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Applicability of perturbative QCD and NLO power corrections for the pion form factor
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As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much
smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order
(NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative param-
eters which are determined fromy& fit to the data. Interpreting these parameters leads to the fact that the
involved strong interaction coupling constant should be identified as an effective coupling constant under a
nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as
(x}ZQZ, thenQ?, the momentum transfer square for the pion form factor to be measured, can have a value
about 1 GeV, and(x), the averaged momentum fraction variable, can locate around 0.5. This circumstance
is consistent with the asymptotic model for the pion wave function.
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I. INTRODUCTION eliminated by power correctiofi0-12,15 or radiative cor-
rection. However, as shown {7,8], the next-leading-order
The exclusive process plays an important role in improv{NLO) radiative corrections can only contribute 20-30 %,
ing our understanding of strong interactions. A detailedwhich is still not enough to account for the data. Therefore, it
analysis of the exclusive process may exhibit the constituent§ interesting to find out how large a contribution the NLO
of hadrons and shed light on the underlying dynamics. On@ower correction can give. For the pion form factor, the NLO
important progress in this respect is that perturbative QCi.e., O(1/Q*)] power correction may receive contributions
(PQCD was proposed for exclusive processes involvingfrom operators composed either of one twist-2 and one
large momentum transféi—5]. The basic idea of PQCD in twist-4 distribution amplitud€DA) or two twist-3 DAs[24].
these processes is the factorization theorem, which demor-he contributions from the latter have been calculated in
strates that the transition amplitude can be factorized into QCD[10-12,15. To have a complete PQCD description
convolution of hadronic wave functions and a hard function for the form factor up to NLO power correction, the contri-
The hard function involving the short-distance interactions igoutions from the former must also be considered. Based on
perturbatively calculable, while the hadronic wave functionsthe method developed if25], the former type of operator
containing the long-distance physics are nonperturbativecan be systematically calculated. The most important feature
PQCD has the ability to predict outcome due to the fact thaef this method is that the NLO power correction can have a
for a specific hadron, its hadronic wave function is universalpartonic interpretation. By combining the contributions from
for transition processes in which the hadron can participateboth types of operators, we can find an interpretation for the
The pion form factor has been investigated in the framedata.
work of PQCD[4-15|. In the experimentally accessible en- ~ The organization of this paper is as follows. We investi-
ergy region of a few Ge¥/ the asymptotics of PQCD is only gate the power expansion for th& 7— m process in Sec. II.
about one-fourth of the experimental value. This fact hasThe pion form factoi . (Q?) up to orderO(Q™*) is evalu-
received much attention in the literature. It also stimulatecited in Sec. lll. Using the pion form factor, we arrive at a
the debate about whether PQCD can be used for the piophenomenological pion form factor by employing a legét-
form factor. As indicated by Isgur and Llewellyjii6,17, fit to the data. Comparisons between the theoretical and the
most contributions to the form factor are from the soft end-phenomenological pion form factors are given. Section IV
point regions, i.e., the end-point singularity with which the contains discussions and conclusions.
perturbative calculation would become unreliable. To resolve
this problem, Li and Stermal6] proposed a modified hard-
scattering approach for the hadronic form factor. In this ap-
proach, the end-point singularity is replaced by a resumma- In this section, we shall describe our approach for the
tion over soft radiative corrections, i.e., the Sudakov formpower expansion for the* 77— m process. The method we
factor. It was found that, with the transverse degrees of freeshall employ is called the collinear expansi@b—27. Let
dom playing the role of infrared cutoff, the PQCD contribu- o= ¢* (P;,k;) ® o5(kq,kp) ® ¢(P1,k;)  represent  the
tion becomes self-consistent for momentum transfer as loowest-order amplitude fory* (q) w(P;)— #(P,) as de-
as a few GeV. Other approaches to solve the end-point sirpicted in Fig. 1a). The explicit form for the amplitude is
gularity problem have also been proposed, such as the transxpressed as
verse structure of the pion wave functifi8—20, the effec-
tive gluon mass[21], and the frozen running coupling

d*k; d*k
constan{ 22,23, | o= f —— —— T ¢* (k) op(ky ko) b(kp)], (D)
The discrepancy between theory and experiment may be (2m)* (2m)*

