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Global Optimal Fuzzy Tracker Design Based on
Local Concept Approach

Shinq-Jen Wu and Chin-Teng Lin, Senior Member, IEEE

Abstract—In this paper, we propose a global optimal fuzzy
tracking controller, implemented by fuzzily blending the indi-
vidual local fuzzy tracking laws, for continuous and discrete-time
fuzzy systems with the aim of solving, respectively, the continuous
and discrete-time quadratic tracking problems with moving or
model-following targets under finite or infinite horizon (time).
The differential or recursive Riccati equations, and more, the
differential or difference equations in tracing the variation of the
target are derived. Moreover, in the case of time-invariant fuzzy
tracking systems, we show that the optimal tracking controller
can be obtained by just solving algebraic Riccati equations and
algebraic matrix equations. Grounding on this, several fascinating
characteristics of the resultant closed-loop continuous or discrete
time-invariant fuzzy tracking systems can be elicited easily. The
stability of both closed-loop fuzzy tracking systems can be ensured
by the designed optimal fuzzy tracking controllers. The optimal
closed-loop fuzzy tracking systems cannot only be guaranteed
to be exponentially stable, but also be stabilized to any desired
degree. Moreover, the resulting closed-loop fuzzy tracking systems
possess infinite gain margin; that is, their stability is guaranteed
no matter how large the feedback gain becomes. Two examples are
given to illustrate the performance of the proposed optimal fuzzy
tracker design schemes and to demonstrate the proved stability
properties.

Index Terms—Degree of stability, exponentially stable, gain
margin, global minimum, model-following, moving target, Riccati
equation.

I. INTRODUCTION

A LTHOUGH the work in fuzzy modeling and fuzzy control
has been quite matured [1]–[8], the field of optimal fuzzy

control is nearly open [9]. In particular, although fuzzy logic
concept has been introduced into tracking control [10]–[15], the
field of theoreticalapproach ofoptimal fuzzy tracking controlis
fully open. The goal of this work is to propose a design scheme
of the global optimal fuzzy tracking controller to control and
stabilize a discrete-time or continuous fuzzy system in solving,
respectively, the discrete-time or continuous quadratic tracking
problems with moving or model-following targets under finite
or infinite horizon.

To date, the fuzzy tracking controller has been used in con-
ceptual design only, and has always been grounded on a con-
ventional tracker. For example, Ott,et al. [13] included fuzzy
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logic into an – tracker algorithm; Lea,et al. [11] used fuzzy
concept to develop the software algorithm of a camera tracking
system. No theoretical demonstration has been developed for
fuzzy tracking controller design in the literature.

Stabilityandoptimalityare the most important requirements
for any control system. Most of the existed works on the sta-
bility analysis of fuzzy control are based on Takagi–Sugeno
(T–S)-type fuzzy model combined with the parallel distribu-
tion compensation (PDC) concept [1], and apply Lyapunov’s
method to do stability analysis. Tanaka and coworkers reduced
the stability analysis and control design problems to linear ma-
trix inequality (LMI) problems [2], [4]. They also dealt with
uncertainty issue [3]. This approach had been applied to sev-
eral control problems such as control of chaos [4] and of artic-
ulated vehicle [5]. A frequency shaping method for systematic
design of fuzzy controllers was also done by them [16]. Sun,et
al. developed a separation scheme to design fuzzy observer and
fuzzy controller independently [6]. Methods based on grid-point
approach [17] and circle criteria [18], [19] were introduced to
do stability analysis of fuzzy control, as well. Wang adopted a
supervisory controller and introduced stability and robustness
measures [20]. Cao proposed a decomposition principle to de-
sign a discrete-time fuzzy control system and an equivalent prin-
ciple to do stability analysis [8]. On the issue of optimal fuzzy
control, Wang developed anoptimalfuzzy controller to stabilize
a linear continuoustime-invariant system via the Pontryagin
minimum principle [9]. Although fuzzy control of linear sys-
tems could be a goodstarting pointfor a better understanding
of some issues in fuzzy control synthesis, it does not have many
practical implications since using the fuzzy controller designed
for a linear system directly as the controller may not be a good
choice [9]. Moreover, the cited stability criteria may be simple,
but rough to do systematic analysis and also may result in a
controller with less flexibility. Tanaka and coworkers [21], [22]
tried to obtain a fuzzy controller to minimize the upper bound of
the quadratic performance function by LMI approach based on
theassumption of local-linear-feedback-gain control structure.
Nevertheless, no theoretical analysis on this design scheme of
optimal-fuzzy-control structure was proposed.

