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Global Optimal Fuzzy Tracker Design Based on
Local Concept Approach

Shing-Jen Wu and Chin-Teng LiSenior Member, IEEE

Abstract—in this paper, we propose a global optimal fuzzy logic into ana—73 tracker algorithm; Leagt al.[11] used fuzzy
tracking controller, implemented by fuzzily blending the indi-  concept to develop the software algorithm of a camera tracking

vidual local fuzzy tracking laws, for continuous and discrete-time gygtem No theoretical demonstration has been developed for
fuzzy systems with the aim of solving, respectively, the continuous f tracki troller desian in the literat
and discrete-time quadratic tracking problems with moving or uzzy tracking controfier design in the iierature.

model-following targets under finite or infinite horizon (time). Stabilityandoptimality are the most important requirements
The differential or recursive Riccati equations, and more, the for any control system. Most of the existed works on the sta-
differential or difference equations in tracing the variation of the  pjlity analysis of fuzzy control are based on Takagi—-Sugeno
target are derived. Moreover, in the case of time-invariant fuzzy (T-S)-type fuzzy model combined with the parallel distribu-
tracking systems, we show that the optimal tracking controller . h \
can be obtained by just solving algebraic Riccati equations and tion compensatlon_ _(PDC) cqncept [1], and apply Lyapunov’s
algebraic matrix equations. Grounding on this, several fascinating Method to do stability analysis. Tanaka and coworkers reduced
characteristics of the resultant closed-loop continuous or discrete the stability analysis and control design problems to linear ma-
time-invariant fuzzy tracking systems can be elicited easily. The trix inequality (LMI) problems [2], [4]. They also dealt with
stability of both closed-loop fuzzy tracking systems can be ensured uncertainty issue [3]. This approach had been applied to sev-

by the designed optimal fuzzy tracking controllers. The optimal -
closed-loop fuzzy tracking systems cannot only be guaranteed eral control problems such as control of chaos [4] and of artic-

to be exponentially stable, but also be stabilized to any desired ulated vehicle [5]. A frequency shaping method for systematic
degree. Moreover, the resulting closed-loop fuzzy tracking systems design of fuzzy controllers was also done by them [16]. &un,
possess infinite gain margin; that is, their stability is guaranteed a|, developed a separation scheme to design fuzzy observer and
no matter how large the feedback gain becomes. Two examples areg,,, v, controller independently [6]. Methods based on grid-point
given to illustrate the performance of the proposed optimal fuzzy X L .
tracker design schemes and to demonstrate the proved stability 2PProach [17] and circle criteria [18], [19] were introduced to
properties. do stability analysis of fuzzy control, as well. Wang adopted a
Index_Terms—Degree of stability, exponentially stable, gain supervisory controller and introduced stabl_I|Fy anq rqbustness
margin, global minimum, model-following, moving target, Riccati measures [20]. Cao proposed a decomposition principle to de-
equation. sign a discrete-time fuzzy control system and an equivalent prin-
ciple to do stability analysis [8]. On the issue of optimal fuzzy
control, Wang developed aptimalfuzzy controller to stabilize
a linear continuoustime-invariant system via the Pontryagin
LTHOUGH the work in fuzzy modeling and fuzzy controlminimum principle [9]. Although fuzzy control of linear sys-
has been quite matured [1]-[8], the field of optimal fuzzyems could be a goostarting pointfor a better understanding
control is nearly open [9]. In particular, although fuzzy logi®©f some issues in fuzzy control synthesis, it does not have many
concept has been introduced into tracking control [10]-[15], thactical implications since using the fuzzy controller designed
field of theoreticalapproach obptimal fuzzy tracking contrag ~ for a linear system directly as the controller may not be a good
fully open. The goal of this work is to propose a design schengBoice [9]. Moreover, the cited stability criteria may be simple,
of the global optimal fuzzy tracking controller to control andbut rough to do systematic analysis and also may result in a
stabilize a discrete-time or continuous fuzzy system in solvingpntroller with less flexibility. Tanaka and coworkers [21], [22]
respectively, the discrete-time or continuous quadratic trackitiged to obtain a fuzzy controller to minimize the upper bound of
problems with moving or model-following targets under finitéhe quadratic performance function by LMI approach based on
or infinite horizon. theassumption of local-linear-feedback-gain control structure
To date, the fuzzy tracking controller has been used in coNevertheless, no theoretical analysis on this design scheme of
ceptual design only, and has always been grounded on a coptimal-fuzzy-control structure was proposed.
ventional tracker. For example, O#t al. [13] included fuzzy In our previous paper [23], we proposed a global optimal and
stable fuzzy controller design method for both continuous and
discrete-time fuzzy systems under both finite and infinite hori-
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Technical contributions of this paper can be described as fédr discrete-time and continuous systems, respectively, where
lows. Based on the local concept approach, the global optimal " £l +
fuzzy controllers with the aim of tracking moving or model—fom(t) = = COCOC)CO] La(t)
lowing targets under finite or infinite horizon (time) for both x[I, = CH{#)(C(HCH ) CH)]  (5)
continuous and discrete-time fuzzy systems are theoreticadlys) 1,(¢) andLs(t) are, respectivelyn x m, n’ xn’ andn xn
derived. The optimal closed-loop time-invariant fuzzy trackingonnegative symmetric matrice: ()L (£)X (¢) is the state-
systems are guaranteed to be exponentially stable. Furthermg&gectory penalty to produce smooth responsét)S(t)u(t)
we elicit that the proposed fuzzy tracking controllers can stabi fyel consumption; and the last term.iifu( - )) is related to
lize fuzzy tracking systems to any prescribed degree of stabiligfror cost. Moreover, the performance index in (3) and (4) with

and the corresponding closed-loop fuzzy tracking systems pgsq+) in (5) can be, respectively, rewritten as [25]

sess infinite gain margin. The design methodologies are illus- T
—

trated by examples. T(u(-)) = Z [t (£)S(#)ut) + (X (8)
ll. SYSTEM REPRESENTATION ANDPROBLEM STATEMENT i:;d(t))tL(t)(X(t) x4y ©)
We adopt the following T-S type fuzzy model as the fuzzy ho
tracking system describing the given nonlinear plant: J(u(-)) = / [ (H)S(Hu(t) + (X(2)
to
R Mf21iSTh,. .., 20 isTh, then — X)) L) (X (1) — XU(t))] )
SX(t) = AMX(E) +Bi(t)u(t), i=1....r whereL(t) = L, (t) + C*(t)La2(t)C(t) and the desired trajec-
Y(t) = C()X(t) (1) tory X4(t) = CHB[CHCH(H)] Y (L),

) . Adopting the same local-concept-based optimization tech-
where /' denotes theth rule of the fuzzy modelys,. ...z, nique in our previous papers [23], [24], we know the optimal
are system statedy;, ..., T,; are the input fuzzy terms in the gobal decisions for the quadratic fuzzy tracking problem can
ith rule; SX(¢) denotesX () for contmuct)us case an¥(f + pe regarded as a series of optimal global decisions based on the
1) for discrete caseX(t) = [#1,,..,2a]" € R" is the state following successively on-going local quadratic optimal fuzzy
vector,Y'(t) = [yy, ..., yw]" € R is the system output vector, tracking issue with the initial state resulting from the previous

andu(t) € ™ is the system input (i.e., control output); anQjecision. The time dependence is denoted by lower index for
A;(t), Bi(t) andC(¢) are, respectively; x n, n xm andn’ xn  notation simplification.
matrices. The desired tracking controller is then assumed to bgroplem 2: Given the fuzzy tracking subsystem

in a rule-based nonlinear fuzzy inference form of
SXl:AizXl'i_BizTizv t=1,...,7r (8)