II. COLLINEAR EXPANSION
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FIG. 1. The leading diagrams for* m— 1r. @ @ i@ @ ®: %@
wherea(ky,k;) denotes the amplitude for the partonic sub- f
(© @

process, an@(k;), i=1,2, represents the pion DAs. Tl

denotes convolution integrals over the loop momdqtand

traces over the color indices and the spin indices. To pick out FIG. 2. The NLO power correction diagrams fgt 7— . The

the leading contribution, we assign the momenta of thePropagator with one bar means the special propagator.

initial- and final-state pions in the following way. We choose . ) )
P,=(P;,P;,P1,)=(Q/\2,00,) andP,=(P; P, P, ) Vertexiy, and one special propagatiafi/2x; [27]. Because
=(0,0/1/2,0,) such that PQCD is applicable f@?= —q? the speual propagator is not propagating on the light cone
=—(P,—P,)? being large. We shall employ the light-cone asso_mated with the meson, t.he quark-glupn vertex and the
gauge in the following calculations. The internal loop mo_spemal_propagator should be incorporated into the hard func-

mentaki“" i:1,2, are parametrized as tion, Op- In thiS/ way, (f)]_ is factorized into ¢l
L ~ ()W, (¢1p)® and the short-distance piecef), is
P ki+ ki, -k (2)  absorbed intar, . This leads to the third step,
| I 2X| I 1L

* o — gk - H @ a'
wherex; are dimensionless numbers of order unity and the $0® Tp® $1= do ®TpBL(P1)aO@Wy (b1p)" ]

vectorsn; are in the direction of the opposite-moving exter-

nal vectors such that;-P;=1, n?=0, n;-n,=2/Q? and = p5 @ (0, @ 1) 0w (1), (6)
alson;-P,=n,-P;=0. The first step is to perform a Taylor
expansion for the partonic amplitude where ($,5)* containing the covariant derivativ®®’

=i(9“/—gA“/ is implied. The related Feynman diagrams for

this type of correction are displayed in Fig. 2. In these dia-

grams, the quark propagator with one bar denotes the special

propagator.

3 We now describe the final step of the collinear expansion.

—0p(ki) =(0p) (X X;) (4)  The second term of Ed3) can contribute in subleading or-

Ik« der of the power correction as it convolutes wity. The
momentum factok® is absorbed by, to become a coordi-

a nate derivative, denoted &S$'¢o= ¢7,. Consider the other

and have employedrvf“a,kf"=(ki—xiPi)“ and w , =g, - . — . ) _
—Pn;, . The leading termp* ® 0,® ¢ contains leading, contributions oy~ ¢y ® (07p) « ® Wy, 14 from Fig. 1b),

next-to-leading, and even higher-order power correctiond’h€reéi, contains gauge fields.thqause of ?olor E-nd glec—
which should be determined from the spin structurergf tromagnetic gauge invariance, the diagrams from Fig. 3 are

the term proportional ta; or P;. The; term would project Necessary. Note that the tewrj, A* appears automatically

a collinearqq pair from the meson, while th&; term would in the light-cane gauge. To arrive ata final resu_lt, Some care
- _qq P — . . - should be taken. There are two kinds of contributions. The
not diminish only when the q pair carries noncollinear mo-

Th q ) bsti he leadi contributions of the first kind are from those diagrams in
menta. The second step Is to substitute the leading partonighic the pion DAs contain the covariant derivative. We can
amplitude o, into the convolution integral with the pion get these as

wave function ¢ to factorize the leading and subleading
power contributions,

(k)= 0p(ki =XiPy) + (o) olX; X)Wy K -, (3)

where we have assumed the low-energy theorem

ki =x;P;

P* R Tp® = @ T,® o+ b @ 0,® by

+PIRo,® ot -, (5)

where ¢g and ¢, denote the leading twigt.T) and next-to-
leading twist(NLT) pion DAs, respectively. Thé; contains
both short-distance and long-distance contributions. The
short-distance contributions ap, arise from the noncol-

linear components ok;. By the equation of motion, the FIG. 3. The other NLO power correction diagrams fgt
noncollinear components & will induce one quark-gluon — .
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6 ®(0p) OW7 DT 5 5 @(07) QWS DT p

