
Power-spectrum-based neural-net connection 
admission control for multimedia networks 

C.-J. Chang, L.-F. Lin, S.-Y. Lin and R.-G. Cheng 

Abstract: Multimedia networks need sophisticated and real-time connection admission control 
(CAC) not only to guarantee the required quality of service (QoS) for existing calls but also to 
enhance utilisation of systems. The power spectral density (PSD) of the input process contains 
correlation and burstiness characteristics of input traffic and possesses the additive property. 
Neural networks have been widely employed to deal with the traffic control problems in high-speed 
networks because of their self-learning capability. The authors propose a power-spectrum-based 
neural-net connection admission control (PNCAC) for multimedia networks. A decision 
hyperplane is constructed for the CAC using power spectrum parameters of traffic sources of 
connections, under the constraint of the QoS requirement. Simulation results show that the 
PNCAC method provides system utilisation and robustness superior to the conventional 
equivalent capacity CAC scheme and Hiramatsu’s neural network CAC scheme, while meeting 
the QoS requirement. 

1 Introduction 

Multimedia networks should be equipped with a set of 
traffic control functions to ensure the QoS of each 
service connection and to enhance system utilisation. 
One of the traffic control fLinctions is connection admission 
control. Connection admission control (CAC) is defined 
as ‘a set of actions taken by the network to deter- 
mine whether a connection can be accepted’ [l]. A 
new connection is accepted only if sufficient network 
resources are available and the required performance can 
be maintained. 

Several conventional CAC control techniques for high- 
speed networks have been proposed. In the peak rate 
allocation, QoS is always guaranteed if the aggregate bit 
rate never exceeds the system capacity. However, it leads to 
low utilisation of network resources. An equivalent capacity 
(effective bandwidth) method was proposed to estimate the 
required bandwidth for individual or aggregate connections 
with desired QoS [2, 31. A call admission scheme by 
inferring the upper bound of cell loss probability from the 
traffic parameters specified by users was studied in [4]. Also 
a simple bandwidth assignment policy by classifying all 
traffic sources was presented. All the studies were conducted 
mainly on the basis of traffic parameters in the time 
domain. 

However, Li and Hwang [5] and Sheng and Li [6] have 
studied the queueing performance of a high-speed network 
from the point of view of frequency-domain traffic 
parameters. The process of input traffic inherently contains 
a power spectral density (PSD) function, which is the 
Fourier transform of the input traffic process’s autocorrela- 
tion function. From their studies, two characteristics of 
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PSD are demonstrated: (i) the PSD can be represented by 
three main parameters such as the DC component, the 
average power and the half-power bandwidth; and (ii) the 
low-frequency band of the input PSD has a dominant 
impact on queueing performance, while the high-frequency 
band can be neglected to a large extent. 

This is because the low-frequency component of the PSD 
contains the correlation and burstiness of the input process. 
With more low-frequency components, the burstier the 
input traffic will be [7]. 

We have proposed a composition algorithm to obtain 
three new PSD parameters of a traffic source which is 
aggregated from two traffic sources in [8]. It can be 
concluded that PSD parameters possess the additive 
property; this makes the PSD parameters more suitable 
for admission control, no matter how many types of traffic 
sources there are. A power-spectrum-based table-lookup 
CAC method for multimedia communications in ATM 
networks was studied, where the table content was the cell 
loss probability indexed by PSD parameters of voice/video 
calls and arrival rates of data calls [SI. Simulation results 
revealed that it could achieve system utilisation 9% higher 
than that of the conventional equivalent capacity CAC 
method proposed in [2]. 

In recent years, neural networks have been widely 
employed to deal with the traffic control problems in 
high-speed multimedia networks [9-1 I]. A major feature of 
the neural network is the self-learning capability which can 
be utilised to characterise the relationship between input 
traffic and system performance. In [9], Hiramatsu proposed 
a connection admission controller using a neural network. 
Hiramatsu’s neural network connection admission control- 
ler used the offered traffic characteristics and QoS 
requirement to decide whether to accept or reject a new 
call. Results showed that the neural network learned a 
complicated boundary for call acceptance decision. We 
previously proposed a neural network connection admission 
control (NNCAC) scheme [lo] and a neural fuzzy 
connection admission control (NFCAC) scheme [I 11 for 
ATM networks. Simulation results reveal that call admis- 
sion control with either neural networks or neural fuzzy 
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networks can improve significantly the system utilisation 
under QoS constraint. 