R : Iy isSii, ..., yn IS Sy, . with the initial state resulting from the previous decision, i.e.,
thenu(t) = r;(¢), i=1,...,6 (2 Xo, = X7

where yi,...,y, are the elements of output vector 1) fm_d_ the optimal Ioca_l decision at timgr; , for mini-

Y(t),S,...,S.; are the input fuzzy terms in théth mizing the cost functional

control rule, and the plant input (i.e., control output) vector t1—1 .

u(t) or r;(t) is in R™ space. Ji(ri(-)) = Z [(Xz - X1 Lo (X = XP) 4+, Sml}
Then,the optimal fuzzy tracker design scheme is to control the t

fuzzy tracking system in such a way to push the oufftitclose )

to any desired target ¢(#) without excessive control-energy ) . h dyt d too
consumptionWe describ(e)the quadratic optimal fuzzy tracking‘]t(”( )= /, [(Xl =X)L (X = X)) Sml} dt
control problem as follows. (10)
Problem 1: Given the rule-based fuzzy tracking system in
(1) with X(t9) = Xo € R™ and a rule-based fuzzy tracking
controller in (2), find the individual optimal tracking law,
r¥(-),s = 1,...,6, such that the composed optimal tracking . - o oa
controller, »*( - ), can minimize the quadratic cost functional  “* = 2uimy (X o
[25], J(u(-)), over all possible inputsu(-)] of class piece- Nortlce tha}kt the r:ext—demsen |_n|t|al state |§A*t =
wise-continuous (PC) E;ﬁ;l hi(XP)(Ai, X+ By,rj) instead of SXr =
Do h(XH (A X 4+ B;uy), since there exists the

2) obtain the optimal global decision at timew;, for
minimizing the cost functional/;(u(-)) in (9) or
(10) by fuzzily blending each local decision, i.e.,

bl . L } one-to-one correspondence relationship between each fuzzy
J(u(-)) =Y [ (O)SEu(t) + X*(¢) L1 (H) X (t) tracking subsystem and the corresponding fuzzy tracking law.
t=tg
+ (Y () = Y1) La(t)(Y (2) — Y(2))] 3) lIl. OPTIMAL FUzzY TRACKER DESIGN
t1
J(u( ) :/ [ ())S(E)u(t) + X ()L ()X (1) We shqll design the optimal tracke_rs for the discre_te-time
to systems in Section IlI-A and for continuous systems in Sec-

+ (Y () = YU Lo (t)(Y (t) = YU(t))] dt  (4) tion III-B.
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A. Optimal Fuzzy Tracker for Discrete-Time Fuzzy System and then the global optimal closed-loop tracking system
We are going to design the optimal fuzzy tracking controllers 'S

for the discrete-time fuzzy tracking systems with moving target . oo 1

in Section IlI-A.1 and for that with model-following target in ATt +1) Z hi(X I +Bi(H)S7 (@)

Section IlI-A.2. 1
1) Moving-Target Tracking Problemin this subsection, we X B?( )mi(t + 1)] Ai(0) X" ()

shall discuss the finite-horizon tracking problem first, and then

generalize the results into infinite-horizon tracking solutions. + Zh (X () Bi(t)rs™ (2). (18)

The local quadratic optimization problem is obviously the
same as the general linear quadratic optimal tracking control Proof: The proof is similar to the derivation in our pre-
problem. Therefore, it is reasonable that solving the optimabus papers [23], [24].
tracking problem for each fuzzy subsystem can be achievedSo far, we have solved the optimal finite-horizon fuzzy
in the way of the conventional approach. We can use calacking problem by finding the optimal solution to the general
culus-of-variations method combined with Lagrange-multipli¢ime-varying case. We are now concerned with the infinite-
method to derive the local optimal fuzzy tracking law, and thehorizon tracking problem, which is the case that the operating
fuzzily blendthese tracking laws to achieve tg®bal optimal time goes to infinity or is much larger than the time-constant of
fuzzy tracking controller. the dynamic system. In other words, the performance index is
Theorem 1 (Time-Varying Finite-Horizon Caseffor the 0o
discrete-time fuzzy tracking system and discrete-time fuzz)y(u(.)) = Z[ut(t)S(t)u(t) +(X(t)
tracking controller represented, respectively, by (1) and (2), let =ty
Ai(t),Bi(t), O(t), S(t),LQ(t), Lg(t) be given matrices, then _ Xd(t))tL(t)(X(t) _ Xd(t))] (19)
the follwoing hold.
1) The local optimal tracking law is We are eager to know if a time-invariant fuzzy tracking system
can give rise to a time-invariarinear optimal tracking law
ri(t) = G;‘ HOX*() + (), i=1,...,7 (11) withregard to each subsystem, and then generate a more imple-
mentable and important design scheme. The following theorem
and their “blending” global optimal tracking controller demonstrates that a time-invariant fuzzy tracking system cannot
. give rise to the time-invariant linear optimal fuzzy tracking law
_ Z hi(X*(8)) [GHE X (2) + (1)) (12) except in the case of constant target. _ O
Theorem 2 (Time-Invariant Infinite-Horizon Caselon-
sider the discrete time-invariant fuzzy tracking system and
minimizes.J(u(-)) in (3), whereG}(t), the local feed- discrete-time fuzzy tracking controller described, respectively,
back gain, and{* (¢), the introduced external local input,by (1) and (2). If(A;, B;) is completely controllable (c.c.) and
are given by (4;,C) is completely observable (c.0.) for all= 1,...,r,
then the following hold.

1 —1
Gi(t) = B )m(t;" 1) [I" +Bi(1)S7 (1) 1) The local optimal tracking law is
x5 t)””(H DI Ad) (13) () = GIX (@) + 7N, =1, (20)
() = =STHOBLH) [ +7rz(t+1) o ' _ _
« Bi(t)S~ ()Bf(t)] b(t+1) (14) and their bI?ndlng global optimal tracking controller
wherer;(t + 1) is the symmetric positive-semidefinite u'(t) = Z hi(X*(0) [GIX* () + 75 ()] (21)

solution of the following recursive Riccati equation:
minimizes/(u( - )) in (19), where the local constant feed-
K(t) = L(t) + Aj() K(t + 1) back gain,G}, and the external local inputs*(t), are
x [I, + Bi())S () BL®K(t+1)] 7 A;(£) (15) calculated by
1

~1 —1pt= o—lpt=1"1 4.
with K (t1) = 0,,x,,, zero matrix of dimension x n, and G ==87'Bj7i I+ BiST' Bim] A (22)
b(t + 1) being the introduced target-dependent variable 7§ (t) = —S~*B} [I, + ﬁiBiS_le]_l b(t+1) (23)
satisfying - o i
i b(t)=—> Al [I,+7B;S"Bj]™ LXt + )
b(t) = Ai(t) [In + m(t + 1)Bi(H)STH)B;(1)] ~b(t +1) =0
—L(#)X (1), b(t1) = Onsz- (16) (24)

where7; is the unique symmetric positive semidefinite
solution of the following discrete-time algebraic Riccati
X*(t+1) = [I, + Bi(t)S ™ (O)BLt)m(t +1)] equation:

x Ai()X* (1) + Bi(t)r™H (1) (17) K=L+AKI[L+BS'BK] " A.  (25)

2) The optimal feedback subsystem is
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2) The optimal feedback subsystem is 21(t) € R andz(t) € R are system states? (¢),.J1(t),
1 E(t), F>(t) and Ex(t) are matrices of x i,h x m/,n' X
X*(t+1) = [La+BiST'Bim]  AX"(®) + BT (t)  pn x i andm’ x I, respectively.
(26) Accordingly, the desired tracked system, via lettifigt) =