In our previous paper [23], we proposed a global optimal and
stable fuzzy controller design method for both continuous and
discrete-time fuzzy systems under both finite and infinite hori-
zons. Several fascinating characteristics, exponential stability,
finite energy, any prescribed degree of stability and infinite gain
margin, have been shown to exist in the closed-loop fuzzy sys-
tems for the infinite-horizon optimal control problem [23], [24].
In this paper, we shall develop the relative theories and tech-
niques for the fuzzy tracking problems.
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Technical contributions of this paper can be described as fol-
lows. Based on the local concept approach, the global optimal
fuzzy controllers with the aim of tracking moving or model-fol-
lowing targets under finite or infinite horizon (time) for both
continuous and discrete-time fuzzy systems are theoretically
derived. The optimal closed-loop time-invariant fuzzy tracking
systems are guaranteed to be exponentially stable. Furthermore,
we elicit that the proposed fuzzy tracking controllers can stabi-
lize fuzzy tracking systems to any prescribed degree of stability,
and the corresponding closed-loop fuzzy tracking systems pos-
sess infinite gain margin. The design methodologies are illus-
trated by examples.

II. SYSTEM REPRESENTATION ANDPROBLEM STATEMENT

We adopt the following T–S type fuzzy model as the fuzzy
tracking system describing the given nonlinear plant:

If is is then

(1)

where denotes theth rule of the fuzzy model;
are system states; are the input fuzzy terms in the
th rule; denotes for continuous case and

for discrete case; is the state
vector, is the system output vector,
and is the system input (i.e., control output); and

and are, respectively, and
matrices. The desired tracking controller is then assumed to be
in a rule-based nonlinear fuzzy inference form of

If is is

then (2)

where are the elements of output vector
are the input fuzzy terms in theth

control rule, and the plant input (i.e., control output) vector
or is in space.

Then,the optimal fuzzy tracker design scheme is to control the
fuzzy tracking system in such a way to push the outputclose
to any desired target without excessive control-energy
consumption. We describe the quadratic optimal fuzzy tracking
control problem as follows.

Problem 1: Given the rule-based fuzzy tracking system in
(1) with and a rule-based fuzzy tracking
controller in (2), find the individual optimal tracking law,

, such that the composed optimal tracking
controller, , can minimize the quadratic cost functional
[25], , over all possible inputs of class piece-
wise-continuous (PC)

(3)

(4)

for discrete-time and continuous systems, respectively, where

(5)

and are, respectively, and
nonnegative symmetric matrices; is the state-
trajectory penalty to produce smooth response;
is fuel consumption; and the last term in is related to
error cost. Moreover, the performance index in (3) and (4) with

in (5) can be, respectively, rewritten as [25]

(6)

(7)

where and the desired trajec-
tory .

Adopting the same local-concept-based optimization tech-
nique in our previous papers [23], [24], we know the optimal
global decisions for the quadratic fuzzy tracking problem can
be regarded as a series of optimal global decisions based on the
following successively on-going local quadratic optimal fuzzy
tracking issue with the initial state resulting from the previous
decision. The time dependence is denoted by lower index for
notation simplification.

Problem 2: Given the fuzzy tracking subsystem

(8)

with the initial state resulting from the previous decision, i.e.,

1) find the optimal local decision at time , for mini-
mizing the cost functional

(9)

(10)

2) obtain the optimal global decision at time , for
minimizing the cost functional in (9) or
(10) by fuzzily blending each local decision, i.e.,

.
Notice that the next-decision initial state is

instead of
, since there exists the

one-to-one correspondence relationship between each fuzzy
tracking subsystem and the corresponding fuzzy tracking law.

III. OPTIMAL FUZZY TRACKER DESIGN

We shall design the optimal trackers for the discrete-time
systems in Section III-A and for continuous systems in Sec-
tion III-B.
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A. Optimal Fuzzy Tracker for Discrete-Time Fuzzy System

We are going to design the optimal fuzzy tracking controllers
for the discrete-time fuzzy tracking systems with moving target
in Section III-A.1 and for that with model-following target in
Section III-A.2.

1) Moving-Target Tracking Problem:In this subsection, we
shall discuss the finite-horizon tracking problem first, and then
generalize the results into infinite-horizon tracking solutions.
The local quadratic optimization problem is obviously the
same as the general linear quadratic optimal tracking control
problem. Therefore, it is reasonable that solving the optimal
tracking problem for each fuzzy subsystem can be achieved
in the way of the conventional approach. We can use cal-
culus-of-variations method combined with Lagrange-multiplier
method to derive the local optimal fuzzy tracking law, and then,
fuzzily blendthese tracking laws to achieve theglobal optimal
fuzzy tracking controller.

Theorem 1 (Time-Varying Finite-Horizon Case):For the
discrete-time fuzzy tracking system and discrete-time fuzzy
tracking controller represented, respectively, by (1) and (2), let

be given matrices, then
the follwoing hold.