=5 @ ()19 (h1p), (7)

where we have employe@y ,+ ¢7 4= ¢7p. The contribu-
tions of the other kind are from those diagrams in which the
DAs contain only gluon fields. Because of gauge invariance,
the gluon fields need to be converted into field strengths.
That is, we need to make the following substitution for the
gluon field:

1
Aa*) yGa‘Bnlﬁ' (8)

where the gluon field is associated with momentyR and

the factor 1y is then absorbed by the corresponding partonic
amplitude @), such that (J'p)a—>(a'g)a. These contribu-
tions are expressed as

G (k) m

o ) . FIG. 4. The leading NLO power correction diagrams #6rar
b ®(a§)a®wfa,¢f’65 b3 ®(O’S)1®(¢1’G), (99  — . The Hermitian conjugate diagrams are implied.

where s means that it containg“?. The last two steps of ll. O(Q™*) CONTRIBUTIONS

the collinear expansion can be applied for the final-state pion ¢ amplitude for they* m— m process can be param-
to calculate the other contributions. Finally, we write the am-gtrized in terms of the pion form factor,

plitude of the process* m— = under the collinear expan-

sion up t0O(1/Q") as A(y* m—m)=—ie,F.(Q)(PL+PY), (12
Tot o1~ B ®0,® by whereQ?=(P,— P;)? denotes the virtuality of the off-mass-
o o shell photon ance,. is the pion charge. The leading contri-
+¢o®[0,@® ¢>T+(crp)1]®¢lp bution of the pion form factoF _(Q?) is expressed as
+¢1p8[(¢1") @yt (0)T]® o+ 5 @ (ap)s F1902) 1287 ars( Q1) fl g fl gy 20000 o
=——7 | dx| dy——-—.
J— w 2
® 16t $ie®(05)] o (10 Q" Jo o X

Where NLT DAs ¢;, and ¢, ¢ are involved in the NLO ~ APPIYINg ¢(x)=3f,x(1-x)/\2 into Eq.(13), one can get
power correction. 2 e2
The remaining tasks to be considered are the factoriza- FLOo(Q2) = 167 ag(Qer) f=
tions of the spin indices, the color indices, and the momen- “ Q?
tum integrals over the loop partons. We refer the reader to
[25] for details of these factorizations. For factorization of where f ;=93 MeV will be used below in the numerical
spin indices, we employ the expansion of the meson DA int@nalysis.
its spin components as We now describe the calculations of the NLO power cor-
rection. We shall employ the light-cone gauge. The leading
r Feynman diagrams displayed in Fig. 4 are considered. After
boa= ; bol’, (11) explicit evaluations for each diagram, we find the nonvanish-
ing contribution is from Fig. &). The result then reads

: (14)

wherel’ denotes the Dirac matrik =1,y*, y*vs,0*"”, and 5
¢, representsp;p or ¢, . The choice of the lowest twist FNLO(Q2)= — 256m ar5( Q)

components¢)51 of ¢o, can be made by employing power 9Q*

counting[25]. For the factorization of the color indices, we _

employ the convention that the color indices of the parton 1ot [G(X)+G(x)]e(y)
amplitudes are extracted and attributed to the meson DAs. X fo dxjo dy X2y +(x=y),

The factorization of the momentum integral is performed by
making use of the fact that the leading parton amplitudes (19
depend only on the momentum fraction variables The -

momentum integrals are then converted into the integral¥/here G(x) and G(x) denote twist-4 pion DA425]. To
over fraction variables. simplify the situation further, we assume ti@&tx) andG(x)

074016-3



TSUNG-WEN YEH

PHYSICAL REVIEW D 65 074016

09

0.8

0.7

0.6

0.5

FIG. 5. Plot of the least? fit (solid line) and

C.L.=99.73%(dash ling for Q?F _(Q?). The ex-

Q*Fr(Q%)[GeV?

0.4

0.3

0.2

0.1

perimental data are taken froffh—3].

10
0? [GeV?)

