 100.0+0.00 100.0+0.00
is the m|xture yvelght. Each component density ig-a@ariate 600 (6 SECS) 100.0£0.00  100.040.00
Gaussian function of the form
. 1 1 rp-1 S1ZE OF ACCURACY FOR 30 SPEAKERS
i(w) = (2m)4/2|3;]1/2 eXp{_§ (= pa) 3w = M)} HOMOLOGOUS SET HNB GMM
with mean vector; and covariance matriX;;. The mixture 1 24.31£0.77  44.23+1.46
weights must satisfy the constraint that 20 94.43+£2.29  99.68+0.44
50 98.93+1.03  99.93+0.13
M
Z o =1 100 99.53+0.65  100.0£0.00
= 200 99.60+0.53  100.0+0.00
The complete Gaussian mixture density is parameterized by the 300 99.78+0.44 ~ 100.0+0.00
mean vectors, covariance matrices, and mixture weights from 400 99.85+0.66  100.0+0.00
all component densities. These parameters are collectively rep- 500 100.0£0.00  100.0+0.00
resented by the notation 600 (6 sEcs) 100.0£0.00  100.0£0.00
)‘:{civuivzi}v 'L:].,,M
TABLE VI

Then, each speaker is represented by a GMM and is referred AVERAGE TRAINING TIME OF HNB AND GMM FOR DIFFERENT
to by his/her model parameter setA GMM parameter seh NUMBER OF SPEAKERS

fo_r a speaker is estlmated using the standard expectation maxi- NUMBER OF AVERAGE TRAINING TIME

mization (EM) algorithm [22]. For a sequence’Bfquery vec- HNB GMM

tors X = {1, z2, ..., 7}, the GMM log-likelihood can be SPEAKERS SPEEDUP

written as 16 382.22 128056.44 335.03
30 716.22 240300.22  335.51

T
P(X|N) =) logp(a|A).
=1 C. Comparisons Between HNB and GMM

In the standard identification approach, the test speékés In this section, HNB is empirically compared with the most
recognized from a set f speakers by successful statistical model (GMM) for speaker recognition.
s The experimental procedure is the same as in Section V-A
= argIP_alXp(XP\i). and the same data set is uséd. = 32 for GMM is used in

our experiments. This setting is suggested in [19] and works

Several system parameters must be tuned for trainingwell in our data sets. We also ran fivefold cross validation
Gaussian mixture speaker model, but a good theoretical guate two different numbers of speakers and different sizes of
for setting the initial values of those parameters has not belemmologous sets. One hundred test data represents 1 s of speech
found. The most critical parameter is the ordef of the data. We reported the average accuracies and their standard
mixture. Choosing too few mixture components can producedaviation. We also reported the average CPU time ticks taken
speaker model that cannot accurately model the distinguishiiog training and classification. Table V shows the results of
characteristics of a speaker’s distribution. Choosing too margcognition accuracies for 16 and 30 speakers. Tables VI and
components reduces performance when there are a lakieshow the average training and classification time (the size
number of model parameters relative to the available trainimg homologous is from 1 to 600). The experiments were run on
data [19]. Pentium Il 800 MHz PCs with 256M DRAM.
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TABLE VII TABLE VIII
TESTING TIME OF HNB AND GMM FOR THE TEST ON 16 (TOF) AND SIZE OF A HOMOLOGOUS SET AND CLASSIFICATION TIME FOR REACHING
30 (BOTTOM) SPEAKERS THE PERFECTACCURACY
SIZE OF TEST TIME FOR 16 SPEAKERS (PER QUERY) NUMBER OF | SIZE REQUIRED TEST TIME
HOMOLOGOUS SET | HNB GMM SPEEDUP SPEAKERS HNB GMM HNB GMM | SPEEDUP
1 0.197 3.880 19.70 16 400 50 64.50 122.956 1.91
20 3.570 50.928 14.27 30 500 100 149.933 500.000 3.35
50 8.718 122.956 14.10
100 16.900  242.500 14.34 Based on the discussion above, we draw the following conclu-
200 32.800 485.125 14.79 sions on applying HNB in speaker recognition task. Since one
300 48.541 728.042 15.00 additional second of speech is a I0\_/v cost to the speakers, i_t ?s a
400 64.500  967.395 15.00 _tolerable or even favorab_le tradeoff in favor of HNB. Hence, if it
is not too difficult to obtain speech data from the same speaker
500 80.000 1223.648 15.30 for classification, or if low-cost implementation is required, the
600 (6 sEcs) 95.500 1465.250 15.34 HNB can be a useful approach.
AVERAGE - - 15.31
VI. CONCLUSIONS
SI1ZE OF TEST TIME FOR 30 SPEAKERS (PER QUERY) . e . . .
The naive Bayes classifier is widely used in many clas-
HomoLoGous seT | HNB ~ GMM SPEEDUP sification tasks because its performance is competitive with
1 0.378 5.867 15.52 state-of-the-art classifiers, it is simple to implement, and it
20 6.842  103.966 15.20 possesses fast execution speed. In this paper, we discussed the
50 16.403  251.153 15.31 problem of how to classify a set of query vectors from the same
100 41700 500.313 15.78 unknovyn class with _the naive Bayes classifier. We showed that
a classifier must deliberately take advantage of the knowledge
200 61.533  992.093 16.13 that all data have the same unknown class label; otherwise
300 90.911  1490.000 16.39 the knowledge will not improve the expected accuracy. Then,
400 120.666 1983.466 16.44 we proposed the method HNB and compared it with several
500 149.933 2484.633 16.57 S|mplg methods (Avg, LAvg, Max, LMax, and Voting). The
600 (6 sECS) 179.466  2983.466 16.00 experimental results show that HNB can take advantage of the
i - . prior information that all members in a homologous set have
AVERAGE - - 16.79 the same class label, improve accuracy, and outperform the