1) The local optimal tracking law is

(11)

and their “blending” global optimal tracking controller

(12)

minimizes in (3), where , the local feed-
back gain, and , the introduced external local input,
are given by

(13)

(14)

where is the symmetric positive–semidefinite
solution of the following recursive Riccati equation:

(15)

with , zero matrix of dimension , and
being the introduced target-dependent variable

satisfying

(16)

2) The optimal feedback subsystem is

(17)

and then the global optimal closed-loop tracking system
is

(18)

Proof: The proof is similar to the derivation in our pre-
vious papers [23], [24].

So far, we have solved the optimal finite-horizon fuzzy
tracking problem by finding the optimal solution to the general
time-varying case. We are now concerned with the infinite-
horizon tracking problem, which is the case that the operating
time goes to infinity or is much larger than the time-constant of
the dynamic system. In other words, the performance index is

(19)

We are eager to know if a time-invariant fuzzy tracking system
can give rise to a time-invariantlinear optimal tracking law
with regard to each subsystem, and then generate a more imple-
mentable and important design scheme. The following theorem
demonstrates that a time-invariant fuzzy tracking system cannot
give rise to the time-invariant linear optimal fuzzy tracking law
except in the case of constant target.

Theorem 2 (Time-Invariant Infinite-Horizon Case):Con-
sider the discrete time-invariant fuzzy tracking system and
discrete-time fuzzy tracking controller described, respectively,
by (1) and (2). If is completely controllable (c.c.) and

is completely observable (c.o.) for all ,
then the following hold.

1) The local optimal tracking law is

(20)

and their “blending” global optimal tracking controller

(21)

minimizes in (19), where the local constant feed-
back gain, , and the external local input, , are
calculated by

(22)

(23)

(24)

where is the unique symmetric positive semidefinite
solution of the following discrete-time algebraic Riccati
equation:

(25)
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2) The optimal feedback subsystem is

(26)

and then the global optimal closed-loop tracking system
is

(27)

Proof:

1) The optimal solution indeed follows the optimal solution
in Theorem 1 except that all the parameters in (1), (2), and
(19) are now constant. It is easy to show that the asymp-
totic solution of the recursive Riccati equation in (15) is
also the steady-state solution, i.e.,

, and this solution results in the asymptotic solution of
the recursive equation in (16) which is equivalent to
in (24), i.e., .

2) Moreover, according to Lemma 2 in the Appendix, we
know that being c.c. and being c.o.,

, guarantee the existence of an unique sym-
metric positive semidefinite solution of the algebraic Ric-
cati equation in (25). Hence, the proof is completed.

2) Model-Following Tracking Problem:In this subsection,
we are devoted to the model-following tracking problem, where
the tracked target is the response of some reference model.
Similar to the previous subsection, the finite-horizon tracking
problem is discussed first. The derived optimal solutions can
then be generalized into those for the infinite-horizon problem
as we did in the last subsection. We adopt the same T-S type
fuzzy tracking system as in Section II, and thereupon, the
standard model-following tracking problem can be described
as the following issue.

Problem 3: Given a discrete-time fuzzy tracking system and
a fuzzy tracking controller, respectively, in (1) and (2) with

and , find to minimize
in (3), where the desired output is the response

of a linear system or model

(28)

with , to the command input , which is
the zero-input response of the system:
and with [25], where

and are system states;
and are matrices of

and , respectively.
Accordingly, the desired tracked system, via letting

, can be rewritten as the following augmented
system [25]:

(29)

We further define a new variable [25],
and then Problem 3 can be simplified as the following issue.

Problem 4: Given a fuzzy tracking system

(30)

with and
, find to minimize

(31)

where the parameters are as shown in the equation at the bottom
of the page. Notice that the fuzzy tracking controller is

.
Obviously, the optimal solutions for the augmented optimal

quadratic tracking problem in Problem 4 follow from Theorem
1 except that in Section III-A.1 are zero vectors now.
Then, via complicated matrix manipulations, we can obtain the
optimal solutions for the original optimal quadratic tracking
problem in Problem 3 as follows. The identity input weighting
factor is set to get more concise formula in the remainder of this
section, i.e., for all time steps.

Theorem 3 (Time-Varying Finite-Horizon Case):For the
fuzzy tracking system and fuzzy tracking controller repre-
sented, respectively, by (1) and (2), let the desired trajectory,

, come from , where is the output
of the tracked model in (28). Then, the following hold.

