
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 2, APRIL 2002 207

The ANNIGMA-Wrapper Approach to Fast Feature
Selection for Neural Nets

Chun-Nan Hsu, Hung-Ju Huang, and Dietrich Schuschel

Abstract—This paper presents a novel feature selection approach
for backprop neural networks (NNs). Previously, a feature selection
technique known asthe wrapper modelwas shown effective for decision
trees induction. However, it is prohibitively expensive when applied to
real-world neural net training characterized by large volumes of data and
many feature choices. Our approach incorporates a weight analysis-based
heuristic called artificial neural net input gain measurement approximation
(ANNIGMA) to direct the search in the wrapper model and allows effective
feature selection feasible for neural net applications. Experimental results
on standard datasets show that this approach can efficiently reduce the
number of features while maintaining or even improving the accuracy. We
also report two successful applications of our approach in the helicopter
maintenance applications.

Index Terms—Curse of dimensionality, feature selection, neural net-
works (NNs), wrapper model.

I. INTRODUCTION

Selection of relevant features is of primary importance to the suc-
cess of a neural net. The goal is to find the minimum subset of fea-
tures that yield the highest accuracy. This problem is especially severe
when real-world applications are attempted and human selection of fea-
tures is not available, desirable, or dependable. There are two models
of feature subset selection. In the filter model, the features are filtered
independently of the induction algorithm. This filtering is done as a
pre-processing step. In contrast, the wrapper model [1] wraps around
the induction algorithm, searching the feature subset space guided by
the performance of the induction algorithm.

Since the filtering model ignores the effect of the feature subset on
the performance of the induction algorithm, many researchers have
pointed out that it may not be as effective and general as the wrapper
model [1]–[3]. They make the point that feature subset selection must
take into account the biases of the induction algorithm in order to per-
form well. However, since in the wrapper model, a large number of
training is required to search for the best performing feature subset,
it can be prohibitively expensive for neural net applications. Many
search strategies were proposed to speed up the search, including hill
climbing [3], compound operators [2], randomized algorithms [4], etc.
However, when applied to neural net application, at each branching
point of the search, these approaches still need to trainm neural nets
with cross validation to select the next feature subset, wherem is the
branching factor. This can be prohibitively expensive in real-world ap-
plications. A directed feature subset search is needed for neural nets.
In this paper’s approach, the feature subset search is accelerated by a
heuristic calledartificial neural net input gain measurement approx-
imation (ANNIGMA). ANNIGMA ranks neural net features by rele-
vance. Following each training, the ANNIGMA heuristic ranks the fea-
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tures by relevance. This makes it unnecessary to trainm neural nets
for each branching point. A huge improvement in speed is now real-
ized. In real-world applications, fewer features means fewer costs to
build sensors and to run systems. This paper also reports two successful
real-world applications of the ANNIGMA-wrapper approach in heli-
copter maintenance.

II. THE ANNIGMA-W RAPPERAPPROACH

A. An Approximate Metric for Total Gain

The heuristic called ANNIGMA ranks features by relevance based
on the weights associated with the features. The reasoning behind this
heuristic is that neural net weights can be viewed as representing the
gain of the input signal to the output node. Input signals that are noisy
or irrelevant to the output will have a high error rate if they have high
associated weights. Therefore, training algorithms must reduce their
weights such that they do not contribute to the output. In a similar
manner, the weights of relevant and noise-free signals will be increased.

The equation for a two-layer neural net with the first layer having a
logistic activation functionS(x) = (1=1 + exp(�x)) and the second
layer having a linear output is

Ok = Lk �
j

S
i

Ai �Wij �Wjk

wherei; j; k are the input, hidden, and output layers node indexes,
respectively.L is the second layer linear multiplier value;A is the input
node (feature);O is the output node; andW is the weight between
the layers. The outputOk as a function of a single inputAi can be
expressed as

Ok = Lk �
j

S(Ai �Wij + Cij)�Wjk (1)

whereCij represents the constant value of all the other inputs, in-
cluding biases.Cij here acts as a “setpoint” on the logistic function
curve. This equation, with all of the inputs processed through the lo-
gistic function, is too complex to analyze directly. An approximation
can be made of the total relative gainG of a particular input nodei
to a particular output nodej. The approximation substitutes a linear
factor for the logistic activation function. The approximation’s error is
reduced when the inputs are all in the same range. If we substitute a
linear factorF for the activation function, we have

Ok
�= Lk �

j

F � (Ai �Wij + Cij)�Wjk: (2)

The local gainLG is defined to be

LGik =
�Ok

�Ai

: (3)

SinceLk andF are common factors to ANNIGMA’s numerator and
denominator, they can be dropped in the calculation ofLG, i.e.

