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Bayesian Classification for Data From the
Same Unknown Class
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Abstract—In this paper, we address the problem of how to clas-
sify a set of query vectors that belong to the same unknown class.
Sets of data known to be sampled from the same class are naturally
available in many application domains, such as speaker recogni-
tion. We refer to these sets ashomologous sets. We show how to
take advantage of homologous sets in classification to obtain im-
proved accuracy over classifying each query vector individually.
Our method, called homologous naive Bayes (HNB), is based on
the naive Bayes classifier, a simple algorithm shown to be effec-
tive in many application domains. HNB uses a modified classifi-
cation procedure that classifies multiple instances as a single unit.
Compared with a voting method and several other variants of naive
Bayes classification, HNB significantly outperforms these methods
in a variety of test data sets, even when the number of query vec-
tors in the homologous sets is small. We also report a successful
application of HNB to speaker recognition. Experimental results
show that HNB can achieve classification accuracy comparable to
the Gaussian mixture model (GMM), the most widely used speaker
recognition approach, while using less time for both training and
classification.

Index Terms—Classification, machine learning, naive Bayes
classifier, speaker recognition.

I. INTRODUCTION

T HE PROBLEM of classification is actively researched
in pattern recognition and machine learning. Research

on classification centers on developing classification systems
that correctly recognize unknown patterns. In classical pattern
recognition [1], the input to a classifier is a single query vector
and the output is a class label for that query vector. However,
suppose we know that a set of query vectors belong to the same
class. For example, a botany student discovers a plant she has
never seen before. In order to identify the plant’s species, she
collects several leaves to provide input to a classifier. Obvi-
ously, the output class labels for these leaves should all be the
same. We refer to a set of query vectors sampled from the same
class as ahomologous set. Such samples are readily available
in many other applications, such as speaker recognition [2].
The combined information from multiple query vectors in a
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homologous set might be used to aid the classification process.
However, standard classification algorithms are not designed to
take advantage of this knowledge.

Due to the robust performance and simple implementation,
the naive Bayes classifier has become a popular classification
tool in recent years. Many applications prefer the naive Bayes
classifier because of its simplicity. In spite of its simplicity, the
naive Bayes classifier achieves comparable performance with
popular classifiers such as C4.5 [3],and constantly outperforms
competing algorithms, on average, in experiments reported in
the literature [4]. Remarkably, in KDD-CUP-97, two of the
top three contestants are based on the naive Bayes classifier
[5]. Also, Domingos and Pazzani [6] reported an experiment
that compared the naive Bayes classifier with several classical
learning algorithms on a large ensemble of data sets. Their
results also show that the naive Bayes classifier is a good
classification tool.

Previous work has focused on improving the accuracy of
naive Bayesian classifiers with a single query vector. No
past study has been devoted to the problem of classifying
homologous sets with the naive Bayes classifiers. In this paper,
we present a method calledhomologous naive Bayes (HNB),
which allows for the efficient classification of homologous sets
by the naive Bayes classifier. We empirically compared this
method with voting and several other extensions of the naive
Bayes classifier, which we will describe later. Experimental
results show that HNB outperforms all other methods. Further
analysis shows that, to improve the classification accuracy, the
other extension methods require large homologous sets, while
HNB can significantly improve the result accuracy even when
there is only one pair of query vectors in each homologous set.

Our application of the HNB method to speaker recognition
proved to be successful. In this type of application, we usu-
ally have prior information that large sets of query vectors come
from the same unknown speaker.

The remainder of this paper is organized as follows: Section II
reviews the naive Bayes classifier. Section III presents several
approaches to classifying homologous sets. Section IV empiri-
cally compares the performance of the different methods. Sec-
tion V reports an application of HNB to speaker recognition.
Finally, Section VI contains the summary of conclusions.

II. NAIVE BAYES CLASSIFIERS

The naive Bayes classifier is based on the simplifying as-
sumption that the feature values are conditionally independent
given the class label [7]. Fig. 1 gives a graphical depiction. A
naive Bayes classifier classifies a query vectorof predictive
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Fig. 1. Naive Bayes classifier, where the predictive features (x ; x ; . . . ; x )
are conditionally independent given the class attribute (c).

features by selecting classthat maximizes the posterior prob-
ability

(1)

where is a predictive feature (variable) in and is
the class-conditional densityof given class . Let denote
the vector whose elements are the parameters of the density of

. In a Bayesian learning framework, we assume thatcan
be learned from a training data set. This estimation is at the heart
of training in the naive Bayes classifier.

The naive Bayes classifier can handle discrete variables
and continuous variables when assuming that their priors are
Dirichelet distribution and normal distribution, respectively [8].
In the following section, we describe the learning procedures
of a naive Bayes classifier with different types of variables.