[21(t) 25(t)]', can be rewritten as the following augmented
and then the global optimal closed-loop tracking 5y5te§§/stem [25]:

is

2t +1) = 51(3 Jl(lf%%(t) 2(t) = F(O)Z(t)

Yt = [E1(t) Owxw]Z(t) = E()Z(t). (29)
+Z hi(X*()Birs™ (). (27)  We further define a new variabl& (¢) = [X(t) Z4(t)]* [25],

and then Problem 3 can be simplified as the following issue.
Proof; Problem 4: Given a fuzzy tracking system

X*(t+1) Zh (X*(t) [In + B;S™ Bl - A X ()

1) The optimal solution indeed follows the optimal solution_ ~ ~ ~
in Theorem 1 except that all the parameters in (1), (2), aRél(t + 1) Z hi (X () Ai() X (t)
(19) are now constant. It is easy to show that the asymp-
totic solution of the recursive Riccati equation in (15) is
also the steady-state solution, i¥my, .. m(k,t1) = + Z hi
7,;, and this solution results in the asymptotic solution of
the recursive equation in (16) which is equivalenttt)  with X(to) = X, € Rt andhi(X(t)) = hi(X(t),t €

in (24), i.e. limy, o b(t) = b(2). [to, 1 — 1], find «*( - ) to minimize
2) Moreover, according to Lemma 2 in the Appendix, we
know that(A;, B;) being c.c. and 4;,C) being c.o., el

Vi =1,...,r, guarantee the existence of an unique sym- J(u(-)) = Z (X LOX(E) +u' (DS Hu®)]  (31)
metric positive semidefinite solution of the algebraic Ric- t=to
cati equation in (25). Hence, the proof is completed. where the parameters are as shown in the equation at the bottom
O of the page. Notice that the fuzzy tracking controllen(s) =
2) Model-Following Tracking Problemin this subsection, >, h;(X(#))r:(t).
we are devoted to the model-following tracking problem, where Obviously, the optimal solutions for the augmented optimal
the tracked target is the response of some reference modeiadratic tracking problem in Problem 4 follow from Theorem
Similar to the previous subsection, the finite-horizon trackinfy except that\¢( - ) in Section 1ll-A.1 are zero vectors now.
problem is discussed first. The derived optimal solutions cdren, via complicated matrix manipulations, we can obtain the
then be generalized into those for the infinite-horizon problepptimal solutions for the original optimal quadratic tracking
as we did in the last subsection. We adopt the same T-S typeblem in Problem 3 as follows. The identity input weighting
fuzzy tracking system as in Section I, and thereupon, tfi@ctor is setto get more concise formula in the remainder of this
standard model-following tracking problem can be describegction, i.e.S(-) = I,,, for all time steps.
as the following issue. Theorem 3 (Time-Varying Finite-Horizon Casejor the
Problem 3: Given a discrete-time fuzzy tracking system antlizzy tracking system and fuzzy tracking controller repre-
a fuzzy tracking controller, respectively, in (1) and (2) witlsented, respectively, by (1) and (2), let the desired trajectory,
X(to) = Xo € R™ andt € [to, t, — 1], find «*( - ) to minimize X %(t), come fromY () = CX%(t), whereY “(¢) is the output
J(u(-)) in (3), where the desired outplit’(¢) is the response of the tracked model in (28). Then, the following hold.

of a linear system or model 1) The local optimal tracking law is
2(t+1) = Fi(t)z () + L (r(t) rHE) = GHOX () + B Z(), i=1,...,r (32)
Y4t) = By (t)x(t) (28)

and their “blending” global optimal tracking controller
with z1(t0) = 710, to the command inpui(t) € ™', which is .
the zero-input response of the systes(t + 1) = Fa(t)z2(t) ) =S hi (X)) [GEHOX* (1) + G2 Z(¢ 33
and l/(t) = Eg(t)ZQ(t) with Zg(to) = Z92 [25], where () Z ( ())[ Z() () Z() ()] ( )

3 Bi(t) i Ai(t) 0 ><(i+i’):|
B;(t) = . At = ol and
( ) |:0(h+h’)><rn,:| ( ) |:0(h+h’)><n F(t)
)

[ L(t) —L(t
—E'®)[COHCOITICHLE)  ECHC O CHLEHC HICHC (D] E®)
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minimizes .J(«(-)) in (3), where the feedback gain,
G1(t), and the introduced matrix;?(t), are calculated

by

GH(t) = =Bl (#)mi(t + 1) [n + Bi() B (t)mi(t + 1)]

Ai(t)
(34)
wH(t+ DF()
(35)

-1

G2(t) = =BL(t) L +milt + DB(HBL(D)]

where;(t + 1) is the symmetric positive—semidefinite
solution of the following recursive Riccati equation:

K(t)=L(t) + Al(H)K(t + 1)
X [In + Bi(t)B{(t)K(t + 1))~ Ai(2)
with K (t1) = 0,,xn, andz?1(¢ + 1) satisfies
Ko (t) = F' () Ko (t + 1) [In + Bi(t) B (t)m(t + 1)]
x 4i(t) = E'"(®)[C(H)C' ()] C(HL()
with Kgl(tl) = 0(h+h’)><n-
2) The optimal feedback subsystem is
[+ Bi®)BHET (£ +1)] T Alt) X" (2)
B;(H)GF(HZ(t)

and then the global optimal closed-loop tracking syste
is

o (36)

-1

(37)

X*(t+1) =
(38)

-1

X*(t+1) [I, + B; () Bl(t)mi(t + 1)]

Zh (X*(¢
X AiB)XT() + > hi(X™ () Bi(H)G; () Z(2).

i=1

(39)

Proof:
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We obtainr;(¢) in (32) from (41) via

I+BB'K BB'K. | "
0 I
_ [ [[+B;B!K|™" —[I+B;B!K|"'B;B!K},

o 0 I
and B!KY, — B!K[I + B;B'K|™'B;B!K},

Bi[I + KB;B! 'K}, where the time-dependence
is omitted for notation simplification;K(¢) in (36)
and K»; in (37) are derived from (42) with the aid of
I — K[I + B;B!K|"'B;B! = [[ + KB;B!{]™}; and
then we haveX*(¢) in (38) from (40).

3) We then fuzzily blend the local optimal tracking laws
and optimal tracking subsystems to obtain the corre-
sponding optimal tracking controller(¢) in (33) and
the optimal trajectoryX *(¢) in (39), respectively.

|

(43)

O

The scheme of generalizing the optimal tracking solution
from finite-horizon problem to infinite-horizon problem for
model-following target is just the same as that for moving
target in Section IlI-Al. Therefore, we only summarizes the
solutions of the infinite-horizon problem with respect to the
model-following tracking issue as follows.