LGik =
j

jWij �Wjkj : (4)

The ANNIGMA score is the local gainLG normalized to a scale of
100

ANNIGMAik =
LGik

max(LGk)
� 100: (5)

When the input features are scaled in the same range, the weights will
give an approximation of the relative gain of each of these features.
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208 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 2, APRIL 2002

TABLE I
SAMPLE RECORDS OFSYNTHESIZED DATA SET

Fig. 1. ANNIGMA output by training iteration.

B. An Illustrative Example of the ANNIGMA Heuristic

We synthesized a small dataset to test and illustrate the predictive
power of ANNIGMA heuristic. The dataset for this example has bi-
nary valued features that satisfy the normalization requirement of the
ANNIGMA heuristic. The dataset contains six columns of input fea-
tures (A1–A6) and one column of target outputs (O1). Table I shows
sample records of our synthesized data.

Under uncorrupted conditions, the target outputO1 and the meta-sig-
nals XOR and SUM< 2 must agree, and other combinations of features
are not possible [i.e.,XOR(A2; A3) = (A4+A5+A6 < 2) = O1].
To simulate situations where noise exists along with redundancy, the
fourth feature (A4) was corrupted by flipping the bit with a 20% prob-
ability [i.e., the value ofA4 is replaced by its complement with twenty
percent probability (i.e.,P [A4  not(A4)] = 0.20)]. This tests the
ability of the heuristic to select the noise-free features.

The ANNIGMA scores of these features after six iterations of
training epochs is given in Fig. 1. For each of the six features (feature
1–6), there are six bars representing the ANNIGMA scores, G, for each
of six neural net training iterations. The rightmost (black) bar of each
feature reflects a fully trained net and is the final score. Fig. 1 shows
that within a few training iterations, ANNIGMA correctly suppressed
the noisy inputsA1 andA4. ANNIGMA correctly identified the XOR
signal (A2 andA3) as the most relevant. We obtained the same results
in 30 of 30 different neural net initializations.

C. Integrating ANNIGMA Into the Wrapper Algorithm

Selecting features solely based on a weight-based metric may yield
unreliable results. The ANNIGMA-wrapper approach integrates the
ANNIGMA heuristic into the wrapper model to achieve reliable results.
Fig. 2 gives an overview of the generic feature selection algorithm in
the ANNIGMA-wrapperapproach. The input to this algorithm is the
set of all features, and their associated training data. The output of this
algorithm is a feature subset.

On the top level, this algorithm consists of two nested loops. The
outer loop, calledthe wrapper cycle, selects the next subset to evaluate

Fig. 2. Program and data flow in the ANNIGMA-wrapper algorithm.

based on the ANNIGMMA evaluation of each feature and the clas-
sification performance of the neural network (NNs) using this subset
of features. How candidate feature subsets are actually generated and
evaluated is realized by the box “feature subset selection heuristic” at
the bottom of Fig. 2. Feature subset selection heuristic is instantiated
by a search strategy which will be described in detail in the next sec-
tion.

The inner loop calledthe training cyclecorresponds to the first and
second boxes on the program flow path in Fig. 2. Each of the training
cycles takes the candidate feature set as the input and estimates the error
rate of a trained neural net using the test data subset. The error rate is
estimated by tenfold cross validation as follows. There is an additional
“holdout” set of data for final performance testing which is not used
here.

The next box on the path of the program flow is to calculate AN-
NIGMA rankings of the features. After each run of the cross valida-
tion is completed, (5) is evaluated for each feature as described in Sec-
tion II-A. The resulting ANNIGMA score is then weighted by the test
error rate [i.e., ANNIGMA_score * (1-test_error_rate)]. This ensures
that the better performing neural nets have proportionately greater in-
fluence on the final ranking of features. The resulting error-weighted
ANNIGMA scores are averaged forn runs to produce the final score
for each feature and the ANNIGMA ranking. We compared the results
of weighted and nonweighted cases in our experiments. As expected,
the weighted case performed better [5].