A. Naive Bayes Classifier With Discrete Variables

Suppose is a discrete variable with possible values. In
principle, the class labelof the data vector dictates the prob-
ability of the value of . Thus, the appropriate probability distri-
bution function is a multinomial distribution and its parameters
are a set of probabilities , such that for each pos-
sible value , and . Now, let

, a Dirichlet distribution [9] with parame-
ters as the prior for . Given a training data set, we
can update using its expected value

(2)

where is the number of the training examples belonging to
class , is the number of classexamples whose ,
and . Since a Dirichlet distribution is conjugate
to multinomial sampling, after the training, the posterior distri-
bution of is still a Dirichlet, but with the updated parameters
being for all . This property allows us to incrementally
train the naive Bayes classifier.

In practice, we usually choose the Jaynes prior [10]
for all and have . However, when

the training data set is too small, this often yields
and impedes the classification. To avoid this problem, another
popular choice is for all . This is known assmoothing
or Laplace’s estimate[11].

B. Naive Bayes Classifier With Continuous Variables

If is a continuous variable, a conventional approach is to
assume that , where is the
probability distribution function of a normal distribution. In this
case, training involves learning the parametersand from
the training data [8]. This approach has been shown to be less
effective than discretization when is not normal, and dis-
cretization is often used. Generally, discretization involves par-
titioning the domain of into intervals as a pre-processing
step. Then we can treatas a discrete variable withpossible
values and conduct the training and classification as described
in Section II-A.

More precisely, let be the th discretized interval. Training
and classifying in the naive Bayes classifier with discretization
is to use as an estimate of in (1) for each
continuous variable. This is equivalent to assuming that after
discretization, the class-conditional density ofhas a Dirichlet
prior. This assumption is calledDirichlet discretization assump-
tion. This assumption holds for all well-known discretization
methods, including ten-bin, entropy-based [12], among others.
(see [13] for a comprehensive survey).

Since it has been shown to be less effective than discretization
when the distribution of a continuous variable is not normal, we
must select a discretization method for our experiments. In our
previous work [14], we explained why well-known discretiza-
tion methods, such as entropy-based, bin-and ten-bin, work
well for naive Bayes classifiers with continuous variables, re-
gardless of their complexities. In this paper, we used the simple
method “ten-bin” for partitioning continuous variables in all of
our experiments. This method merely divides the range of ob-
served values for a variable into ten equal-size bins. However,
other discretization methods can also be used.

III. CLASSIFYING A HOMOLOGOUSSET

We start by showing that a classifier must deliberately take ad-
vantage of the knowledge that all data have the same unknown
class label; otherwise, the knowledge will not improve the ex-
pected accuracy, and this is generally the case regardless of the
number of query vectors in the homologous set and the number
of classes that we want for classifying the data. Consider a clas-
sifier which classifies one query vector into one of theclasses,
with accuracy . Suppose this classifier classifiesquery vec-
tors individually. The expected value of the accuracy can be de-
rived from the following:

(3)

(4)

(5)

(6)
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(7)

(8)

(9)

(10)

(11)

where denotes the event that there arequery vectors which
are classified incorrectly, and the expected value is the weighted
average of the probabilities of. “ ” is replaced by from
(8) and (9) and the binomial theorem [15] is used to derive (10)
from (9).

On the other hand, suppose we know that thevectors ac-
tually belong to the same class and take them as one object. We
therefore classify this object using the same classifier. The ex-
pected value of the accuracy is

(12)

(13)

(14)

The expected values of the above two cases are the same. This
implies that the prior information, indicating that query vectors
come from the same class, does not automatically improve the
accuracy.

A. Voting, Averaging, Maximum, and Their Variations

There are several intuitive extensions for the naive Bayes clas-
sifier to classify homologous sets. One method is voting, which
uses the naive Bayes classifier to classify each member in the
homologous set and selects the class label predicted most often.

Let be a homologous set of query vectors
with the same unknown class labeland each query vector
in has features . We assume that
are drawn independently,1 and the symbol denotes the prior
information that all members in the homologous set have the
same unknown class label. According to the Bayesian decision
theory, we should classify this homologous set by selecting the
class that maximizes , the probability of given

and . We can derive four “extension” methods to estimate
for classifying the query vectors in a homologous

set.

1) Avg
The “Avg” method estimates for each

and averages the results to obtain as follows:

(15)

1A feature vector may depend on other feature vectors in real situations if
they come from the same class.