12.5 15

contribute equally. A remark for the calculation is that we
have employed the spin tensoisfﬁyﬁ for G(x) and
dPygys for G(x), where €/*=e*"™P; n;, and df?
=P{nf+ngpPP—geP,

We have employed the effective couplimg(Qﬁﬁ) with
the argumenQZ,=(xyQ@?), where the brackets denote the

17.5

20

16ms<Q§ﬁ>fi( )
Q? !
+0(Q 7).

Inspired by the above theoretical pion form factor, we can

32m2f23(Q%)
i =

FA(Q%)=

(18

average under a nonperturbative QCD vacuum. This is corperform a leasf? (x2:,=7.967 42) fit to the datfl—3] to

trary to the usual approach in PQCD, in whiak(Q?) is
taken to be running witlQ2. The scalexy @ of as is chosen

as the momentum transfer of the exchanged gluon. From the

factorization point of view, we may incorporafgy Q?) into
(x)(y)Q3. by a factorization scal®y,¢, Which denotes a
scale to separate the perturbative and nonperturbative d
namics. After substituting(x) = 3v2w%f3x(1—x) [25] and
evaluating the integrals, there still remains an infrared diver
gence[10,28

512732 ag(Qa¢)

FroQ¥)=- o

(1-%)
(f ” dX) (16)

YWhere A=0.46895

obtain a phenomenological form factor,

FR(Q?)= i( 1- E) (19
" Q*\" Q%)

8j83§§3 with 60 accuracy andB

=0.3009. They? analysis for the data is shown in Fig. 5. It
is obvious that the data point at 10 Geis the result of
allowed errors. However, due to a small available range of
Q? for the data, it is difficult to determine the asymptotic of
the scaled form factoQ?F _(Q?) at large Q?>. Comparing
Egs.(18) and(19), we are led to the following conclusions.
(i) The argument ofxs(Q?) should be interpreted as an
effective Q%= (x)2Q3.,. That is, we need to take(Q?)
as an effective coupling constant. The average fraction

which is from on-shell quark lines. This divergence cannothas the valugx)~0.57+0.03 for Q=1 GeV andA gcp

be completely resolved under perturbation theory. There re=0.3 Gev. The values of(x) and Q2. depend on
quires a resummation over the soft divergences associatge model for the pion DAthe asymptotidAS) model. If
with the virtual quark lines. One also needs to introduce a je{ye perform a similar analysis by employing the Chernyak-
function to absorb these divergences. We shall skip the deZhitnitsky (CZ) model $(x)=15f_x(1—x)(1—2x)%/\2

tailed perturbative structure of these divergeridés-12,28.
The initial function for such a jet function is nonperturbative.
We denote the jet function ds{Qgﬁ) and reset the NLO form
factor as

512734 ay( Q%) I(Q%)
i o .

FN9(Q?) = (17)

CombiningF:°(Q?) and FY-°(Q?), we obtain

and G(x)=15/272f3x(1—-x)(1—2x)%? [25], we can
have Q3.=13.12'313 GeV? for (x)~0.5 or Q2
=32.8"1%> Ge\? for (x)~0.1. It is clear that the CZ model
is less consistent with PQCD than the AS model.

(ii) A less model-dependent property of the effective cou-
pling constant can be described. The changa gp would
affect the location of the average fraction variate for a
fixed factorization scal®.x. On the other hand, for a fixed
(x), Qe would vary with Aqcp. Nevertheless, there only
exist finite possible consistent solutions fohcp, Qef, and

(x).
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(iii) The effective value of thd function athff is also  with ,u§=Q2/9, can also explain the datg{=57.8), we can
model-dependent with a value of about 0.11 for the ASdefine a similar ratio
model and 0.026 for the CZ model.