In this paper, we propose a power-spectrum-based 
neural-net connection admission control (PNCAC) method 
for multimedia networks. We first transform the time- 
domain parameters of source traffic of connections into the 
power-spectrum parameters in the frequency domain, then 
a decision hyperplane of the connection admission control is 
constructed under the constraint of QoS after the neural 
network has been trained. The decision hyperplane splits 
the sample space into two parts: one is for ‘accept’ and the 
other is for ‘reject’. We further adopt the learning/adapting 
capabilities of the neural network to adjust the optimal 
location of the boundary between these two decision spaces 
(i.e. using the back-propagation training algorithm to adjust 
the link weights of PNCAC to the optimum value). 
Simulation results show that PNCAC achieves higher 
system utilisation, superior by 23 3% to the conventional 
equivalent capacity CAC proposed in [2], and comparable 
to that of Hiramatsu’s neural network CAC (”CAC) [9]. 
However, PNCAC is more robust than Hiramatsu’s 
NNCAC in high-speed multimedia networks. As character- 
istics of traffic sources change, the connection number of 
each traffic type utilised as the input variables in 
Hiramatsu’s NNCAC can no longer characterise the traffic. 
At this time, Hiramatsu’s NNCAC should perform online 
training and even the node-growing or node-pruning 
learning process to adapt to the variation in traffic sources, 
otherwise, the performance would deeply degrade with the 
QoS no longer guaranteed. However, the proposed 
PNCAC can still perform well without any other modifica- 
tions or retraining process. 

2 

If an input rate process u(t) is modelled as an ( M +  I)-state 
Markov-modulated Poisson process (MMPP), the MMPP 
can be represented by (Q, r): where Q is the state transition- 
rate matrix and r = [yo, y l ,  . . . , y M ]  is the vector representing 
the arrival rate at each MMPP state. The stationary 
probability vector of state, denoted by fZ = [no, 711,. . . , n ~ ] ,  
can be obtained by solving equations of nQ=O and 
ne = 1, where e is an unit column vector. The average input 
rate -7 is then given by 

Power spectrum of the input process 

M 

7 = CYiTi 
i=O 

Q is diagonalisable and can be represented by spectral 
decomposition as 

M 

where AI is the lth eigenvalue of Q, and g, and hl are the 
associated right column and left row eigenvectors of Q with 
respect to L,, respectively [6]. 

Then the autocorrelation function of the MMPP, defined 
as R ( z )  = n(t)a(t  + z), can be derived. Its corresponding 
PSD, denoted by P(o), can also be given, via Fourier 
transformation of R(z), by [6] 

M 

P(w)  = y + 27rYo6(w) + bl(w) ( 3 )  
/= 1 

where 

Yo is the DC component, given by 

yo = 72  ( 5 )  
and b/(co) is the bell-shaped function with respect to 
nonzero AI, given by 

Y, in (6) is the average power contributed by I,/, given by 

where glL and h, are the ith andjth entities of the vector g1 
and hl, respectively. Bl in (6) is the half-power bandwidth, 
Bl= -2Re{4} and the col in (6) is the central frequency of 
the bell-shaped function b/(o),  o/= fin{Al}, where Re{ . } 
and Zm{ . }  denote the real part and the imaginary part of 
the argument, respectively. 

From (3), it can be found that the PSD of an MMPP 
process is constituted by white noise 7, DC component 
2nY0, and a set of bell-shaped functions bl (a) described by 
the average power \ V I ,  the half-power bandwidth Bl and the 
central frequency w ~ ,  with respect to the lth eigenvalue of Q. 
The white noise is contributed by the Poisson local 
dynamics. From the result demonstrated in [5], the influence 
of the white noise on a queueing system can be neglected. 