2) Local Avg (LAvg)
In this method, for each feature, we compute the av-

erage of the class-conditional probability of all
members and use the result as the class-condi-
tional probability of the feature . Then we can
obtain as follows:

(16)

3) Max
The “Max” method estimates for each
and selects the maximum probability as as

follows:

(17)

4) Local Max (LMax)
In this method, the class-conditional probability

for each feature is estimated by selecting the
maximum among all members . Then
we can obtain as follows:

(18)

The classification rule of the above methods is to pick the class
that maximizes .

B. Homologous Naive Bayes (HNB)

The above four methods are based on the idea that we can
combine the estimation of to obtain , by av-
eraging or by selecting the maximum values. In fact, we can
derive a method purely from the Bayes rule and independence
assumptions as follows:

(19)

(20)

(21)

(22)

(23)

(24)

(25)

We can simplify (22) and (23) because of the assumption
that all members in are drawn independently. Since is
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TABLE I
TEST DATA SETS

logically implied by the event that are of class ,
and we can reduce (23)

and (24). For the sake of being concise, we rewrite (24) as
(25). Finally, since the naive Bayes classifier assumes that all
features are independent given class, (25) can be decomposed
by the following equations:

(25)

(26)

(27)

(28)

Therefore, the classification rule is to pick classthat max-
imizes (28). We call this methodhomologous naive Bayes
(HNB). Note that the training procedure of the above methods
remains unchanged as the standard naive Bayes classifier
described in Section II.

IV. EMPIRICAL RESULTS

To evaluate the methods described in Section III, we selected
several data sets from UCI ML repository [16] for our experi-
ments. Results obtained with these data sets are widely reported
in the machine learning literature. Table I lists information about
each set.

A. Classifying Small Homologous Sets

In the first experiment, we investigated the performance of
the methods when there are two or three elements in a homolo-

TABLE II
AVERAGE ACCURACIES(TOP) AND STANDARD DEVIATIONS (BOTTOM)
USING DIFFERENT NAIVE BAYES CLASSIFICATION METHODS WHEN

THE SIZE OF A HOMOLOGOUSSET IS TWO

gous set. We first partitioned the data by class. Then, each class
group was divided into five parts for running fivefold cross vali-
dation [17]. In each test set, we randomly drew two or three test
examples to form a homologous set in our test data. Then, we
trained the naive Bayes classifier with the training sets and used
the six different methods to classify the test data for each data
set.

We report the average and standard deviations of the accu-
racies after running fivefold cross validation on each data set.
Table II gives the results of classifying homologous sets with
two query vectors and Table III gives the results of classifying
homologous sets with three query vectors. Located at the top
of these two tables are the accuracies achieved by different
methods, whereas at the bottom are the standard deviations
of the accuracies. The results in Table II reveal that HNB
outperforms the other methods in all data sets except one
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TABLE III
AVERAGE ACCURACIES(TOP) AND STANDARD DEVIATIONS (BOTTOM)
USING DIFFERENT NAIVE BAYES CLASSIFICATION METHODS WHEN

THE SIZE OF A HOMOLOGOUSSET IS THREE

(Wine, “LAvg”). In this table, we also list the accuracies of
the standard naive Bayes classifier (SNB), which classifies
one query vector at a time. When comparing the effectiveness
of the standard naive Bayes classifier with others, we see
that HNB achieves remarkable improvement. In contrast, the
improvement by other methods is not only minor, but in some
cases, the performance is worse than the SNB.

Let the accuracy of a classifier given a query vector be.
Suppose there are two query vectors with the same unknown
class label and the voting method is applied to classify them.
In our implementation of voting, if the two results disagree, we
randomly pick one as the final result. In this case, the expected

Fig. 2. Accuracies in classifying homologous sets using different sizes in the
data set “Chess.”

accuracy is 0.5 when one of the results is correct. Therefore, the
expected accuracy of the classifier when using voting is

This shows that when we only know of two query vectors
having the same unknown class label (i.e., the size of a homol-
ogous set is two), the expected accuracy will not be improved
by voting. The experimental results given in Table II match our
analysis. The accuracies of the two methods (SNB and voting)
in most data sets are close.

In Table III, we grouped three query vectors in a homologous
set. The results show that though the performance of voting is
improved, the performance of HNB is improved even more and
becomes the best of all methods for all data sets. In the next
subsection, we discuss how the performance of HNB scales to
increasing sizes of homologous sets.

B. Classifying Large Homologous Sets

A large homologous set increases the chances that a naive
Bayes classifier correctly classifies a majority of the query
vectors, thus ameliorating the performance of voting. In order
to compare the performance of HNB and voting with different
sizes of homologous sets, we selected three large data sets
(“Chess,” “Letter,” and “Waveform,” see Table I for their
information) and repeated the same procedure as in the first
experiment for different sizes of homologous sets (from 1 to 50
or 100). Note that when the size of a homologous set is 1, both
HNB and voting are reduced to an SNB. This case serves as the
baseline for performance evaluation.