D. Search Strategies

Our algorithms are based on the strategy of backward elimination
[1], [3]. Backward elimination starts with a complete set of original
features and removes features from candidate subsets during the
search. We present three versions of backward selection including
1) greedy backward elimination (BE), 2) backward elimination with
backtracking (BEB), and 3) backward stepwise elimination (BSE) for
integrating the ANNIGMA heuristic into the wrapper model.

BE is a greedy version of backward elimination that runs the training
cycle to obtain the ANNIGMA rankings and the error rates with all
features, then starts with a set including all features. It repeatedly elim-
inates the next worst ANNIGMA ranked feature in each wrapper cycle
until the error rate goes up.

BEB is a version of BE that allows for backtracking. The idea is that
if the error rate goes up, instead of terminating the feature selection, the
previous feature being eliminated is restored and the next worst ranked
feature is eliminated. The process is iterated until a performance-im-
proving elimination is found for each size of feature subsets.

BSE (Algorithm 1) is designed to accelerate feature selection for
large datasets when BEB is too slow. The main idea is to eliminate a
large number of seemingly irrelevant features in early cycles and adjust
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the feature subset carefully in the subsequent cycles. When the perfor-
mance degrades, the best of the discarded features are brought back
into the candidate subset.

Algorithm 1 [Backward Stepwise Elimination
(BSE)]
01. Run a training cycle with all fea-

ture, calculate ANNIGMA ranking
02. Let error averaged error rate and

the feature subset all features
03. Let the set of discarded fea-

tures, initially empty
04. Let cycle counter
05. WHILE NOT termination condition
06. IF THEN LET top % of

the best features in
07. ELSE IF error minimum of pre-

vious errors THEN
08. Let top % of the best fea-

tures in
09. ELSE IF error mean of pre-

vious errors THEN
10. Let top % of the best fea-

tures in plus the best feature in

11. ELSE IF error maximum of pre-
vious errors THEN

12. Let top % of the best fea-
tures in plus the best 2 features
in

13. ELSE Let top % of the best
features in plus the best
features in

14. Update ; Sort over the his-
tory-averaged ANNIGMA scores

15. Run a training cycle with , calcu-
late ANNIGMA ranking

16.
17 END WHILE and RETURN

The parameters (p1�p5) used in Algorithm 1 are tuned for the ex-
periment in the pulse-echo classification domain (p1 = 75; p2 =

85; p3 = p4 = 90, andp5 = 50; see Section V). The reduction per-
centages (lines 6, 8, 10, 12, and 13) and initial fixed reduction period
(line 6) can be adjusted for a given application. Changes to these pa-
rameters may affect the efficiency of the search as well as the selected
features. In our experiments, we found that slight changes to these pa-
rameters did not affect the resulting sets of selected features.

History-averaged score is used as a more reliable estimate of the
relevance of a discarded feature than the most recent score because
reintroducing a discarded feature is based on an assumption that its
relevance is underestimated by the most recent score. However, which
score in the previous wrapper cycles is the most reliable is not known,
while recomputing the score may incur huge overhead. Therefore, a
conservative choice is to use the history-averaged score.

III. EXPERIMENTAL RESULTSAGAINST UCI DATASETS

This section reports experiments exploring the results of using the
ANNIGMA-wrapper algorithm against standard artificial and real-
world datasets. These datasets were obtained from the UCI Machine-
Learning Repository [6].

TABLE II
INFORMATION FOREACH DATASET

A. Dataset Description and Preparation

The first column of Table II gives the size of our experimental
datasets (in the format: training/cross validation+ holdout set.) The
ratio of training and holdout set is 2:1 unless explicitly designated
by dataset providers. Some datasets contain missing values. We
simply replace all missing values by the feature mean for all instances
belonging to the same class. The first four rows are artificial datasets
and the rest are real-world datasets.

B. Experimental Procedure

The second column of Table II describes the neural net configura-
tions (in the format: maximum epochs+ number of hidden nodes+
hidden layer transfer function+ output layer transfer function) for each
dataset in the experiments. These configurations are empirically deter-
mined based on their cross validation errors and relative variances of
the resulting ANNIGMA rankings.