If the traffic source is further assumed to be an (Mi- 1)- 
state birth-death MMPP, which is a superposition of A4 
independent and identically distributed (i.i.d.) two-state 
MMPPs with parameters (a,p,r,) as shown in Fig. 1 , it 
would have all eigenvalues real and all bell-shaped fLmtions 
zero-centered. Take a two-state MMPP for example, its 
time-domain traffic parameters described by (a, p, r.,) are 
shown in Fig. 2 u, and the PSD parameters characterised by 
(7, B ,  Y )  are shown in Fig. 2b, where 7 = / h , / (a  + /)), 
B = 2(a + p)  and Y = apro/(a+p)’. The PSD of the 
(M+ 1)-state birth-death MMPP can be obtained by 
composing PSDs of the M i.i.d. two-state MMPPs into a 
composite power spectrum which is further approximated 
by an impulse DC component and a single bell-shaped 
function with parameters 

00 f o r w = 0  
0 elsewhere S(w) = (4) The composition algorithm for the two different power 

spectra is stated in the Appendix. 
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, a  b 

Fig. 2 Tii~.le~reclzieiic~-~l~)inain parmeters of the two-state 
MMPP 

Therefore, it can be concluded that a birth-death MMPP 
traffic source can be described by its PSD with power- 
spectrum parameters (?, B, !P) including the DC component 
(y), the half-power bandwidth (B) and the average power 
(Y) of the bell-shaped function. These parameters can be 
obtained from the (M+ 1)-state MMPP parameters 
(a, [j, ro). The larger the mean input rate, the higher v will 
be, the more correlated the input process is, the smaller B 
will be and the larger the input rate variance is, the higher Y 
will be. Moreover, the PSD parameters of the input process 
possess the additive property, which does not exist in the 
time-domain traffic parameters. 

When a new call request provides its time-domain traffic 
parameters such as peak bit rate (RP), mean bit rate (RM) 
and average peak bit rate duration (TD) during the call 
establishment phase, the modelled ( M +  1)-state birth-death 
MMPP process with pardmeters (u, /3, ro) can be obtained 
from these traffic parameters ( R p ,  RM, 7‘’) by 

RP 
r, = - 

M 
The power-spectrum parameters (7, B ,  Y )  of the input 
traffic of the new call can then be converted from the 
(M+ 1)-state birth-death MMPP parameters (a, /3, ro) by 
(8)H 10). 

new call request 
for voice and video 

(R,u 1 Rp 8 L) 
new call request 

for data 

time/frequency 
parameter 
converter 

I 

3 PSD-based neural-net connection admission 
controller 

Fig. 3 shows the functional block diagram of the PSD- 
based neural-net connection admission controller. It mainly 
contains a PNCAC controller, a time/frequency parameters 
converter, a data rate register, a PSD parameter register, a 
data rate composer and a power spectrum composer. Input 
traffic is assumed to be classified into two types. Type-1 
traffic is the real-time traffic such as voice and video, and 
type-2 traffic is the non-real-time traffic such as data. 

As the new call request for type-] traffic claims its traffic 
parameters, Rp, RAl and T D ,  in the call establishment phase, 
the time/frequency parameter converter transforms the 
(RM, Rp, TD) in the time domain into (?, B ,  Y’) in the 
frequency domain. The PSD parameter register keeps the 
record of the power-spectrum parameters ( Y E ,  BE,  Y E )  of 
the total existing type-1 connections, where Y E  is the total 
average input rate, BE is the total half-power bandwidth 
and YE is the total average power. The two sets of 
parameters (7, B, Y )  and ( ? E ,  B E ,  Y E )  are added to form a 
new set of parameters ( V T ,  BT ,  Y T )  through the power 
spectrum composer which performs the power spectrum 
composition and approximation functions mentioned in the 
Appendix. If the new call request belongs to type-2 data 
traffic, it claims the data rate r as the traffic parameters in 
the call establishment phase. The data rate register records 
the overall data rate rE of the existing type-2 connections, 
and the data rate composer adds these two data rates, r 
and fE, to form a new parameter fT. The set of PSD 
parameters ( y T ,  B T ,  Y T )  accompanied by the data rate f 
is then fed into the PNCAC controller as the input variables. 
As shown in Fig. 4 , the PNCAC controller is a multilayer 
feedforward neural network [lo, 121, which possesses 
capabilities of approximation to a perfect connection 
acceptance decision fhction. A back-propagation learning 
algorithm [13] is used here to train the neural network. The 
PNCAC controller will then decide whether to accept or 
reject this connection request using the neural network and 
feed the decision output (r) back to the source. 