(iv) Because the pion-photon transition form factor 0o F™Q?
2 4 R = 24
F.,(Q% up to O(1/Q*) takes the forn{25] =(Q7) 4mQFE Q) (24
2¢2
F(Q%)= &( . 87 fﬁ) (200  Whose expression reads
Y QZ QZ !
10 ag(uk) 25 ai(puk
it is interesting to define the ratiR,, [5], R';(QZ)= as(Qgﬁ) 1+ 3 S(#R) -9 S('ZR)
w
Ffit(QZ)
R (Q?)= ™ , (21) 3272F23(Q%)
(@ 4mQ%F7,(Q) T = +0(a?) |. (25
which has a theoretical expression valid @f=1 Ge\?, as s ~on .
The F(Q7) in Eq. (23) is calculated by the AS model for
16m212[1—23(Q%)] the leading twist pion DA and the usual one-loop formula for
R (QY)=ay(QZ%)| 1+ B T the QCD running coupling constant,
4
64 4 D=
-— ”+o<1/Q6)). (22) Q) 2 49
Q Boln—,
A
QCD

Comparing the prediction df ., in Eq. (20) with the data
[29] gives y?>=12.8 for 15 data points. Note that the,, i whereAqgcp=0.2 GeV andBy=11-2/3n; with ny=2 have

Eq. (20) is multiplied by 5/3 if the CZ model for the pion peen used. We compaFé,(Qz)/Tr andR”(QZ)/w in Fig. 6.
DAs has been employed. The ra), is then smaller by The errors for the ratioR'("") are from the errors associated
9/25. However, it has been shol5] that the datd29] for  ith the fit pion form factolr™ . Also plotted arax (QZ)/
theF ., form factor are more suited to the AS model than theand as(Mﬁ)/W employed ianfy. From Fig. 6,RLT(") are

CZ model, because the result with CZ DAs hds=390 (see larger thana( ,uﬁ) by about a factor of 3—5. The difference

the Fig. 3 |n[25]). Slr?ce Eq(20) is close to theze>.<per|m<.ant, betweenR . and ag cannot be compensated for even by in-
we may take it as a fit to the data. The raﬂb(Q ) is aratio . .
of observable over observable cluding the experimental errors for the,, form factor,
As the pion-photon transitio'n form factor with the NLO which can enlarge the error range Bt by 100%. This
correction pwhicF;] has the expression seems to indicate that the other effects we have not consid-
' P ered may be important. For example, we can encounter two

ot 5 ay 2) possibilities: the NLO correction and the effects of QCD
Fas (Q?)= _W( 1— = Y5\ MR ) (23 coupling in the low momentum region. The NLO correction
e Q? 3 can give contributions of at most 10péee poini(V)]. As for

T
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the QCD coupling in the low momentum region, which canhundred MeVs, still cannot account for the large value of

be modeled by an effective char{fg0], R, . However, due to the low quality of the available data for
the pion form factor, it is difficult to draw a firm conclusion
4 regarding the above discrepancy between experiment and
ay(Q%)= >3 (27)  theory. We expect that future experiment could support fur-
Q"+ my ther evidence to resolve the above problem.

Po A\Z/ (V) By taking into account the contributions from the

O(ag) corrections to the leading twist pion form fact&1],
with nonperturbative parameters, and my being a few Eq. (18) is then modified as

2 2 2 2¢2 2
16mas(QZy) 12 [ L, Qe {@ (m 1 14) - 3.92” ( | 32 1RI(Q%)
Q2 QZ

FA(Q%)=

T +0(Q 7). (29

4

w

The maximum values of the NL@g corrections have been means that the perturbative contribution with NLO power
taken[31]. With the O(«2) corrections, it only amounts to corrections is 90% accurate f@*=105 Ge\f. One may
reinterpreting the scal®.¢ involved in the coupling constant see that the inclusion of NLO power corrections can really
a’s(Qgﬁ)- The value of the jet function is unchanged. Thisimprove the range of perturbation contributions by about
can be seen from the expressionfdf(Q?), where the ex- 30%. As for the CZ model, the analysis can be made to reach

pansion is strictly ordered in @?. The analysis foQ. is & Similar conclusion. _
close to that described in poifit) within 5%. TheO(aﬁ) We now analyze the effects o_f the NLO power corrections

from the operators composed in terms of two twist-3 pion
DAs [10-12,15. This type of NLO power correction takes
the expression

correction for the ratid? , can also be considered by directly
applying Eq.(28). We find that the effects of th©(a?2)
correction forR, are about 5-10 %. Of course, the complete
O(ag) corrections are still not available. The analysis made

here only reflects partial effects and seems too simple. 167« (Qz)f,szj‘T
FYOQ)=—F75""3%Q). (3D
m
IV. DISCUSSIONS AND CONCLUSIONS Qmo