1) The local optimal tracking law is

(32)

and their “blending” global optimal tracking controller

(33)

and
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minimizes in (3), where the feedback gain,
, and the introduced matrix, , are calculated

by

(34)

(35)

where is the symmetric positive–semidefinite
solution of the following recursive Riccati equation:

(36)

with , and satisfies

(37)

with .
2) The optimal feedback subsystem is

(38)

and then the global optimal closed-loop tracking system
is

(39)

Proof:

1) For notation simplification, the identity and zero matrices
of any dimension will be denoted byand , respectively.
We can still, based on the inference in Section II, decom-
pose the quadratic tracking problem in Problem 4 into
linear quadratic tracking problems as in Problem 2 ex-
cept that are zero vectors now. Then, grounding
on Theorem 1, we have the following local optimal solu-
tion:

(40)

(41)

where is the symmetric positive–semidefinite solu-
tion of the the following recursive Riccati equation:

(42)

2) Now, let

We obtain in (32) from (41) via

(43)

and
, where the time-dependence

is omitted for notation simplification; in (36)
and in (37) are derived from (42) with the aid of

; and
then we have in (38) from (40).

3) We then fuzzily blend the local optimal tracking laws
and optimal tracking subsystems to obtain the corre-
sponding optimal tracking controller in (33) and
the optimal trajectory in (39), respectively.

The scheme of generalizing the optimal tracking solution
from finite-horizon problem to infinite-horizon problem for
model-following target is just the same as that for moving
target in Section III-A1. Therefore, we only summarizes the
solutions of the infinite-horizon problem with respect to the
model-following tracking issue as follows.

Theorem 4 (Time-Invariant Infinite-Horizon Case):For the
time-invariant fuzzy tracking system and fuzzy tracking con-
troller represented, respectively, by (1) and (2), let the desired
trajectory, , come from , where
is the output of the tracked model in (28). If is c.c. and

is c.o., for all , then, the “blending” global
optimal tracking controller is

(44)

which minimizes in (19); and the corresponding global
optimal closed-loop tracking system is

(45)

where
is the symmetric positive–semidef-

inite solution of the recursive Riccati equation

(46)

and satisfies

(47)

Proof: The proof, grounded on Theorem 3, follows the
same generalization of the finite-horizon case to the infinite-
horizon case as that in Theorem 2.

B. Optimal Fuzzy Tracker for Continuous Fuzzy System

We are now going to design the optimal fuzzy tracking con-
trollers for the continuous fuzzy tracking systems with moving
target in Section III-B1 and for that with model-following target
in Section III-B2.
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1) Moving-Target Tracking Problem:As remarked in Sec-
tion II, we know that, via describing the fuzzy system from the
local inspection, the nonlinear quadratic optimal fuzzy tracking
problem in Problem 1 can be described by the linear quadratic
problem in Problem 2. Hence, the continuous fuzzy tracking
problem can be solved by obtaining the local optimal decision
or the tracking solutions for each fuzzysubsystemby the con-
ventional approach first, and then fuzzily blending the local so-
lutions to obtain the global optimal decision or the optimal so-
lutions for the entire continuous fuzzy system as follows.

Theorem 5 (Time-Varying Finite-Horizon Case):For the
continuous fuzzy tracking system and fuzzy tracking controller
represented, respectively, by (1) and (2), let

be given matrices, then the following hold.

1) The local optimal tracking law is

(48)

and their “blending” global optimal tracking controller

(49)

minimizes in (4), where is the sym-
metric positive–semidefinite solution of the following dif-
ferential Riccati equation:

(50)

with , zero matrix of dimension , and
is the introduced target-dependent variable satisfying

(51)

2) The optimal feedback subsystem is

(52)

and then the global optimal closed-loop tracking system
is

(53)

Proof: Grounding on the calculus-of-variations method,
we introduce the Lagrange multiplier and let

, whence we obtain the local optimal tracking
law in (48), and the optimal feedback subsystem
in (52), where and satisfy, respectively, (50) and
(51) with and . Accordingly, we
fuzzily blend the local optimal results to get the corresponding
optimal tracking controller in (49) and the optimal
tracking trajectory in (53).

The aforementioned theorem covers the general continuous
time-varying quadratic optimal problems, where the horizon

is fixed and is arbitrary. We are now concerned with
the time-invariant infinite-horizon tracking problem. In other
words, the performance index is

(54)

We shall demonstrate that, even in the infinite-horizon situation,
a time-invariant fuzzy tracking system cannot give rise to the
time-invariant linear optimal fuzzy tracking law except in the
case of constant target.

Theorem 6 (Time-Invariant Infinite-Horizon Case):Con-
sider the continuous time-invariant fuzzy tracking system and
fuzzy tracking controller described, respectively, by (1) and
(2). If is c.c. and is c.o. for all ,
then the following hold.