Figs. 2–4 plot the resulting curves, which show that the per-
formance of voting improves as the size of homologous sets in-
creases, but the curves of HNB grow faster. HNB reaches per-
fect accuracy with less than 20 query vectors in the homologous
sets. In contrast, voting requires many more vectors in order to
reach the same performance.
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Fig. 3. Accuracies in classifying homologous sets using different sizes in the
data set “Letter.”

Fig. 4. Accuracies in classifying homologous sets using different sizes in the
data set “Waveform.”

V. APPLICATION IN SPEAKER RECOGNITION

Speaker recognition [15] is the process of automatically
recognizing who is speaking on the basis of information
obtained from speech waves. HNB is ideal for this task because
we are easily able to sample a set of query vectors from the
same unknown speaker. Since a large number of query vectors
can be extracted from a short sentence, and obviously those
vectors come from the same speaker, a speaker recognition
system should take advantage of this information. Speaker
recognition can be divided into two categories: “open-set”
and “close-set.” In “open-set” situations, the test speaker may
not be registered and the system must identify that speaker as
“unknown,” while in “close-set” situations, the test speaker
must be in the set of registered speakers. Speaker recognition
can also be categorized according to its text dependency [18].
In text-dependent cases, speakers provide utterances of the
same text for both training and testing. On the other hand,
text-independent can use same or different text for training
and testing. In this paper, we applied our work to a close-set,
text-independent speaker recognition task.

A. Experiments

In this section, we compared HNB with voting in a speaker
recognition task. The database used for the experiments

TABLE IV
ACCURACIES OF THEAPPLICATION TO SPEAKER RECOGNITION

reported in this paper is a subset of the TCC-300, a speech
database in Mandarin Chinese maintained by many research
institutes in Taiwan. We used the speech data recorded at
the National Chiao-Tung University. All speech signals were
digitally recorded in a laboratory using a personal computer
with a 16-bit sound blaster card and a headset microphone. The
sampling rate was 16 kHz. A 30-ms Hamming window was
applied to the speech every 10 ms, allowing us to obtain 100
feature vectors from 1-s speech data. For each speech frame,
both a twelfth-order linear predictive analysis and a log energy
analysis were performed. We filtered the feature vectors whose
log energy values were lower than 30. This can be viewed as
a silence-removing process. A feature vector for training or
testing contained the 12 linear predictive parameters. More
than ten sentences were recorded from each subject speaker,
and from each sentence, more than 4000 feature vectors were
extracted.

The experimental procedure was conducted as follows. We
randomly selected five sentences for each speaker, one for
testing and the others for training. Then, we randomly selected
1000 feature vectors from each sentence. Hence, for each
speaker there were 4000 feature vectors for training and 1000
feature vectors for testing. We ran fivefold cross validation on
different numbers of speakers and different sizes of homolo-
gous sets. We report the average and standard deviations of
the accuracies in Table IV. The accuracies for both methods
(HNB and voting) improve significantly in all cases when the
sizes of homologous sets increase. However, HNB reaches high
accuracy faster than voting. This is consistent with the results
in Figs. 2–4.

B. Gaussian Mixture Model (GMM)

The most common and successful approaches to close-set,
text-independent speaker recognition include the Gaussian
mixture model approach (GMM) [19] and the hidden Markov
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model approach (HMM) [20]. In recent speaker recognition
evaluations carried out by the National Institute of Standards
and Technology (NIST), the best GMM-based systems have
outperformed the HMM-based systems [21]. In this section,
we will briefly review the GMM approach to speaker recog-
nition. Then, we will empirically compare HNB and GMM in
Section V-C.

A Gaussian mixture density is a weighted sum ofcompo-
nent densities and is given by the form [19]

where is a -dimensional random vector, ,
is the component density and,

is the mixture weight. Each component density is a-variate
Gaussian function of the form

with mean vector and covariance matrix . The mixture
weights must satisfy the constraint that

The complete Gaussian mixture density is parameterized by the
mean vectors, covariance matrices, and mixture weights from
all component densities. These parameters are collectively rep-
resented by the notation

Then, each speaker is represented by a GMM and is referred
to by his/her model parameter set. A GMM parameter set
for a speaker is estimated using the standard expectation maxi-
mization (EM) algorithm [22]. For a sequence ofquery vec-
tors , the GMM log-likelihood can be
written as

In the standard identification approach, the test speakeris
recognized from a set of speakers by

Several system parameters must be tuned for training a
Gaussian mixture speaker model, but a good theoretical guide
for setting the initial values of those parameters has not been
found. The most critical parameter is the order of the
mixture. Choosing too few mixture components can produce a
speaker model that cannot accurately model the distinguishing
characteristics of a speaker’s distribution. Choosing too many
components reduces performance when there are a large
number of model parameters relative to the available training
data [19].