If the decision is lo accept the new type-1 call, the 
PSD parameter register will be triggered to update 
the stored power-spectrum parameters ( V E ,  B E ,  Y E )  to be 
( V T ,  B T ,  Y r ) .  Similarly, so does the type-2 data rate register 
if a type-2 call is accepted. If the decision is to reject the new 
call, no updating procedure is needed. Notice that (7, B ,  Y) 

data rate 

PNCAC 
controller 

- 
accept / reject 

decision 

Fig. 3 Functional block diagram of the PSD-based neiiral-net connection ndnzission controller 

Y 
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or r should be subtracted from (T,;, Bb:, Y E )  or l’,; when a 
type-I or type-2 call is disconnected, respectively, which is 
not shown here. 

The impleiiieiitatioii of the proposed PNCAC takes 
about 200 lilies of C codes, in which 370 inultiplication and 
3 10 addition operations are included. The coniputatioii time 
to make an admission decision would be no more than 
500 ps under general purpose CPU such as Intel Pentium-TI 
or abovc. Tlierefoi-e, tlie PNCAC would be feasible in real 
iiiipleinentation for high-speed multimedia networks. If 
special purpose CPU or DSP processors with pipeliiic 
architecturc or optiniised computation capabilities are 
adopted, less tiine should be taken to respond to a call 
request. Also, the compiled inachiile (execution) codes for 
Intel CPU occupy about 20Icbytc. The proposed PNCAC 
scheme can even be downloaded to the embedded system 
(platforms). 

4 Simulation results and discussions 

Here we assume that the call admission controller is 
designed in an ATM switcli/router in multimedia networks, 
and input messages are segmented into fixed-length ATM 
cells. Two separate buffers with buffer size K1 and K2 are 
for type- I and type-2 traffic, respectively. One buffer space 
can accommodate one ATM cell. When the buffer is firll, 
new coming cells are blocked and lost. The service disciplinc 
for type-l and type-2 traffic is that the system initially 
allocates equal capacity for both types, and the remaining 
capacity of one type of traffic can be used by the other type 
of traffic. 

In the simulations, the buffer sizes K I and K2 are all set 
to be 100 cells; the systcin capacity is assuined to be 
150 Mbit/s. Different QoS requirements for these two types 
of traffic are defined: the required cell loss probability is set 
to be 10 ’ for type-I traffic and IOp6 for type-2 traffic. The 
voice so~irccs are modelled by a two-state on-off Markov 
chain (MMPP); the video soiirces are modelled by a 
modified Markov process addressed in [Il l ,  where tlie 
numbers of video interframes and intrafmmes are assumed 
to have five states, and thc data sources are modelled by a 
Poisson process. The traffic parameters for voice and video 
sources are shown in Table I, and the mean 1-ate for data 
sotirces is 1 Mbit/s. The call arrival rate for voice is 15.4 
calls/s with mean holding time of one minute, the call 
arrival rate for video is 0.082 calls/s with mean holding time 
of five minutes, and the call arrival rate for data is 3.2 calls/s 
with mean holding time of 20 s. For all traffic types, the call 
arrival processcs are ass timed to be independcntly Poisson 
distributed, and the mean holding time is assunicd to be 
exponentially distributed. Note that in the transforination 
of the three input time-domain parameters (R,,,,, R p ,  T,) 

Table 1: Traffic source parameters 

Traffic Peak rate Mean rate Peak rate 
parameters duration 

Voice 64.0 kbit/s 27.6 kbit/s 1.366 s 

Video 5.7 kbit/s l.SMbit/s 0.033 s 

Data 1 .O Mbit/s 

into PSD parameters ( 7 ,  B ,  Y’), both voice and video 
so~~rces are assumed to be two-state birth-death MMPP. 

The neural networks adopted by the PNCAC is a thrce- 
layered fully-connected feedforward neural nctworlc with 50 
hidden nodes, as the one used by Hirainatsu’s NNCAC 
which has 30 hidden nodes. It L I S ~ S  683 and 280 training 
data and tales about 221467 and 199501 itcrations to 
thoroughly train tlie PNCAC and Hiramatsu’s NNCAC, 
respective1 y. 