1) The local optimal tracking law is

(55)

and their “blending” global optimal tracking controller

(56)

minimizes in (54), where is the unique sym-
metric positive–semidefinite solution of the following
steady state Riccati equation (SSRE):

(57)

and the target-dependent variable is

(58)

2) The optimal feedback subsystem is

(59)

and then the global optimal closed-loop tracking system
is

(60)

Proof: Based on the optimal solutions in Theorem 5,
we can obtain the infinite-horizon time-invariant optimal
solution by letting . Moreover, we know that the
asymptotic solution of the differential Riccati equation in
(50) is also the solution of the algebraic Riccatic equation in
(57), i.e., , and this solution results
in the asymptotic solution of the differential equation in (51)
which is equivalent to in (58), i.e., .
Furthermore, since is c.c. and is c.o., for all

, we know, via the linear quadratic theory [25], that
the symmetric positive–semidefinite solution of the algebraic
Riccati equation in (57) uniquely exists.

2) Model-Following Tracking Problem:We are now con-
cerned with the fuzzy tracking problem with the target from
the response of some reference model, i.e., the model-following
tracking problem. The optimal solutions for the finite-horizon
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tracking problem are derived first, and then they are generalized
into the infinite-horizon situation as we did in the last subsec-
tion. The same T–S type fuzzy tracking system as in Section II
is adopted, and a continuous model-following tracking problem
is formulated as follows.

Problem 5: Given a continuous fuzzy tracking system and
a fuzzy tracking controller, respectively, in (1) and (2) with

and , find the individual optimal
tracking law, , such that the composed op-
timal tracking controller, , can minimize in (4),
where the desired output is the response of a linear system
or model,

(61)

with , to the command input , which is
the zero-input response of the system: and

with [25], where
and are system states;
and are matrices of and

, respectively.
Similar to Section III-A2, we can get a more concise problem

formulation.
Problem 6: Given a fuzzy tracking system

(62)

with and
, find the individual optimal tracking law,

, to minimize

(63)

where the parameters are shown in the equation at the bottom
of the page.

Obviously, the optimal solutions for the augmented optimal
quadratic tracking problem in Problem 6 are the same as those in
Theorem 5 by setting as zero vectors now. Then via fur-
ther matrix manipulations, we can obtain the optimal solutions
for the original optimal quadratic tracking problem in Problem
5 as follows.

Theorem 7 (Time-Varying Finite-Horizon Case):For the
continuous fuzzy tracking system and the fuzzy tracking con-
troller represented, respectively, by (1) and (2), let the desired
trajectory, , come from , where
is the output of the tracked model in (61). Then, the following
hold.

1) The local optimal tracking law is

(64)

and their “blending” global optimal tracking controller

(65)

minimizes in (4), where satisfies

(66)

and is the symmetric positive–semidefinite so-
lution of the differential Riccati equation in (50) with

.
2) The optimal feedback subsystem is

(67)

and then the global optimal closed-loop tracking system
is

(68)

Proof: The proof is similar to that of Theorem 3.
We now let the finite horizon approach infinity in order to

get the infinite-horizon optimal solutions as follows.
Theorem 8 (Time-Invariant Infinite-Horizon Case):For the

continuous time-invariant fuzzy tracking system and the fuzzy
tracking controller represented, respectively, by (1) and (2), let
the desired trajectory, , come from ,

and
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where is the output of the tracked model in (61). If
is c.c. and is c.o., for all , then

the following hold.

1) The local optimal tracking law is

(69)

and their “blending” global optimal tracking controller

(70)

minimizes in (54), where is the unique sym-
metric positive–semidefinite solution of the SSRE in (57),
and

(71)

2) The optimal feedback subsystem is

(72)

and then the global optimal closed-loop tracking system
is

(73)

Proof: The proof, grounded on Theorem 7, follows the
same generalization of the finite-horizon case to the infinite-
horizon case as that in Theorem 6.

IV. STABILITY AND GAIN MARGIN

So far, the design scheme of the fuzzy trackers for both con-
tinuous and discrete-time fuzzy systems have been developed.
We are now devoted to the stability analysis of both kinds of re-
sultant closed-loop fuzzy tracking systems. In this section, we
shall show that the designed fuzzy tracking controllers can not
only exponentially stabilize the fuzzy tracking system, but also
form a closed-loop time-invariant fuzzy tracking system with
any desired degree of stability. We are also concerned with the
range of the feedback gain,gain margin, to which we can in-
crease under the stability consideration.

In other words, for the continuous case, we discuss the sta-
bility of the following two systems:

(74)

for the moving-target tracking problem, and

(75)

for the model-following-target tracking issue. Since
in (74) and in (75) are both associated with
the target only, they can be regarded as external local inputs,

. Therefore, we can unify these two equations into

(76)

which is a nonlinear system constituted by a set of linear fuzzy
subsystems. Then, based on theconverse theoremof Lyapunov
stability theory [28], we know the stability of the nonlinear
tracking system in (76) is coincident with that of the corre-
sponding linearized system (with regard to)

(77)

Therefore, the stability of the fuzzy system in (76) is governed
by the term , which also han-
dles the stability of the following zero-input fuzzy system:

(78)

Hence, we shall focus only on discussing the stability of the
zero-input fuzzy system in the above to demonstrate the stability
of the resultant closed-loop fuzzy tracking system in (76) or (74)
and (75).