The experiments are carried out as follows. For each dataset, the first
step is to normalize input features into the same range, usually between
0 and 1. After the configuration is determined, we estimate the error rate
of the neural net with no feature selection by applying tenfold cross
validation to train ten sets of the weights using the training set, and
then testing them against the holdout set and averaging the resulting
error rates. Next, we compare the feature selection performance of AN-
NIGMA-wrapper by applying different search strategies described in
Section II-D 30 times and report the average number of features se-
lected, the average error rate, and the average execution time. In each
trial, the elements in training set and holdout set of a testing dataset
are randomly selected except the dataset whose training and holdout
set have been explicitly designated by its provider. The error rate is es-
timated by averaging holdout set errors after the final feature subset is
selected. Two different search strategies are applied to each dataset for
performance comparisons: 1) SWB and 2) BE family. SWB is the stan-
dard wrapper-backward elimination. It is a greedy version of backward
elimination for the standard wrapper feature selection, where error rates
are the sole metric to guide the search. This approach is introduced here
for the purpose of comparisons. The fourth column of Table II shows
which BE family algorithm is used for each dataset. We use BSE for
datasets with many features, BE for small or synthesized datasets, and
BEB for others, mainly to maximize the utility of our computing fa-
cilities. The experiments are conducted on Pentium III 800 MHz PC’s
with 128 MB memory.
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TABLE III
PERFORMANCESTATISTICS OFFEATURE SELECTION BY ANNIGMA-W RAPPER

C. The Results

Table III reports the average execution time in seconds to complete
a feature selection task for each dataset with different algorithms. In all
cases, the ANNIGMA-wrapper algorithms (BE family) can complete
a feature selection task in less than 10 min. ompared with SWB, the
ANNIGMA-wrapper algorithms are many times faster for all datasets,
especially for those datasets with a large number of features, such as
Ionosphere (34 features).

Table III also reports the feature selection performance of the AN-
NIGMA-wrapper approach. The “NN” column lists the results with no
feature subset selection. The second column (“SWB”) reports the re-
sults of the standard wrapper-backward elimination. The third column
compare the results by using the search strategies (BE family) of the
ANNIGMA-wrapper approach. For each case (except for SWB for
Ionosphere), we report the average and the standard deviation of the
number of features selected, the average and the standard deviation of
the error rates. Since it takes too much time for SWB to select features
for dataset Ionosphere, we only complete this algorithm one time for
Ionosphere and report only that result.

We also use ANOVA with the Bonferroni procedure for multiple
comparisons statistics [7]. The difference between any two error rates
in a row must be at least as large as the value in the “Required Differ-
ence” or “RD” column in order to be considered statistically significant
at the 90% confidence level for the experiment as a whole. An error rate
in boldface is significantly better than that of “NN.”

D. Discussion

The results show that BE family perform well in general for seven
out of the ten datasets, improving the number of features or the error
rate over the base NN significantly. The results for 3P and CorrAL are
particularly remarkable. BEB selects the correct three features for 3P
and achieves perfect classification in all 30 tests. Even the replicated
features are distinguished and eliminated. For CorrAL, BE almost al-
ways selects the correct four features, occasionally adding an irrelevant
one.

The results also show that feature expansion can have a negative
effect when it does not offset the cost of adding another feature. For
Monk3a, using features as-is, the correct features were selected. For
Monk3b, the correct features were chosen, but never the minimum
subset. Note that when using the expanded representation, there are
aliases for each feature (e.g.,a4 = 1 impliesa4 6= 2 anda4 6= 3).

Comparing the results for Monk3a with Monk3b, we see that AN-
NIGMA-wrapper can identify relevant features even when they are
multiple-valued. We also tried to perform feature expansion for some
datasets (such as Credit) which have nonbinary categorical features, but
results, not reported here, were time-consuming and the performances
are not improved significantly.

IV. COMPARISONSWITH RECENT RELATED WORK

Recently, many clever techniques have been proposed to improve
the effectiveness of feature selection for neural nets, ranging from filter
model-based approaches to genetic algorithms. This section compares
their results with ours.

A. Recent Advances

Richeldi and Lanzi presented an approach called AHOC [8], which
partitions the observed features into a number of groups, called factors,
that reflect the major dimensions of the phenomenon under considera-
tion. A genetic algorithm is used to explore the feature space originated
by the factors and to determine the set of the most informative feature
configurations.

Neural network feature selector (NNFS) [9] is a method that adds a
penalty term to the error function used to derive the weight updating
rule of NN training.

GADistAl [10] is a wrapper-based approach to feature selection
using a genetic algorithm in conjunction with a constructive NN
learning algorithm called DistAl [11], which is employed to evaluate
the “fitness” of candidate feature subsets in the genetic algorithm. The
“fitness” function is designed to combine the classification accuracy
and the cost of using a set of features.