Fig. 5 shows tlie cell loss ratio of  type-1 and type-2 
traffic, and tlie system utilisation in Figs. 50,  h and c 
respectively, for the three approachcs, where the character- 
istics of traffic source in simulation are exactly the same a s  
the ones used in tlie ti-aining data generation phase. We can 
find that, after the neural networks have been well trained, 
both Hiramatsu’s NNCAC and PNCAC have larger cell 
loss ratio than ECCAC, but still guarantee QoS require- 
ments, while Hiramatsu’s NNCAC and PNCAC can 
improve significantly the systcni ntilisation over the 
conventional ECCAC by about 24.4% and 23.8%, 
respectively. Note that this iiti1is;ition is obtninccl by 
averaging those values between 10‘) and 2 x IO9 slot timcs. 
This is because of the learning and adaptive capability of 
neural networks. Also, Hiramatsu’s NNCAC has slightly 
better system utilisation than PNCAC by about 0.6‘%, a s  
Hinamatsu’s NNCAC adopts the connection number of 
each traffic characteristic 21s the input to decide whether ;I 
call request is accepted or not, aiid the traffic characteristics 
in siinulations are exactly the same as the oiics used in the 
training data generation phase for Hirmiatsu’s NNCAC. 

We further consider two simulation examples when thc 
neural networks were well traincd according Lo the traffic 
charactcristics illustrated in Table 1 , but the system receives 
heavier and lightcr traffic sources with paramcters in 
Tables 2 and 3, respectively. 

shows the cell loss ratio of type-1 and type-2 
traffic, aiid the system Litilisation, for the heavier traffic 
source, in Figs. 6u. h aiid c, respectively. I t  can be seen that 
the cell loss ratio of Hiramatsu’s NNCAC, denoted by the 
dashed line, seriously violates the QoS requirements, in both 
type-1 and type-2 traflic, although tlic utilisation of 
Hiramatsti’s NNCAC is tlie highest onc and approaches 
l000/~1. However, the proposed PNCAC xnd ECCAC can 
still fulfil the QoS requirements, and tho system Litilisations 
of PNCAC and ECCAC are 85.8%) and 77.7‘!4, respec- 
tively. 

shows the cell loss ratios of type-1 and type-2 
traffic, and tlie system utilisation, for the lighter traffic 
so~irce, in Figs. 7 ~ ,  h, and c, respectively. I t  can be seen that 
all the three CAC schemes havc zcro cell loss ratios and 
guarantee the required QoS but obtain low system 
utilisations, conipared to those of the normal case shown 
in Fig. 5 .  Hiramatsu’s NNCAC suffers more degradation 

From t h e  two simulation examples, it  can be concludcd 
that Hiramatsu’s NIVCAC has worse adaptivity and 
flexibility than PNCAC and ECCAC. This is because the 
connection number of each traffic type adopted by 

Fig. 6 

Fig. 7 

and turns out to have the worst system utilis, ‘I t’ 1011. 
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Fig. 5 
u Type-I cell loss ratio (CLR) 
b Type-2 cell loss ratio (CLR) 
c System utilisation of the ECCAC, Hiramatsu's NNCAC, and 
PNCAC 

Cell loss ratios and system utilisution 

Table 2: Heavier traffic source parameters 
~ ~~~~~~ 

Traffic Peak rate Mean rate Peak rate 
parameters duration 

Voice 64.0 kbit/s 40.958 kbit/s 1.742 s 

Video 1 1.4 M bit/s 3.8 Mbit/s 0.033 s 
Data - 1.5Mbit/s - 

Hiramatsu's NNCAC could apply only when the traffic 
characteristics of traffic sources fed into the operational 
system are the same as the ones in the training phase. 
However, this is usually impossible in real practice. As 

Table 3: Lighter traffic source parameters 

Traffic Peak rate Mean rate Peak rate 
parameters duration 

Voice 64.0 kbit/s 23.042 kbit/s 0.98 s 

Video 2.85 Mbit/s 0.95 Mbit/s 0.033 s 

Data - 0.5 Mbit/s ~ 

1 .o 

7- 0.8 z 
.E 0.6 
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-0 0.4 

v 

m 

- - 
(u 

0.2 

0 

I I I I I I I I I  

Hiramatsu NNCAC 

j 

1 
PNCAC b 
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time slot (XIO') 
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5 1- Hiramatsu NNCAC 1 
0 PNCAC 