Furthermore, we have demonstrated in our previous paper
[23] that the aforementioned zero-input fuzzy system in (78) is
exponentially stable, and possesses any degree of stability and
infinite gain margin if each subsystem is c.c. and c.o. (well-be-
haved). Therefore, we conclude that the resultant continuous
closed-loop fuzzy tracking system in (76) or (74) and (75) also
possess such fantastic characteristics.

We now step for analyzing the stability property of the resul-
tant discrete-time closed-loop fuzzy tracking system. In other
words, the stability of the following two systems are discussed
first:

(79)

for the moving-target tracking problem, and

(80)



136 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

for the model-following-target tracking issue. Since in
(80) is associated with the target only and can be regarded as an
external local input, , (79) and (80) can be unified into
one equation [(79)] by setting .

Grounding on the converse theorem, we know the stability
characteristics for both discrete-time issues of moving-target
tracking and model-following-target tracking can be guaranteed
by the stability of the following zero-input fuzzy system:

(81)

which has been demonstrated to be exponentially stable and to
possess any degree of stability for each well-behaved subsystem
in [24].

In the remainder of this section, we shall examine another
characteristic,gain margin, of the resultantdiscrete-time
closed-loop fuzzy tracking system. Recall that the gain margin
of a closed-loop system is the amount by which the loop gain
can be changed until the system becomes unstable [25]. As
we remarked earlier, for a time-invariant well-behaved fuzzy
tracking subsystem, the designed global optimal tracking
controller in (21) and (44) can be unified into

. In order to measure the
gain margin, we consider a corresponding tracking controller

. The gain margin
of the closed-loop fuzzy tracking system is defined as the amount
by which can be increased until the system becomes unstable.

Now, let ,
where , and then we have, by setting the
input weighting factor to be one for convenience

(82)

where and . We further consider

(83)

Notice that and . Comparing
(83) to (82), we find that the larger theis, the smaller the is,
which means that when goes to zero, the gain margin of the
closed-loop fuzzy tracking system becomes infinite. Now, we
shall show that the resulting closed-loop fuzzy tracking system
possesses an infinite gain margin.

Lemma 1: Consider a linear time-invariant dynamical fuzzy
subsystem

(84)

with known. If is c.c., is c.o., and
is the positive–semidefinite solution of the modified

discrete-time algebraic Riccati equation

(85)

where is the dependent variable of the algebraic equation,
then exists and is equal to , which is the
symmetric positive–semidefinite solution of the modified dis-
crete-time Riccati equation

(86)

Proof: See the Appendix.
Theorem 9 (Gain Margin for Discre-Time Case):Consider

the discrete time-invariant fuzzy tracking system and fuzzy
tracking controller described, respectively, by (1) and (2) with
model-following target or moving target. If is c.c.,

is c.o. and ,
for all , where denotes the
spectral radius of , then the optimal fuzzy
tracking controller

(87)

generates a closed-loop fuzzy tracking system in (79) with an in-
finite-gain margin, where is equal to (23) for the moving-
target problem, or equal to with in Theorem 4 for the
model-following-target issue. That is, the modified closed-loop
fuzzy tracking system

(88)

is always stable for any , where and is
the positive–semidefinite solution of the modified discrete-time
Riccati equation in (85).

Proof: As we know, the stability of the modified nonlinear
fuzzy tracking system in (88) is coincident with that of the fol-
lowing zero-input fuzzy system:

(89)

Let , denote the subsystem matrix of the

fuzzy system in (89), i.e.,
, and then, (89) can be rewritten as

(90)
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Notice that . We shall show that each fuzzy
subsystem in (89) or (90) is exponentially stable for any .
Furthermore, demonstrate that the entire zero-input fuzzy sys-
tems in (89) or (90) are also exponentially stable for any ;
and then, prove that the modified closed-loop fuzzy tracking
system in (88) is always stable for any .

1) Via Lemma 2 in the Appendix and Lemma 1,
we know
and is always available even in the case
of infinite gain margin. We shall show

for all . Let denote the eigenpair of
, i.e.,

. By (85), we have
. Hence, we have

. Therefore, for all
is also an eigenvalue of
, which is equivalent to

.
To ensure this, commutes with

obviously, i.e.,

and then, commutes with or,
more precisely, with .

2) Accordingly, commutes
with . Recall that if and
are commutative operators, then .
Hence, we have

(91)

since
. So, the

spectrum of the subsystem matrix, characterizing the dy-
namical behavior of each subsystem in (89) or (90), is
always located in the unit disc of the complex space; in
other words, each fuzzy subsystem in (89) or (90) is ex-
ponentially stable for any .