Dash and Liu [12] proposed a hybrid algorithm of probabilistic
search [13] and complete search to take advantage of both algorithms.
It begins with Las Vegas filter (LVF) [4], a probabilistic feature
selection algorithm, to reduce the number of features and then runs
Automatic Branch & Bound (ABB), a complete search algorithm.

B. Comparisons

The algorithms that are surveyed for the comparison including the
original wrapper [1], Las Vegas filter (LVF) [13], Las Vegas wrapper
(LVW) [4], neural net feature selector (NNFS) [9], hybrid approach
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(hybrid) [12], information-theoretic filter (INFO) [14], and AHOC ge-
netic algorithm (AHOC) [8].1 The last column of Table III shows these
performance data. The comparison is made on the basis of both the
number of features selected and the error rates after feature selection.
It should be mentioned that results achieved by different algorithms are
not obtained with the same experimental procedure, nor did we imple-
ment and rerun their algorithms but using their report literally. There-
fore, the comparison is inherently informal.

According to the performance data, among eight datasets, AN-
NIGMA-wrapper is better in six cases (3P, CorrAL, Cancer, Credit,
Pima, and Vote) in terms of the error rates. Hybrid [12] also achieves
perfect result for 3P, but their 3P dataset contains 12 features while
we use a 3P dataset with 13 features. For datasets Monk3b, and Heart
(LB), ANNIGMA-wrapper produces the smallest feature subset but
higher error rates than the best of recent advances. However, we note
that the training dataset of Monk3 has 5% class noise, and the holdout
dataset contains the training dataset. The 12 noisy records out of a
total of 432 records result in an expected best error rate of 2.78%. This
is exactly the error rate achieved by ANNIGMA-wrapper in most of
its cases. An induction algorithm achieving a better error rate might
overfit the data by modeling the noise.

V. APPLICATIONS IN THEHELICOPTERINDUSTRY

This section reports two successful applications of the ANNIGMA-
wrapper approach in the helicopter industry.

A. Pulse-Echo Experiment

This system classifies ultrasonic pulses that are used to inspect parts
formed of laminated composite materials. In this system, the inspection
process consists of sending a short ultrasonic pulse into the material
under the test. These echo signals are collected and digitized by an A/D
converter. Any change in the materials propagation speed for sound
within the sample will result in an echo being sent back toward the
transducer that initiates the test pulse. Material failures are associated
with echo signal shapes.

The digitized waveform is converted into 192 features. The system
must classify these digitized waveforms into “good” and “bad” cat-
egories. An existing system uses a wavelet-compression approach to
select top 25 features.

In this experiment, the ANNIGMA-wrapper algorithm uses all 192
features as its initial feature set. One cycle takes about 1 min on a Pen-
tium-Pro 200MHz equipped computer. Fig. 3(a). shows the features
selected as the ANNIGMA-wrapper algorithm progressed for material
“45b45.” Fig. 3(b). shows the number of features selected by a wrapper
cycle. The associated performance is presented in Fig. 3(c). The accu-
racies are based on 150 pulse-echo waveform that were not used in the
training. When this ANNIGMA-wrapper algorithm was run, stopping
criteria was turned off. It can be seen that cycles after cycle 48 are not
necessary.

The existing system, using the top 25 wavelet coefficients, achieved
97% accuracy. The ANNIGMA-wrapper algorithm, used only ten of
these coefficients to achieve 99% accuracy. The intersection of the two
sets of coefficients contains only two members. The result suggests
that the set of wavelet coefficients contains a large number of redundant
relevant features. The ANNIGMA-wrapper approach manages to select
a smaller set of features while achieving a slightly better accuracy.

1Table III does not include the results of GADistAl because they reported
tenfold cross validation results rather than the results for holdout data. Their
results may not be comparable with other approaches.

Fig. 3. ANNIGMA-wrapper results by cycle for material 45b45.