ECCAC 

400 800 1200 1600 2000 

time slot (XIO~) 
b 

...-a 

0.9 Hiramatsu NNCAC 

400 800 1200 1600 2000 

time slot (XIO') 
C 

Fig. 6 

a Type-1 cell loss ratio (CLR) 
b Type-2 cell loss ratio (CLR) 
c System utilisation of the ECCAC, Hiramatsu's NNCAC, and 
PNCAC with heavier traffic sources 

traffic characteristics of sources change, the neural network 
should learn to adapt to the variation in sources by online 
training, and moreover, the structure of the neural network 
should be modified to have proper inputs by a node- 

Cell loss rutios und system utilisution for heuuier trqffic 
Sources 
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growing or node-pruning learning process, if necessary. This 
would make Hiramatsu's NNCAC infeasible. Because both 
ECCAC and PNCAC depend on traffic characteristic 
parameters which can react to the variation in traffic 
characteristics, these two schemes can adapt to traffic 
properly without any other modifications or retraining and 
still perform the CAC decision well. It is also because the 
transformed equivalent capacity for ECCAC and the PSD 
parameters for PNCAC are both unified metrics corre- 
sponding to traffic characteristics of all different sources and 
possess the additive property, while the connection number 
adopted by Hiramatsu's NNCAC as the input variables for 
neural networks could not be suinnied for different traffic 
types. 

6 
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Fig. 8 Appoxiniated hell-shnyed,fuizction 
(i) Approximated bell-shaped function h(w) 

(ii) Composite power spectrum hl(ci)) + h2(w) 
(iii) Bell-shaped function 6,(w) 
(iv) Bell-shaped function b2(w) 

In addition, the proposed PNCAC has better perfor- 
mance than ECCAC. Both PNCAC and ECCAC depend 
on traffic characteristic parameters. However, PNCAC 
transforms the three time-domain traffic characteristic 
parameters into the corresponding three PSD-domain 
parameters, while ECCAC converts the same tinie-domain 
parameters to a single equivalent capacity. Although the 
equivalent capacity is also additive, the proposed PNCAC 
adopts the three PSD parameters as the inputs of neural 
networks to perform the CAC decision, which could 
capture more traffic characteristics and less composition 
approximation error than the single equivalent capacity. 
The self-learning capability of neural network also makes 
the PNCAC more adaptive to the traffic. 

5 Concluding remarks 

In this paper, we propose a power-spectrum-based neural- 
net connection admission control (PNCAC) scheme for 
multimedia networks. The PNCAC method adopts the 
converted power-spectrum parameters of traffic sources to 
represent its traffic characteristics and uses a neural network 
to implement the connection admission control. The 
frequency-domain power-spectrum parameters of traffic 
sources possess the additive property and can capture the 
correlation and burstiness behaviour more than the time- 
domain parameters such as peak rate, mean rate and peak 
rate duration. The neural network has learniiig/adapting 
capabilities so that the boundary of the decision hyperplane 
for the connection admission control can be adjusted 
optimally and dynamically. We demonstrate results when- 
ever the input voice and video traffic sources are modelled 
by MMPP and modified MMPP, respectively, and the data 
traffic sources are modelled by a Poisson process. Simula- 
tion results show that the proposed PNCAC enhances 
significantly the system utilisation while fulfilling QoS 
requirements. Not only is it superior to the conventional 
equivalent capacity CAC scheme (ECCAC), but it also 
obtains more flexibility and robustness than Hiramatsu's 
NNCAC. 
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Appendix: Composition algorithm for power 
spectra 

Assume that h,  (w) and b2(o) are two bell-shaped functions 
corresponding to zero-centred PSDs with parameters (TI 
B I ,  Y I )  and (y2, B z ,  !Pz), as shown iii Fig. 8 , and that 
h(w) is the approximated bell-shaped function correspoiid- 
ing to the composite power spectrum with parameters 
(7, B ,  Y). To compose the two zero-centred PSDs, we add 
the two DC components aiid the two bell-shaped functions 
directly. We then approximate h,(w) +02(o) to be b(cd). 
Tii the approximation, we set Y = Y I + !P2, and 
h(w) = h,(w) h2(w) at o = 0. Therefore, (7, B ,  ‘U) of the 
approximated power spectrum are given by 

+:12 (14) 

Y = !PI Jr Y2 
Note that the approximated bell-shaped filiictioii coiitaiiis 
more low-frequency components than bl(w) + b2(o). 

(16) 
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