Theorem 4 (Time-Invariant Infinite-Horizon Caseffor the
time-invariant fuzzy tracking system and fuzzy tracking con-
troller represented, respectively, by (1) and (2), let the desired
trajectory, X <(t), come fromY¢(t) = CX(t), whereY ¢(t)
is the output of the tracked model in (28)(H;, B;) is c.c. and
(4;,C)isc.o., foralli =1,...,r, then, the “blending” global
optimal tracking controller is

=1

[GIX* () + G Z(t)]  (49)

1) For notation simplification, the identity and zero matriceghich minimizesJ(«( - )) in (19); and the corresponding global
of any dimension will be denoted dyand0, respectively. optimal closed-loop tracking system is
We can still, based on the inference in Section Il, decom-
pose the quadratic tracking problem in Problem 4 into X (¢ + 1) Z hi(X
linear quadratic tracking problems as in Problem 2 ex-
cept thatX¢(-) are zero vectors now. Then, grounding
on Theorem 1, we have the following local optimal solu-

VIn + B;Bim| LA X*(¢)

—l—Zh

NB;G2Z(t) (45)

tion: _
5 5 5 -1 _ 5 WhereG} = —B;’/T’i[_[n =+ B7th7l'7] lAi, GZQ = _th[-[n +
X*(t+1)= [I + B;(t) Bl (t)7;(t + 1)} A ()X (¢) 7B, B! 71721 (t+ 1) F, 7, is the symmetric positive—semidef-
(40) inite solution of the recursive Riccati equation
~ ~ —1
i) = —BHE)F(E+ 1) [1 + Bi(t) K =L+ AlK [I, + BB{K] ™ 4 (46)
) -1 and7?! satisfies
x Bit)m(t+1)]  An)X* @) 4y ©

where;(¢) is the symmetric positive—semidefinite solu-

tion of the the following recursive Riccati equation:

Ko = F'Ky; [I, + BiBim] " A — EY[CCY'CL. (47)

Proof: The proof, grounded on Theorem 3, follows the

K(t) = AOK(E+1) [T+ Bi(t) Bi(Y)

same generalization of the finite-horizon case to the infinite-
horizon case as that in Theorem 2. O

N -1 . . , :
x K(t+ 1)} A+ L), Kt)=0. (42 B. Optimal Fuzzy Tracker for Continuous Fuzzy System
We are now going to design the optimal fuzzy tracking con-

2) Now, let trollers for the continuous fuzzy tracking systems with moving
i) = K(t) K () targetin Section I1I-B1 and for that with model-following target
(t) = Ko (t) Kaa(t) |’ in Section 111-B2.



WU AND LIN: GLOBAL OPTIMAL FUZZY TRACKER DESIGN 133

1) Moving-Target Tracking ProblemAs remarked in Sec- is fixed andt, € [0, ¢;) is arbitrary. We are now concerned with
tion I, we know that, via describing the fuzzy system from ththe time-invariant infinite-horizon tracking problem. In other
local inspection, the nonlinear quadratic optimal fuzzy trackingords, the performance index is
problem in Problem 1 can be described by the linear quadratic o
problem in Problem 2. Hence, the continuous fuzzy trackinf(u(-)) I/ [u(£)Su(t) + (X(2)
problem can be solved by obtaining the local optimal decision fo Ayt d
or the tracking solutions for each fuzaubsystenby the con- = X)) L(X (@) - X)) dt. (54)
ventional approach first, and then fuzzily blending the local s@ve shall demonstrate that, even in the infinite-horizon situation,
lutions to obtain the global optimal decision or the optimal s@ time-invariant fuzzy tracking system cannot give rise to the
lutions for the entire continuous fuzzy system as follows.  time-invariant linear optimal fuzzy tracking law except in the

Theorem 5 (Time-Varying Finite-Horizon Casejor the case of constant target. O
continuous fuzzy tracking system and fuzzy tracking controller Theorem 6 (Time-Invariant Infinite-Horizon Case{on-
represented, respectively, by (1) and (2) 4ett), B;(t), C(t), sider the continuous time-invariant fuzzy tracking system and
S(t), La(t), Ls(t) be given matrices, then the following hold. fuzzy tracking controller described, respectively, by (1) and

1) The local optimal tracking law is (2). If (4;,B;)isc.c.and(4;,C)isc.o.foralli = 1,...,r,

_ ) then the following hold.
F(t) = =STHOBI () [mi(t, t) X () +0(t)], i=1,...,7 ) : :
rilt) OB (O)lmt ) X0 + (0], i =1, (4;;) 1) The local optimal tracking law is

_ _ _ _ ri(t) = =STIBimX () +b(t), i=1,...,r (55)
and their “blending” global optimal tracking controller . . ) )
and their “blending” global optimal tracking controller

wit) = - Z hi(X*(£)S7HO B (#)[ms(t, 1) X () + b(#)]

(49)

minimizes J(u(-)) in (4), wherem,(t,%,) is the sym-
metric positive—semidefinite solution of the following dif-
ferential Riccati equation:

—K(t) = L(t) + A{ (DK (H) + K (1) A (D) o
KBS )BLHOK()  (50) and the target-dependent variable is

W) = — Z hi(X*()STLBHm X" (t) +b(t)]  (56)

minimizes.J(u( - )) in (54), wherer; is the unique sym-
metric positive—semidefinite solution of the following
steady state Riccati equation (SSRE):

AIK + KA, — KB,ST'BIK +L=0,y, (57)

with K (t1) = 0,5, zero matrix of dimension x », and b(t) = —/ lAi=BiST BRI (=) L X1y dr.  (58)

b(t) is the introduced target-dependent variable satisfying t )
2) The optimal feedback subsystem is

X*(t) = [4; — BiS_lefri] X*(t) — B;ST'BIb(t)  (59)

and then the global optimal closed-loop tracking system
is

b(t) = = [Ai(t) = Bi())STH®)BL(t)mi (¢, 1)) bt)
+ L)X 1t),b(t1) = 0px1.  (51)
2) The optimal feedback subsystem is
X*(t) = [Ai(t) — Bi()S (1) Bf (8)mi(t, t1)] X* (1)

s OBy G2 O T MEO) A BT B X

and then the global optimal closed-loop tracking system " .
. g Py ptracking sy — S h(X*(9)BiS T BLI).  (60)
” =1
X*(t) = Zhi(X*(t))[Ai(t) — Bi(t)STH () Bl (t)mi(t, )] Proof: Based on the optimal solutions in Theorem 5,
i=1 we can obtain the infinite-horizon time-invariant optimal

r solution by lettingz; — oc. Moreover, we know that the
X X*(t) = > hi(X*(#)Bi(£)S 1) BI()b(t). (53) asymptotic solution of the differential Riccati equation in
i=1 (50) is also the solution of the algebraic Riccatic equation in
Proof: Grounding on the calculus-of-variations method57), i.e.,lim;, ... m(k,t1) = 7;, and this solution results
we introduce the Lagrange multiplier(t) and letp(t) = in the asymptotic solution of the differential equation in (51)
K (t)X*(t)+b(t), whence we obtain the local optimal trackingvhich is equivalent td(¢) in (58), i.e.,lim;, .o, b(t) = b(t).
law ¥ (¢) in (48), and the optimal feedback subsysté&i(t) Furthermore, sincéA;, B;) is c.c. and(A;, C) is c.o., for all
in (52), whereK(t) and b(t) satisfy, respectively, (50) and: = 1,...,r, we know, via the linear quadratic theory [25], that
(51) with K(¢1) = 0,,x,, andb(t;) = 0,,x1. Accordingly, we the symmetric positive—semidefinite solution of the algebraic

fuzzily blend the local optimal results to get the correspondirigiccati equation in (57) uniquely exists. O
optimal tracking controlleru*(¢) in (49) and the optimal 2) Model-Following Tracking ProblemWe are now con-
tracking trajectoryX*(¢) in (53). O cerned with the fuzzy tracking problem with the target from

The aforementioned theorem covers the general continudhe response of some reference model, i.e., the model-following
time-varying quadratic optimal problems, where the horizon tracking problem. The optimal solutions for the finite-horizon
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tracking problem are derived first, and then they are generalizedrheorem 7 (Time-Varying Finite-Horizon Casdjor the

into the infinite-horizon situation as we did in the last subsecontinuous fuzzy tracking system and the fuzzy tracking con-

tion. The same T-S type fuzzy tracking system as in Sectiontibller represented, respectively, by (1) and (2), let the desired

is adopted, and a continuous model-following tracking probletrajectory, X¢(¢), come fromY ¢(t) = CX%(t), whereY %(¢)

is formulated as follows. is the output of the tracked model in (61). Then, the following
Problem 5: Given a continuous fuzzy tracking system andold.