B. Strain Signal Prediction

The second application is the development of a system that predicts
the strain on helicopter rotor blades. Helicopter rotor blade repair and
replacement are major cost factors in helicopter operations. However,
they are essential to assure helicopter safety. Current industry standard
to measure the fatigue life is based on a fixed number of operating hours
assuming most severe operation. This is an inefficient because perfect
blades may be mistakenly scrapped. A proposed solution is to track the
strains on the blades to calculate fatigue damage [15], [16]. However,
it is not feasible to directly measure strains on production helicopters
due to the high expense of a sensor/monitoring system, and the un-
reliability of a strain sensor mounted on a rotor blade. We attempt to
solve this problem through a neural net trained to predict strain from
other easily obtainable helicopter signals. The neural nets in this ap-
plication is to approximate the strain gauge reading mounted on the
helicopter blades as a function of the given sensory inputs. Initially,
41 sensors from among thousands available on the helicopter were se-
lected by flight dynamics experts. We have 197 sets of training datasets
(1G bytes large total). Each set contains the sensory data collected from
3- to 19-s periods.

Due to very large size of the datasets, the first wrapper cycle takes
200 h of exclusive run-time on a 200 MHz Pentium Pro-based com-
puter. After three wrapper cycles, ANNIGMA-Wrapper selects 19 fea-
tures from 41 and reduce the error rate from 17.3% to 16.3%. The fourth
cycle yields 13 features but the error rate jumps to 77.4%. The impli-
cation of these results is that the information content in the 13 selected
features is insufficient compared to that in the 19 features. These 19 sig-
nals are therefore recommended for further system development. The
first wrapper cycle was rerun to check the reliability of the ANNIGMA
heuristic. We found that the top ten high-ranking features were within
two ranks of differences between two runs [5].

VI. CONCLUSIONS

In this paper, we have presented a new approach to selecting features
for neural nets called ANNIGMA-wrapper that makes the wrapper
model feature selection tractable in real-world neural net applications.
Experimental results against standard datasets from UCI repository
show that our simple approach performs well for datasets with various
characteristics, and theANNIGMA-wrapperapproach wassuccessfully
applied to two real-world neural net applications in the helicopter
industry.
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Granular Clustering: A Granular Signature of Data

Witold Pedrycz and Andrzej Bargiela

Abstract—The study is devoted to a granular analysis of data. We de-
velop a new clustering algorithm that organizes findings about data in the
form of a collection of information granules—hyperboxes. The clustering
carried out here is an example of a granulation mechanism. We discuss a
compatibility measure guiding a construction (growth) of the clusters and
explain a rationale behind their development. The clustering promotes a
data mining way of problem solving by emphasizing the transparency of
the results (hyperboxes). We discuss a number of indexes describing hyper-
boxes and expressing relationships between such information granules. It is
also shown how the resulting family of the information granules is a concise
descriptor of the structure of the data—a granularsignatureof the data. We
examine the properties of features (variables) occurring of the problem as
they manifest in the setting of the information granules. Numerical exper-
iments are carried out based on two-dimensional (2-D) synthetic data as
well as multivariable Boston data available on the WWW.

Index Terms—Complex systems, confidence limits analysis, data mining,
feature analysis, granular time series, hyperboxes, information abstraction,
information granules and granulation, interval analysis, principle of bal-
anced information granularity.

I. INTRODUCTORYCOMMENTS

Making sense of data has been a motto of data mining. Any in-depth
analysis of data that leads to comprehensive and interpretable results
has to address an issue of transparency of final findings. In one way
or another, arises a need for casting the results in the language of in-
formation granules—conceptual entities that capture the essence of the
overall data set in a compact manner. It is worth stressing that infor-
mation granules are a vehicle of abstraction that supports a conversion
of clouds of numeric data into more tangible information granules [2],
[3], [5], [12], [13], [16]–[18].

The area of clustering with its long history has been an important en-
deavor of finding structures in data and representing the essence of such
finding in terms of prototypes, dendrograms, self-organizing maps [8],
[9] and alike [1], [4]. Commonly, if not exclusively, the direct aspect of
granulation has not been tackled. The intent of this study is to address
this important problem by introducing an idea of granular clustering.
Being more descriptive, the simplest scenario looks like this: we start
from collection of numeric data (points inRn) and form information
granules whose distribution and size reflects the essence of the data.
Forming the clusters (information granules) may be treated as a process
of growing information granules—as the clustering progresses, we ex-
pand the clusters, enhance the descriptive facet of the granules while
gradually reduce the amount of details being available to us. The in-
formation granules we are interested in this study are represented as
hyperboxes positioned in a highly dimensional data space. The mathe-
matical formalism of the interval analysis provides a robust framework
for the analysis of information density of the granular structures that
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