3) Then, we can use the mathematical induction method to
demonstrate that there exist constant and
such that the states of the entire fuzzy systems in (89) or
(90) satisfy

(92)

in other words, the zero-input fuzzy system in (89) is ex-
ponentially stable for any . Hence, the stability of
the modified nonlinear fuzzy tracking system in (88) is
ensured positively for all , and accordingly, our re-
sultant closed-loop fuzzy tracking systems in (79) or (80)
possess infinite-gain margin.

V. NUMERICAL SIMULATIONS

In this section, a simple nonlinear mass-spring-damper me-
chanical system for continuous case, and an optimal backing up
control of a computer simulated trunk-trailer for discrete-time
case is adopted as the tracking system to illustrate the proposed
optimal fuzzy tracking control scheme and its theoretic aspect.

A. Discrete-Time Tracking System

A computer simulated trunk-trailer system is used as a
tracking system to track a moving target or a model-following
target. The computer simulated truck-trailer physical system
was described by Tanaka and Sano [29] as

where is the length of truck, is the length of trailer, is
the sampling time, and is the constant speed of the backward
movement. Then, they used the following fuzzy model to repre-
sent the aforementioned mathematical model:

If is about

then

If is about or

then

and the system output is with
and

, where

Grounding on this fuzzy system, we assume our fuzzy tracking
controller as

If

is about then

If

is about or then
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Fig. 1. Output responses (denoted by dashed line) of the discrete-time fuzzy tracking system with the designedfinite-horizonoptimal fuzzy tracking controllers in
Section III-A for variousmoving targets(denoted by solid line), where (a)Y (t) being a stepwise target. (b)Y (t) = 3+2 sin 4k. (c)Y (t) = 100+k+0:7k .
(d) Y (t) = 3 + 4e .

With the chosen membership functions [29], the firing strengths
are

which, in this case, are also the normalized firing-strengths of
the rules for the fuzzy system and controller. The performance
index for the finite-horizon tracking problem is set as

(93)

and that for the infinite-horizon tracking problem is

(94)

Now, we can design the optimal fuzzy tracking controllers for
the trunk-trailer tracking system in both cases of moving target
and modeling-following target by the proposed design scheme
in Section III-A.

Though the fuzzy subsystem is unstable (the spectrum of
system matrix ), it is time-in-
variant and well-behaved; i.e., the fuzzy subsystem is c.c. and
c.o. ( , for all

). Then, given and in (3), the unique

symmetric positive–semidefinite solution of the discrete-time
algebraic Riccati equation in (25) or (46) is

For the moving-target tracking problem, we can obtain,
based on Theorems 1 and 2, the optimal trajectory of the
closed-loop fuzzy tracking system with the designed optimal
fuzzy tracking controller. The output responses of the resultant
closed-loop fuzzy tracking system for various targets are shown
in Fig. 1 for the finite-horizon problem. The output responses
for the infinite-horizon problem are quite similar to those
shown in Fig. 1. As for the model-following-target case, since
each fuzzy subsystem is well-behaved as mentioned above,
the optimal fuzzy tracking controller and the corresponding
tracking trajectory can be obtained according to Theorems 3
and 4. Fig. 2 shows the finite-horizon optimal output responses
of the resultant closed-loop fuzzy tracking system for the
targets from the tracked model in (29) with various parameters
( and ).
The output responses for the infinite-horizon problem under
the same simulation situations are very close to those shown
in Fig. 2. Our simulation results also show that the designed
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Fig. 2. Output responses (denoted by dashed line) of the discrete-time fuzzy tracking system with the designedfinite-horizonoptimal fuzzy tracking controllers
in Section III-B for the targets (denoted by solid line) from thetracked modelwith four different sets of parameters:(F ; F ) = (1; 1); (1;0:9); (0:85; 0:85) and
(0:45;0:45).

optimal fuzzy tracking controllers can efficiently push the
simulated trunk-trailer system to trace the targets as soon as
possible.