a fuzzy tracking controller, respectively, in (1) and (2) with 1) The local optimal tracking law is

X(to) = Xo € R andt € [to, t1], find the individual optimal

tracking law,7#(-),i = 1,...,6, such that the composed op=; (t) = =S~ (t) B (t)mi(t, t1) X *(¢)

timal tracking controllery*( - ), can minimizeJ(u( - )) in (4), — STYOBH R (¢, 1) Z(1), i=1,...,r (64)
where the desired outpbitt(¢) is the response of a linear system
or model, and their “blending” global optimal tracking controller

Z1(t) = Fi(t)z1(t) + 1 (0 (1), wt(t) =3 hi(X*(#) [-STHO B mi(t, 1) X" (£)

Y(t) = Ey(t)z1(t) (61) =1

, — STYHBY B2 (,4)Z(¢)| (65
with 21 (to) = 210, to the command input(t) € 1™ , which is @Bi(eym™ (1) 2 )} (63)
the zero-input response of the systein(t) = F»(¢)z:(t) and minimizes.J (u( - )) in (4), wherer?1(t, ¢,) satisfies
l/(t) = EQ(t)ZQ(t) with Zg(to) = 220 [25], Wherezl(t) € Rh .
andz(t) € R are system stated (t), J1(t), E1(t), Fa(t) —Ko1(t) = F'(t) Ko (t) + K21 (t) Ai(t)
and E(t) are matrices oh x h,h x m’,n’ x h,h’ x b’ and — Ko () B; ()5~ (8) B (t)mi(t, t1)
m’ x k', respectively. t t -1
- F L
Similar to Section I1I-A2, we can get a more concise problem BCOHC @ CEOLE)

formulation. Ko1(t1) = 000y xn (66)

Problem 6: Given a fuzzy tracking system and;(¢,t1) is the symmetric positive—semidefinite so-

lution of the differential Riccati equation in (50) with

13
It v K(tl) = Onxn-
AOX(E z:: 2) The optimal feedback subsystem is

ZhX

(62)  X*(t) = (As(t) — Bi(£)STL(t)BEH(t)mi(t, £1)) X *(¢)

with X (o) = Xo € R+ andh; (X (1)) = hi(X(2)),t € — Bi(O)ST OBt (1, 11)Z(t)  (67)

[tmtl] find the individual optimal tracking lawg(-), = and then the global optimal closed-loop tracking system
., 0, to minimize i
J(m(~))=/tl [Xt(t)li(t)f((t) X (t Zh (X*()(Ai(2)
55 - B;(t)S L) BEHt)m(t, 1) X*(t)
+ 2D wilY ()wi(Y(O))ri()S(H)r;(t)| dt - (63) S (K ()BT OB (B (4. 0)Z(8).

68

where the parameters are shown in the equation at the bottom (55
of the page. Proof. The proof is similar to that of Theorem 3. [

Obviously, the optimal solutions for the augmented optimal We now let the finite horizom; approach infinity in order to
guadratic tracking problem in Problem 6 are the same as thoseg@t the infinite-horizon optimal solutions as follows.
Theorem 5 by setting(“( - ) as zero vectors now. Then via fur- Theorem 8 (Time-Invariant Infinite-Horizon Caseffor the
ther matrix manipulations, we can obtain the optimal solutior®ntinuous time-invariant fuzzy tracking system and the fuzzy
for the original optimal quadratic tracking problem in Problerntracking controller represented, respectively, by (1) and (2), let

5 as follows. the desired trajectoryX¢(¢), come fromY<(t) = CX4(t),
3 B(t) } i [ Ai(t)  Opnx(ntn
B;(t) = ., At = AT s and
( ) |:0(h+h’)><rn, ( ) O(h—l—h’)xn F(t)

. { L(1) —LOCH OO CH (O] E()
_EBCHCHE T COLE) B OICECH ] O LOC HICECHE] T E)



WU AND LIN: GLOBAL OPTIMAL FUZZY TRACKER DESIGN 135

where Y¢(¢) is the output of the tracked model in (61). Iffor the moving-target tracking problem, and
(4;,B;)is c.c. and(4;,C) is c.o,, forall: = 1,...,r, then

the following hold. Zh (A; — B;S 'Blm) X*(t)
1) The local optimal tracking law is
ri(t) = —STIBIm X" () - STBIE ()Z(1), i=1,...,7 - Zh )BSTEBIR ()Z(t) (75)
(69)

for the model-following-target tracking issue. Singe! B!b(t)
and their “blending” global optimal tracking controller (74) andS—! Bt72 () Z(t) in (75) are both associated with
the target only, they can be regarded as external local inputs,
= Z hi(X™ (1)) 7$%t(t). Therefore, we can unify these two equations into

X [—S’lefriX*(t)—S’lefrflt(t)Z(t)} (70) X*(t Zh (X*(t

minimizesJ (u(-)) in (54), wherer; is the unique sym- x [(A; — BiST'BI7) X" (t) — Birs™*(t)]  (76)
znedtrlc positive-semidefinite solution of the SSRE in (Sm\/hich is a nonlinear system constituted by a set of linear fuzzy
subsystems. Then, based on toaverse theoremf Lyapunov
T (t) = lim a7t (t,t) stability theory [28], we know the stability of the nonlinear
R tracking system in (76) is coincident with that of the corre-
= —/ 0 L B och)TIOL sponding linearized system (with regardXg)
1
. G(A;—B';S*l Bim)(t—t) dr. (71) X Zh A B S~ lBt )X (t)
2) The optimal feedback subsystem is
X*(t) = (4; — B;S™'B!F)X*(t) — B,ST'B!72Y () Z(t) —Zh (Xo)Birs™ (1), (77)

72
(72) Therefore, the stability of the fuzzy system in (76) is governed
and then the global optimal closed-loop tracking systepy the termy_7_, hi(X(t))(A;— B; S~ B!7;), which also han-
is dles the stability of the following zero-input fuzzy system:
— th V)B;S ‘B 21 (t)Z(t). (73) Hence, we shaII focus only on discussing the stability of the

zero-input fuzzy system in the above to demonstrate the stability
é)f the resultant closed-loop fuzzy tracking systemin (76) or (74)
nd (75).
Furthermore, we have demonstrated in our previous paper
[23] that the aforementioned zero-input fuzzy system in (78) is
exponentially stable, and possesses any degree of stability and
infinite gain margin if each subsystem is c.c. and c.o. (well-be-
So far, the design scheme of the fuzzy trackers for both cafaved). Therefore, we conclude that the resultant continuous
tinuous and discrete-time fuzzy systems have been developsigsed-loop fuzzy tracking system in (76) or (74) and (75) also
We are now devoted to the stability analysis of both kinds of rgossess such fantastic characteristics.
sultant closed-loop fuzzy tracking systems. In this section, wewe now step for analyzing the stability property of the resul-
shall show that the designed fuzzy tracking controllers can ngt discrete-time closed-loop fuzzy tracking system. In other

only exponentially stabilize the fuzzy tracking system, but alsgords, the stability of the following two systems are discussed
form a closed-loop time-invariant fuzzy tracking system witkjrst:

any desired degree of stability. We are also concerned with the

Proof: The proof, grounded on Theorem 7, follows th
same generalization of the finite-horizon case to the infinit&"
horizon case as that in Theorem 6.