other methods when the naive Bayes model is used.
The results show that GMM requires smaller numbers of testWe also compared HNB and voting for the application of

vectors than HNB to reach a high accuracy. However, givgﬁ) eaker recognition. Experimental resglts show that HNB can
more feature vectors in the homologous sets, HNB quickaork well on this task and is more suitable than voting. Fi-

catches up and reaches comparable accuracy to GMM. Thi ?ély’ HNB was cqmpared with the GMM approach in speaker
not surprising because the GMM is capable of modeling tfigcognition. Experimental results reveal that, although HNB can

correlations between the variables in a feature vector, but figach the same level of accura,mes as GMM by using about 1 s
correlations are disregarded in the naive Bayes classifier d{l8"® of test speech data, HNB's execution speed is much faster
to its independent assumption. As a result, when the size 8" GMM, and HNB has low implementation cost. Hence, we
a homologous set is 1, the accuracies of HNB will be mu&yggestthatHNB is useful mthe.dor.naln qfspeaker recognition
lower than GMM. However, HNB gains several advantag@snd_may k_)e applied to other apphcatlons, if homologous sets are
from the independent assumption. One is that the implemé#2ilable in that problem domain.
tation of HNB is much simpler than the GMM algorithm.
Other advantages of HNB include the faster training and ACKNOWLEDGMENT
classification speeds. In our experiment, the average trainindrne authors wish to thank anonymous reviewers for their
speed of HNB_ surpasses GMM by about 355 times, and t)8,able comments.
average classification speed by about 15 (see Tables VI and
VII for training time and classification time, respectively). In
addition, HNB reaches high accuracies99%) by using about
1 s of speech data. This shows that it is not necessary to use [&] K. Fukunagalntroduction to Statistical Pattern Recognitiddew York:
’ . ; Academic, 1990.

very large number of query vectors in order to boost HNB'S [5] c.-H. Lee, F. K. Soong, and K. K. Paliwahutomatic Speech and
accuracies. An interesting phenomenon here is that, though Speaker Recognition Norwell, MA: Kluwer, 1996.
more query vectors are required in order for HNB to reach [3! fv-lR-Q“'E'a”fC”'-& Piog%rgmsmf Machine Learning San Mateo, CA:

, e . . . organ Kaurmann, .
perfect accuracy, HNB's anSS|f|cat|on speed is still faster thans) N Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classi-
GMM'’s speed, as shown in Table VIII. fiers,” Mach. Learn, vol. 29, pp. 131-163, 1997.
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