B. Continuous Tracking System

In this section, we adopt the following simple nonlinear mass-
spring-damper mechanical system to track a moving or a model-
following target:

where is the mass and is the force; and are
the nonlinear or uncertain terms with respect to the spring and
the damper, respectively; and is the nonlinear term with
respect to the input term. The tracking system can be rewritten
as [3]

where and . Accordingly, we
model this nonlinear system as [3]

If is and is

then

where and , and the
system output is with for every rule,
where

and the membership functions of the fuzzy terms are

, and
. The firing-strengths of the rules are

.
We then assume the desired fuzzy tracking controller is

If is and is

then

Also, we set the performance index for the finite-horizon
tracking problem as

(95)
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Fig. 3. Output responses (denoted by dashed line) of the continuous fuzzy tracking system with the designedfinite-horizonoptimal fuzzy tracking controllers in
Section III.1 for variousmoving targets(denoted by solid line), where (a)Y (t) being a stepwise target. (b)Y (t) = 3+2 sin 2t. (c)Y (t) = 3+4e . (d)
Y (t) = 0:5 + 2 log(3 + t).

and that for the infinite-horizon tracking problem as

(96)

where .
Now, we can design the optimal fuzzy tracking controllers for

the mass-spring-damper tracking system to follow the desired
moving target or model-following target by the proposed design
scheme in Section III-B. Let (identity matrix of dimen-
sion 2) and in (4). Since each fuzzy subsystem is well-
behaved ( and for

), we have the unique symmetric positive–semidef-
inite solution of the algebraic Riccati equation in (57)

and

For the moving-target tracking problem, we can obtain, based
on Theorems 6 and 7, the optimal trajectory of the closed-loop
fuzzy tracking system with the designed optimal fuzzy tracking
controller. The output responses of the resultant closed-loop
fuzzy tracking system for various moving targets (being a
stepwise function,
or ) are shown in Fig. 3 for the fi-
nite-horizon problem. The corresponding output responses for

the infinite-horizon problem are very close to those shown in
Fig. 3.

As for the case of model-following target, since each fuzzy
subsystem is well-behaved as mentioned above, the optimal
fuzzy tracking controller and the corresponding tracking
trajectory can be obtained according to Theorems 7 and 8.
Fig. 4 shows the finite-horizon optimal output responses of
the resultant closed-loop fuzzy tracking system for the targets
from the tracked model in Problem 5 with various parame-
ters ( and

). The corresponding output responses for the infi-
nite-horizon problem are quite similar to those shown in Fig. 4.
Our simulation results also show that the designed optimal
fuzzy tracking controller can efficiently push the simulated
trunk-trailer system to trace the targets in a short time.

VI. CONCLUSION

A sufficient condition for global optimization of fuzzy con-
trol was adopted in this paper. Grounded on this condition, a
nonlinearglobal optimal quadratic tracking problem can be de-
composed into a set oflinear local optimal quadratic tracking
problems, and then, the local-concept-approach design scheme
of global optimal fuzzy tracking controllers for both contin-
uous and discrete-time fuzzy systems was derived theoretically.
Grounding on this efficient design scheme, several fascinating
characteristics have been shown to exist in both kinds of resul-
tant closed-loop time-invariant fuzzy tracking systems. Simu-
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Fig. 4. Output responses (denoted by dashed line) of the continuous fuzzy tracking system with the designedfinite-horizonoptimal fuzzy tracking controllers
in Section III-B for the targets (denoted by solid line) from thetracked modelwith four different sets of parameters:(F ; F ) = (�1;�0:2); (�0:2;�1);
(�5;�1=30) and(�1=30;�5).

lation results have manifested that the designed optimal fuzzy
tracking controllers can effectively drive a fuzzy system to trace
the target profile in a short time. In this paper, we consider only
the noise-free tracking systems. In the future work, we shall de-
velop theoretically sound stochastic fuzzy estimation or fuzzy
filtering techniques based on the theorems developed in this
paper to deal with the practical noise-contaminated systems.

APPENDIX A

Proof of Lemma 1:

1) We consider the optimal solution for minimizing

From Lemma 3, for any , the global minimizer is

where is the symmetric positive–semidefinite solu-
tion of the modified discrete-time algebraic Riccati equa-
tion in (85), and the corresponding closed-loop system

(97)

is exponentially stable, i.e.,
.

2) Now, we shall check if the limit value of exists and
is equal to . For notation simplification, we use
and to denote and , where

is the symmetric positive–semidefinite solution of the
following equation:

(98)

Define , then

(99)

Let and denote, respectively,
and ,

then

(100)

Let , then we
obtain a discrete-time Lyapunov-like equation

(101)

¿From (1), we know , and accordingly,
the unique solution is

(102)
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In other words, for all
. Hence, the function is monotonic decreasing

as , and bounded below by 0; i.e.,
constantly exists for all . We can pick special

values to let , i.e.,
.

Lemma 2: For the discrete time-invariant fuzzy subsystem in
(84), if is stabilizable and is detectable, then
the following hold.

1) There exists an unique symmetric positive–semidef-
inite solution, , of the discrete-time algebraic Riccati
equation

(103)

2) The asymptotically local optimal control law is

(104)

which minimizes the local quadratic functional
.

3) The optimal feedback fuzzy subsystem

(105)

is asymptotically and exponentially stable.
Proof: This lemma is a counterpart of the classical dis-

crete-time linear quadratic optimal control theorem.
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