IV. STABILITY AND GAIN MARGIN

range of the feedback gaigain margin to which we can in- X*(t + 1) Z hi(X ( I + B;S™'B!7 ] -
crease under the stability consideration.

In other words, for the continuous case, we discuss the sta- x A X*(t) + Bi Aext(t)) (79)
bility of the following two systems:

for the moving-target tracking problem, and
Zh (Ai — B;S™'Bi7;) X*(t)

-1

“(t+1) Zh (I + B;B!w;]”

_Zh (X*(1)B:S™ B (74) xAiX*(t)—i—BinZ(t)) (80)
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for the model-following-target tracking issue. SinG8Z(¢) in  with X (¢,) known. If (A;, B;) is c.c., (4;,C) is c.0., and
(80) is associated with the target only and can be regarded asrafy) is the positive—semidefinite solution of the modified
external local inputis**(¢), (79) and (80) can be unified into discrete-time algebraic Riccati equation
one equation [(79)] by setting = I,,,. .

Grounding on the converse theorem, we know the stability K(¢) = ¢L + AjK(q) [I, + BiS™'B{K(q)] ~ A; (85)

characteristics for both discrete-time issues of moving-tar%et Ko isthe d d iable of the alaebrai .
tracking and model-following-target tracking can be guarante ere (@) 'it €depen ent variable o the alge _ralc_equatlon,
thenlim, o 7;(g) exists and is equal t@;(0), which is the

by the stability of the following zero-input fuzzy system:

y y g P ¥y symmetric positive—semidefinite solution of the modified dis-

- crete-time Riccati equation

X*t+1) =S h(X*@®) [I, + BiS~LBL7;] T AX* (¢ _
E+1) ; (@ | il ®) K(0) = ALK(0) [, + B;S 'BIK(0)] " Ai.  (86)

(81) Proof. See the Appendix. O

) . Theorem 9 (Gain Margin for Discre-Time Caseonsider
which has been demonstrated to be exponentially stable ango giscrete time-invariant fuzzy tracking system and fuzzy
possess any degree of stability for each well-behaved subsys{%gking controller described, respectively, by (1) and (2) with
in [24]. , , . . model-following target or moving target. (fA;, B;) is c.c.,

In the remainder of this section, we shall examine anothFA“C) is c.0. andims_o (8 — 1)p(B:iS—*Bimi(1/8%)) < 2,
characteristic,gain margin of the resultantdiscrete-time ¢, 4115 = 1. Wherep(BiS*lB?%i(l/;JQ)) denotes the
closed-loop fuzzy tracking system. Recall that the gain margé'ﬁectral radius of; S~ Bt#:(1/52), Zthen the optimal fuzzy
of a closed-loop system is the amount by which the loop gaﬂﬁcking controller !
can be changed until the system becomes unstable [25]. As
we remarked earlier, for a time-invariant well-behaved fuzzy, T .
tracking subsystem, the designed global optimal trackirlg (t) = Z hi(X7(2))
controller in (21) and (44) can be unified inte*(¢) = =1 .

S hi(XF(@)[GEX*(E) + 74(¢)]. In order to measure the x (=S~ Bi7; [I, + B;S™'B{m;] ~ A X" + FSXt(t)) (87)
gain margin, we consider a corresponding tracking controller

u(t) = > 20_ hi(X () [BGHX (t) + 75%4(t)]. The gain margin generates a closed-loop fuzzy tracking systemin (79) with aniin-
of the closed-loop fuzzy tracking system is defined as the amaliftite-gain margin, wheres**(t) is equal to (23) for the moving-

by which3 can be increased until the system becomes unstadget problem, or equal t67 Z () with G7 in Theorem 4 for the
)] model-following-target issue. That is, the modified closed-loop

hduzzy tracking system

Now, letu(t) £ u(t)/8 = Yi_, hi(X(O)GIX(H) + 7.

wherer, ™ (t) = #¢(¢)/43, and then we have, by setting

input weighting factor to be one for convenience r

Xt +1) =Y hi(X(1) { (1,,, — BB;S~1B!7,(q)
=1

oo

](u( . )) = Z (et(t)Le(t) + ut(t)Su(t)) % [In + BiS_le%i(q)] —1) AZX*(t)}
= i(et(t)Le(t) + g2HH)Su(t))  (82) + Zhi(X ") B (1) (88)

is always stable for ang > 1, whereq = 1/3? and;(q) is
the positive—semidefinite solution of the modified discrete-time
Riccati equation in (85).

wheree(t) = X (t) — X¢(t) and3 > 1. We further consider

W =, + Proof: As we know, the stability of the modified nonlinear
J(-)) = ;(qe (B)Le(t) + v (H)Sv(D), > 0. (83) fuzzy tracking system in (88) is coincident with that of the fol-

lowing zero-input fuzzy system:

Notice thatJ(u(-)) = 8%J(v(-)) andg = 1/3?. Comparing r )

(83) to (82), we find that the larger this, the smaller the is, X" (t+1) =Y hi(X*(t)) { (In — BB; S Biwi(q)

which means that whei goes to zero, the gain margin of the i=1

closed-loop fuzzy tracking system becomes infinite. Now, we x [1, + BiS_le%i(q)]_l) AiX*(t)} . (89)

shall show that the resulting closed-loop fuzzy tracking system

possesses an infinite gain margin. _ Let A¢j,i = 1,...,r, denote the subsystem matrix of the
Lemma 1: Consider a linear time-invariant dynamical fuzzyfuzzy system in (89), i.eAc; 2 (I — BBiS B (@)L +

subsystem B;S™1B!7(q)] 1) A, and then, (89) can be rewritten as

X(t + 1) = A7X(t) + B777(t)

Y(t) = CX(t) (84) K= 2 e 00
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Notice thafy"_, h;(X*(t)) = 1. We shall show that each fuzzy in other words, the zero-input fuzzy system in (89) is ex-
subsystem in (89) or (90) is exponentially stable for gny 1. ponentially stable for any > 1. Hence, the stability of
Furthermore, demonstrate that the entire zero-input fuzzy sys- the modified nonlinear fuzzy tracking system in (88) is
tems in (89) or (90) are also exponentially stable for &ny 1; ensured positively for ajf > 1, and accordingly, our re-
and then, prove that the modified closed-loop fuzzy tracking  sultant closed-loop fuzzy tracking systems in (79) or (80)
system in (88) is always stable for afgy> 1. possess infinite-gain margin.
1) Via Lemma 2 in the Appendix and Lemma 1, O
we know p([I, + B;S7!Bim(¢)]7t4) < 1
and 7;(q) is always available even in the case V. NUMERICAL SIMULATIONS

of infinite gain margin. We shall show{(7, —
BB;STIBir;(1/8%) [, +B; S~ Bim;(1/5%)] DA} <
1forall 8 > 1. Let(\1,v;) denote the eigenpair ¢f,, +
BZ‘S_IBE%Z‘((])]_IAZ‘, i.e., [In + BZS_IBZt’ZQTZ(q)]_lAZ .
vy = M. By (85), we have(w;(¢) — qL)v; =
M Atz (q)vi. Hence, we have|r;(qg) — ¢qL -
MAi7i(q)] = 0. Therefore, for all\y € o([I, + A Discrete-Time Tracking System

B;S7IB!71;(g)]7t4;),\1 is also an eigenvalue of , , ,
(7i(q) — qL)(At#:(q))~, which is equivalent to A computer simulated trunk-trailer system is used as a

A7 (L + BiS'Biai(q)] L As( AR (g) . tracking system to track a moving target or a model-following
To ensure  this A%%(q) commutes  with. ([, + target. The computer simulated truck-trailer physical system
B<S_1B?7zr<(q)]_1'A< Zol;viously e " was described by Tanaka and Sano [29] as

In this section, a simple nonlinear mass-spring-damper me-
chanical system for continuous case, and an optimal backing up
control of a computer simulated trunk-trailer for discrete-time
case is adopted as the tracking system to illustrate the proposed
optimal fuzzy tracking control scheme and its theoretic aspect.