We now estimate the percentage of perturbation contribuThe functionJ(Q?) is the jet function as introduced before.

tions to the pion form factor. Our approach is to extend the]'he factormzlmo relates to the quark condensatdaqm)
analysis of Isgueet al. by including the NLO power correc- m

tion. The analysis of Isguet al. estimates the perturbation
contributions of the pion form factor by employing the frac-

tional functionf(e) m2 2 _
m_oz_f—2<0|QQ|0>- (32)
1 1 T
f(e)=fO dxf0 dy0(xy—e)%§;(y). (29

Using the standard value of the quark condensate
The parametee describes a cutoff omy in order to keep (0|qq|0)(1 GeV)=(—240 MeV)}, one has mfrlmo
higher-twist contributions and higher-order effects at a rea~1.56 GeV in comparison with (1f2)*?~1.17 GeV. By

sonably small level. The reference scale is chosen at 1 Ge¥ubstitutinges(Q32) by as(Q%) andJ(Q?) by J(Q%) in Eq.

Sincef(e) is a mixture of perturbative and nonperturbative (31) and adding Eq(31) into Eq. (18), we can arrive at
contributions, the perturbation parts are those corresponding

to large values okyQ?. For the AS modelf(e) reaches

90% for e=1/150. This implies that the naive perturbative N 1@77“5(Q§ﬁ)f727 1— 32772“37\] 2
contribution is 90% accurate f@?=150 Ge\f. As for the Q%)= Q2 Q2 (Qer)
pion form factor with NLO power corrections, the function

f(e) is modified, accordingly, as 4

+0(Q°). (33

+ m’TT J2 2
_— S(x) () Qg
f(eNLO)= fo dxfo dyo(xy— ENLO)X—y, (30

This implies that the value of the jet functiorj,(Qiﬂ)
whereeN-0= ¢(1—c) with ¢=0.3009. It is easy to find that ~0.124, is changed by about 10%. It is obvious that(B)
f(eN'°) reaches 90% foreN-°=1/150 or e=1/105. This is as important as Eq18).
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It is instructive to check whether the Sudakov form factorform factor. By comparing the phenomenological and the

can compete with the NLO power correction. The Sudakowheoretical form factors, we arrive at the conclusion that, due
form factor arises when one performs a resummation oveto the nonperturbative QCD vacuum, the strong-coupling
the soft radiative gluonf5,6]. For the pion form factor, the constant should be identified as an effective coupling con-
associated Sudakov form factor behaves like stant with a factorization scale equal to 1 GeV. In addition,
the averaged fraction variable is located at 0.5 in agreement
8Cr [Q%) [In(Q%A?) with the AS model for the pion DA. The CZ model fails to
exy — B—Oln A2 In In(K2/A2) give a consistent explanation for the data, because its relative
* factorization scale is in the range of 3—-7 GeV.
A2) (BCF 1Bo)In[In(Q¥A2)/In(k? 1A2)] From the results of this paper af@5], we see that the
_(_) , (34) power correction for exclusive processes is not negligible
Q? and requires detailed investigations. Over past decades, we

) have accumulated abundant data for exclusive processes.
wherek, is the transverse momentum of the |°°E Momen-\jost data are in the low-energy region, which is where the
tum andA represents\ ocp, and we have use@e=3. Itis  power correction plays an important role. The leading or the
seen that the Sudakov form factor kt~A, where the asymptotic contribution only gives information about the
power expansion makes sense, decreases faster than afyjronic wave function, the static property of QCD, while

power suppression fo?> A2, Therefore, tthz behavior  the power correction can reveal the dynamics of QCD.
of the pion form factor at moderat@? is mainly controlled

by the power correction.

We have developed a power expansion schemeyfar
—ar. The NLO power correction to the pion form factor has
been calculated. By employing the form of the pion form  This work was supported in part by the National Science
factor with NLO power correction, we then perform a least-Council of R.O.C. under Grant No. NSC89-2811-M-009-
x? analysis for the data to derive a phenomenological pior0024.
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