TABLE V
ACCURACIES OFHNB AND GMM FOR RECOGNIZING 16 (TOP) AND

30 (BOTTOM) SPEAKERS

TABLE VI
AVERAGE TRAINING TIME OF HNB AND GMM FOR DIFFERENT

NUMBER OF SPEAKERS

C. Comparisons Between HNB and GMM

In this section, HNB is empirically compared with the most
successful statistical model (GMM) for speaker recognition.
The experimental procedure is the same as in Section V-A
and the same data set is used. for GMM is used in
our experiments. This setting is suggested in [19] and works
well in our data sets. We also ran fivefold cross validation
on two different numbers of speakers and different sizes of
homologous sets. One hundred test data represents 1 s of speech
data. We reported the average accuracies and their standard
deviation. We also reported the average CPU time ticks taken
for training and classification. Table V shows the results of
recognition accuracies for 16 and 30 speakers. Tables VI and
VII show the average training and classification time (the size
of homologous is from 1 to 600). The experiments were run on
Pentium III 800 MHz PCs with 256M DRAM.
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TABLE VII
TESTING TIME OF HNB AND GMM FOR THE TEST ON 16 (TOP) AND

30 (BOTTOM) SPEAKERS

The results show that GMM requires smaller numbers of test
vectors than HNB to reach a high accuracy. However, given
more feature vectors in the homologous sets, HNB quickly
catches up and reaches comparable accuracy to GMM. This is
not surprising because the GMM is capable of modeling the
correlations between the variables in a feature vector, but the
correlations are disregarded in the naive Bayes classifier due
to its independent assumption. As a result, when the size of
a homologous set is 1, the accuracies of HNB will be much
lower than GMM. However, HNB gains several advantages
from the independent assumption. One is that the implemen-
tation of HNB is much simpler than the GMM algorithm.
Other advantages of HNB include the faster training and
classification speeds. In our experiment, the average training
speed of HNB surpasses GMM by about 355 times, and the
average classification speed by about 15 (see Tables VI and
VII for training time and classification time, respectively). In
addition, HNB reaches high accuracies (99%) by using about
1 s of speech data. This shows that it is not necessary to use a
very large number of query vectors in order to boost HNB’s
accuracies. An interesting phenomenon here is that, though
more query vectors are required in order for HNB to reach
perfect accuracy, HNB’s classification speed is still faster than
GMM’s speed, as shown in Table VIII.

TABLE VIII
SIZE OF A HOMOLOGOUSSET AND CLASSIFICATION TIME FOR REACHING

THE PERFECTACCURACY

Based on the discussion above, we draw the following conclu-
sions on applying HNB in speaker recognition task. Since one
additional second of speech is a low cost to the speakers, it is a
tolerable or even favorable tradeoff in favor of HNB. Hence, if it
is not too difficult to obtain speech data from the same speaker
for classification, or if low-cost implementation is required, the
HNB can be a useful approach.

VI. CONCLUSIONS

The naive Bayes classifier is widely used in many clas-
sification tasks because its performance is competitive with
state-of-the-art classifiers, it is simple to implement, and it
possesses fast execution speed. In this paper, we discussed the
problem of how to classify a set of query vectors from the same
unknown class with the naive Bayes classifier. We showed that
a classifier must deliberately take advantage of the knowledge
that all data have the same unknown class label; otherwise
the knowledge will not improve the expected accuracy. Then,
we proposed the method HNB and compared it with several
simple methods (Avg, LAvg, Max, LMax, and Voting). The
experimental results show that HNB can take advantage of the
prior information that all members in a homologous set have
the same class label, improve accuracy, and outperform the
other methods when the naive Bayes model is used.

We also compared HNB and voting for the application of
speaker recognition. Experimental results show that HNB can
work well on this task and is more suitable than voting. Fi-
nally, HNB was compared with the GMM approach in speaker
recognition. Experimental results reveal that, although HNB can
reach the same level of accuracies as GMM by using about 1 s
more of test speech data, HNB’s execution speed is much faster
than GMM, and HNB has low implementation cost. Hence, we
suggest that HNB is useful in the domain of speaker recognition
and may be applied to other applications, if homologous sets are
available in that problem domain.
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