Al7i(q) - [In + BiS ' Biay(9)] " As et +1) = (1 —v-t'/LNx(t) +v-¢/1- u(t)
—_ [In + Bis—lB?%i(q)]—l Ai ) At’;?7(q) -TQ(t + 1) = .’L'Q(t) +v- t//L/ . .’L’l(t)
AAF) - [+ BS— BIR(@] - A w3t +1) = wa(t) + 0t -sin(aa(t) + v /21 0 (1))

= 4 [I, +BiS’le7Qri(q)]_l A A () wherel is the length of truckL’ is the length of trailert’ is
the sampling time, and is the constant speed of the backward
and thenA; commutes wit1,, + B; S~ Bi7;(q)] ' or, movement. Then, they used the following fuzzy model to repre-
more precisely, withB3; S~ B! 7, (q). sent the aforementioned mathematical model:
2) Accordingly, [, + (1 — 8)B;S~!B!#;(¢q)] commutes
with [L,, + B;S~1Bt7,(q)] ' 4,. Recall that ifA andB ~ R': If 2() = x5

—~

t)+wv-t'/{2L'} - z1(¢) is aboutD,

are commutative operators, thpAB) < p(A)p(B). thenX (¢t + 1) = A1 X(¢) + Biu(t)
Hence, we have R? 0 2(t) = w2(t) +v -t/ /{2L'} - z1(¢) is aboutr or — =,
=p{[Ll.+(1-B)B;S™'Bini(q)] and the system output i¥(t) = CX(t) with ¢ =
1 o /
w (L + BiS— Bt (q)] " A 001, = 28L = 55v = —-10,#/ = 20 and
[ )] A X(t) = [11(8) 2a(t) ws(D)]', where

<p {In +(1- [3)31‘5_13;7%2‘@)}

1pta a-1 13636 0 0
p { (1, + BiS~ ' Bwi(q)] Az‘} A = |-03636 10 0
<p{l. = (B-1)BST'Bimi(9)} <1, Yg=1/8*>0 | 0.0120 -2.0 1.0
(91) [ 1.3636 0 0
) Ay = | —03636 1.0 0
sincel > 1 — (8 — DA(B:S™'Bfm;i(1/6%) > 1 - 0 _0.0064 1.0
limg (8 — DA(B; S Bi# (1/8%)) > —1. So, the ) 07143
spectrum of the subsystem matrix, characterizing the dy- B, — B, — '0
namical behavior of each subsystem in (89) or (90), is ' 2 0

always located in the unit disc of the complex space; in

other words, each fuzzy subsystem in (89) or (90) is eGrounding on this fuzzy system, we assume our fuzzy tracking
ponentially stable for ang > 1. controller as

3) Then, we can use the mathematical induction method to
demonstrate that there exist constant- 0 andn < 1
such that the states of the entire fuzzy systems in (89) or
(90) satisfy

X (Ol < m|| Xollg* ™, Vk,ko 20, VXoeR" (92)

RY:If 2(t) = wo(t) +v -t/ J{2L"} - 1 (1)
is aboutd, thenu(t) =r1(¢)

R 0f 2(t) = mo(t) +v - ¥ /{2L} - 1(1)
is aboutr or — 7, thenu(t) = ra(t).
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Fig.1. Outputresponses (denoted by dashed line) of the discrete-time fuzzy tracking system with the tieeghedzonoptimal fuzzy tracking controllers in
Section IlI-A for variousmoving target¢denoted by solid line), where (&)*(t) being a stepwise target. (b)*(t) = 3+2sin 4k. ()Y ¢(¢) = 100+ k+0.7k=.
d)Y4(t) = 3 + 4e 03,

With the chosen membership functions [29], the firing strengtlsymmetric positive—semidefinite solution of the discrete-time

are algebraic Riccati equation in (25) or (46) is
hi(X (1) = ay(t) = (1 — 1/(1 + exp(=3(2(t) — 7/2)))) [ 37628  —11.2435  1.9448
T = | —11.2435 53.2545 —10.9962
(1/(1 —3(2(t 2 m
_— ( /t( +1eXp( t(7( ) +n/2) | 19448 —10.9962  3.8906
2(X() = az(t) =1 - (?) [ 15003 —1.2627 1.2329
which, in this case, are also the normalized firing-strengths of e = [ —1.2627 44386  —4.3549
the rules for the fuzzy system and controller. The performance | 1.2329  —4.3549 161.8765
index for the finite-horizon tracking problem is set as For the moving-target tracking problem, we can obtain,
100 based on Theorems 1 and 2, the optimal trajectory of the
Ju()) = Z[et(t)Le(t) +ut (#)Su(t)] (93) closed-loop fuzzy tracking system with the designed optimal
t=0 fuzzy tracking controller. The output responses of the resultant

closed-loop fuzzy tracking system for various targets are shown

and that for the infinite-horizon tracking problem is o " J
in Fig. 1 for the finite-horizon problem. The output responses

i for the infinite-horizon problem are quite similar to those
_ t t
J(u(-)) = Z[G () Le(t) + u' () Su(t)]- (94)  shown in Fig. 1. As for the model-following-target case, since
=0 each fuzzy subsystem is well-behaved as mentioned above,

Now, we can design the optimal fuzzy tracking controllers fahe optimal fuzzy tracking controller and the corresponding
the trunk-trailer tracking system in both cases of moving targeacking trajectory can be obtained according to Theorems 3
and modeling-following target by the proposed design scherard 4. Fig. 2 shows the finite-horizon optimal output responses

in Section IlI-A. of the resultant closed-loop fuzzy tracking system for the
Though the fuzzy subsystem is unstable (the spectrum tafgets from the tracked model in (29) with various parameters
system matrixo(4;) = {1,1,1.36},i = 1,2), itis time-in- ((F1,F>) = (1,1),(1,0.9),(0.85,0.85) and (0.45,0.45)).

variant and well-behaved; i.e., the fuzzy subsystem is c.c. aflde output responses for the infinite-horizon problem under
c.0. tank[A3; — A;B;] = rank[A3 — A;C] = 3, for all the same simulation situations are very close to those shown
A € o(4;)). Then, given; = Is andL, = 1in (3), the unique in Fig. 2. Our simulation results also show that the designed
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Fig. 2. Output responses (denoted by dashed line) of the discrete-time fuzzy tracking system with the @iri&rhedzonoptimal fuzzy tracking controllers
in Section 1I-B for the targets (denoted by solid line) from trecked modelvith four different sets of parameterd, F») = (1,1),(1,0.9),(0.85,0.85) and
(0.45,0.45).

optimal fuzzy tracking controllers can efficiently push thevherer? = F}, Ft = F? F3 = F} andFy = F#, and the
simulated trunk-trailer system to trace the targets as soonsgstem output i37(t) = C X (¢) with C = [0 1] for every rule,

possible. whereX (t) = [#(¢) z(t)]",B; =[1 0]',i =1,...,4
B. Continuous Tracking System A, = 0 -0.02 A, = —-0.225 —-0.02
R I T 1 0
Ir_1 this section, we adqpt the following simple no_nlmear mass- 0 —1.5275 _0925 —1.5275
spring-damper mechanical system to track a moving or amodel- As; = 1 0 Ay = 1 0

following target:

Mi + g(w,8) + f(2) = $(i)u and the membership functions of the fuzzy terms are
9, = pr (X(8) = 1— (22()/2.25), s (X (1)) = (2 (1)/2.25),
| | (X)) = 1 - (@(0)/225), and pp(X(r) =
where M is the mass and is the force;f(x) andg(x, &) are (3%(¢)/2.25). The firing-strengths of the rules are
the nonlinear or uncertain terms with respect to the spring aag{ X () = i (X(#)) - ppi (X(2)), 4 = 1,... 4.
the damper, respectively; arid=) is the nonlinear term with e then assume the desired fuzzy tracking controller is
respect to the input term. The tracking system can be rewritten
as [3] ) o o
R If2(t)isF] and (i) is F3,

i = —0.14% — 0.02¢ — 0.672° + u thenu(t) = ri(), i=1,....4

wherer € [-1.5 1.5] andz € [-1.5 1.5]. Accordingly, we Also, we set the performance index for the finite-horizon
model this nonlinear system as [3] tracking problem as

R ifz(t)isF{ and i(t)is Fj 40
thenX (t) = A;X(t) + Bu(t), i=1,....4 Ju(-)) :/0 [ (#) Le(#) + ' (D) Su(t)] b (95)



140

(a)

20
815_ /
=
<] /
Q.
9]
210+
2 /
5 /
5 P
/
/
I
0 . . .
0 10 20 30 40
time
(c)
7
6.
351
g7/
24ty
il
53¢
e |
32t
1I
0 1
0 10 20 30 40
time

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

(b)
5
4
o]
2 \ \ i’
88
g 10 [N V5 VI (VA [ VI () B 1/ S IV B ¥ O V) B WY
= |V
22
=
|
1)
0 I I L
0 10 20 30 40
time
(d)
10 T

output response

20 30
time

40

10

Fig. 3. Output responses (denoted by dashed line) of the continuous fuzzy tracking system with the diagishedizonoptimal fuzzy tracking controllers in
Section 1111 for variousnoving targetg§denoted by solid line), where (&)¢(¢) being a stepwise target. (b)*(t) = 3 + 2sin 2¢. (C) Y *(t) = 3 + 4e~9-3t. (d)

Ye(t) = 0.5+ 21og(3 + 7).

and that for the infinite-horizon tracking problem as

J(u(-))

/0 Tl Le(t) +ut(BSu®]dt (96)

wheree(t) = X (t) — X4(¢).
Now, we can design the optimal fuzzy tracking controllers f

the infinite-horizon problem are very close to those shown in
Fig. 3.

As for the case of model-following target, since each fuzzy
subsystem is well-behaved as mentioned above, the optimal
fuzzy tracking controller and the corresponding tracking
trajectory can be obtained according to Theorems 7 and 8.

) . 'Fig. 4 shows the finite-horizon optimal output responses of
the mass-spring-damper tracking system to follow the deswﬁ{:g

resultant closed-loop fuzzy tracking system for the targets

moving target or model-following target by the proposed desigg, iy, he tracked model in Problem 5 with various parame-
scheme in Section IlI-B. Lets = I, (identity matrix of dimen- ., ¢ (FL,Fs) = (—1,-0.2),(=0.2,—1),(=5,—1/30) and

sion 2) andLs; = 1 in (4). Since each fuzzy subsystem is well

behaved fank[A; A;B;] = 2 andrank[C' AlC']" = 2 for

(—1/30,—5)). The corresponding output responses for the infi-
nite-horizon problem are quite similar to those shown in Fig. 4.

¢=1,...,4), we have the unique symmetric positive—semidefy, ;. simylation results also show that the designed optimal

inite solution of the algebraic Riccati equation in (57)

~ [0.0326 00316] _ _ [0.0324 0.0316

L= 100316 1.0311| "7 |0.0316 1.0311
__[oos26 003017 o [0.0323 0.0301
737 10,0301 1.0309 4= 10,0301 1.0306 |

fuzzy tracking controller can efficiently push the simulated
trunk-trailer system to trace the targets in a short time.
VI. CONCLUSION

A sufficient condition for global optimization of fuzzy con-
trol was adopted in this paper. Grounded on this condition, a

For the moving-target tracking problem, we can obtain, basadnlinearglobal optimal quadratic tracking problem can be de-
on Theorems 6 and 7, the optimal trajectory of the closed-loespmposed into a set dihear local optimal quadratic tracking
fuzzy tracking system with the designed optimal fuzzy trackingroblems, and then, the local-concept-approach design scheme
controller. The output responses of the resultant closed-loopglobal optimal fuzzy tracking controllers for both contin-

fuzzy tracking system for various moving targei&‘(being a
stepwise functionY 4(¢) = 3 + 2sin2¢, Y4(¢) = 3 + 403
orY4(t) = 0.5+ 2log(3 + t)) are shown in Fig. 3 for the fi-

uous and discrete-time fuzzy systems was derived theoretically.
Grounding on this efficient design scheme, several fascinating
characteristics have been shown to exist in both kinds of resul-

nite-horizon problem. The corresponding output responses fant closed-loop time-invariant fuzzy tracking systems. Simu-
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Fig. 4. Output responses (denoted by dashed line) of the continuous fuzzy tracking system with the diestientnedizonoptimal fuzzy tracking controllers
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lation results have manifested that the designed optimal fuzzy2) Now, we shall check if the limit value af;(q) exists and
tracking controllers can effectively drive a fuzzy systemto trace  is equal tor;(0). For notation simplification, we usk,
the target profile in a short time. In this paper, we consider only  and K;f to denoter;(¢) and7;(q + €), where;(q +
the noise-free tracking systems. In the future work, we shall de-  ¢) is the symmetric positive—semidefinite solution of the
velop theoretically sound stochastic fuzzy estimation or fuzzy  following equation:

filtering techniques based on the theorems developed in this + . + 1t =1 ot

paper to deal with the practical noise-contaminated systems. K¢ = (@ + )L+ A} [I, + K B.ST'Bj] K[ A;. (98)

Define$ K, 2 K} - K, then

APPENDIX A
Proof of Lemma 1: 6K, =eL+ Al {K;L [I. + BiS*leK(ﬂ -
1) We consider the optimal solution for minimizing -l
- — Lo+ K, BiS BT K, A (99)
Ji(ri(+)) = Z(th(t)LX(t) +ri()Sri(t),  Va>o0. let A and A, denote, respectively,
t=to [+ B;ST'BIK,] "t A; and[I, + B;S ' BIK |1 A,
From Lemma 3, for any > 0, the global minimizer is then
Ak — o~ — o~ -1 * _ —_
i) = =S Bimi(q) [In + BiS ' Bimi(q)] AiX*(t), §K, = L+ A'6K, Ay (100)

B>1,  te [t o) _
Let Z, = (0K,/0q) = lim_o(K ] — K,)/¢, then we

wherefri(q) is the symmetric positive—semidefinite solu- obtain a discrete-time Lyapunov-like equation
tion of the modified discrete-time algebraic Riccati equa-

_ itz A
tion in (85), and the corresponding closed-loop system Zy=L+AZA. (101)
Xt 1) = L, + BisilBE%i(q)]_l AX(0), ¢From (1), we knovy_)(ﬁ),p(AJr) < 1, and accordingly,
the unique solution is
te [to, OO) (97)
is exponentially stable, i.eg{[L, + B;S Bir;(¢q)] * Z,= Z(A"‘)%(Ai) > 0. (102)

A} < 1. t=t}
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Lemma 2: For the discrete time-invariant fuzzy subsystem in[16]
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