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Applicability of perturbative QCD and NLO power corrections for the pion form factor
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As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much
smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order
~NLO! power correction for the pion form factor. The corrected form factor contains nonperturbative param-
eters which are determined from ax2 fit to the data. Interpreting these parameters leads to the fact that the
involved strong interaction coupling constant should be identified as an effective coupling constant under a
nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as
^x&2Q2, thenQ2, the momentum transfer square for the pion form factor to be measured, can have a value
about 1 GeV2, and^x&, the averaged momentum fraction variable, can locate around 0.5. This circumstance
is consistent with the asymptotic model for the pion wave function.

DOI: 10.1103/PhysRevD.65.074016 PACS number~s!: 12.38.Bx, 13.40.Gp
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I. INTRODUCTION

The exclusive process plays an important role in impr
ing our understanding of strong interactions. A detai
analysis of the exclusive process may exhibit the constitu
of hadrons and shed light on the underlying dynamics. O
important progress in this respect is that perturbative Q
~PQCD! was proposed for exclusive processes involv
large momentum transfer@1–5#. The basic idea of PQCD in
these processes is the factorization theorem, which dem
strates that the transition amplitude can be factorized in
convolution of hadronic wave functions and a hard functio
The hard function involving the short-distance interactions
perturbatively calculable, while the hadronic wave functio
containing the long-distance physics are nonperturbat
PQCD has the ability to predict outcome due to the fact t
for a specific hadron, its hadronic wave function is univer
for transition processes in which the hadron can particip

The pion form factor has been investigated in the fram
work of PQCD@4–15#. In the experimentally accessible e
ergy region of a few GeV2, the asymptotics of PQCD is onl
about one-fourth of the experimental value. This fact h
received much attention in the literature. It also stimula
the debate about whether PQCD can be used for the
form factor. As indicated by Isgur and Llewellyn@16,17#,
most contributions to the form factor are from the soft en
point regions, i.e., the end-point singularity with which t
perturbative calculation would become unreliable. To reso
this problem, Li and Sterman@6# proposed a modified hard
scattering approach for the hadronic form factor. In this
proach, the end-point singularity is replaced by a resum
tion over soft radiative corrections, i.e., the Sudakov fo
factor. It was found that, with the transverse degrees of fr
dom playing the role of infrared cutoff, the PQCD contrib
tion becomes self-consistent for momentum transfer as
as a few GeV. Other approaches to solve the end-point
gularity problem have also been proposed, such as the tr
verse structure of the pion wave function@18–20#, the effec-
tive gluon mass@21#, and the frozen running couplin
constant@22,23#.

The discrepancy between theory and experiment may
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eliminated by power correction@10–12,15# or radiative cor-
rection. However, as shown in@7,8#, the next-leading-order
~NLO! radiative corrections can only contribute 20–30 %
which is still not enough to account for the data. Therefore
is interesting to find out how large a contribution the NL
power correction can give. For the pion form factor, the NL
@i.e., O(1/Q4)# power correction may receive contribution
from operators composed either of one twist-2 and o
twist-4 distribution amplitude~DA! or two twist-3 DAs@24#.
The contributions from the latter have been calculated
PQCD @10–12,15#. To have a complete PQCD descriptio
for the form factor up to NLO power correction, the contr
butions from the former must also be considered. Based
the method developed in@25#, the former type of operato
can be systematically calculated. The most important fea
of this method is that the NLO power correction can hav
partonic interpretation. By combining the contributions fro
both types of operators, we can find an interpretation for
data.

The organization of this paper is as follows. We inves
gate the power expansion for theg* p→p process in Sec. II.
The pion form factorFp(Q2) up to orderO(Q24) is evalu-
ated in Sec. III. Using the pion form factor, we arrive at
phenomenological pion form factor by employing a least-x2

fit to the data. Comparisons between the theoretical and
phenomenological pion form factors are given. Section
contains discussions and conclusions.

II. COLLINEAR EXPANSION

In this section, we shall describe our approach for
power expansion for theg* p→p process. The method w
shall employ is called the collinear expansion@25–27#. Let
s5f* (P2 ,k2) ^ sp(k1 ,k2) ^ f(P1 ,k1) represent the
lowest-order amplitude forg* (q)p(P1)→p(P2) as de-
picted in Fig. 1~a!. The explicit form for the amplitudes is
expressed as

s5E d4k1

~2p!4

d4k2

~2p!4
Tr@f* ~k2!sp~k1 ,k2!f~k1!#, ~1!
©2002 The American Physical Society16-1
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TSUNG-WEN YEH PHYSICAL REVIEW D 65 074016
wheresp(k1 ,k2) denotes the amplitude for the partonic su
process, andf(ki), i 51,2, represents the pion DAs. Thê
denotes convolution integrals over the loop momentaki and
traces over the color indices and the spin indices. To pick
the leading contribution, we assign the momenta of
initial- and final-state pions in the following way. We choo
P15(P1

1 ,P1
2 ,P1')5(Q/A2,0,0') and P25(P2

1 ,P2
2 ,P2')

5(0,Q/A2,0') such that PQCD is applicable forQ252q2

52(P22P1)2 being large. We shall employ the light-con
gauge in the following calculations. The internal loop m
mentaki

m , i 51,2, are parametrized as

ki
m5xi Pi

m1
ki

21ki'
2

2xi
ni

m1ki'
m , ~2!

wherexi are dimensionless numbers of order unity and
vectorsni are in the direction of the opposite-moving exte
nal vectors such thatni•Pi51, ni

250, n1•n252/Q2, and
alson1•P25n2•P150. The first step is to perform a Taylo
expansion for the partonic amplitude

sp~ki !5s̄p~ki5xi Pi !1~ s̄p!a~xi ,xi !wia8
a ki

a81•••, ~3!

where we have assumed the low-energy theorem

]

]ka isp~ki !U
ki5xi Pi

5~ s̄p!a~xi ,xi ! ~4!

and have employedwia8
a ki

a85(ki2xi Pi)
a and wia8

a
5ga8

a

2Pi
ania8 . The leading termf* ^ s̄p^ f contains leading,

next-to-leading, and even higher-order power correcti
which should be determined from the spin structure ofs̄p ,
the term proportional ton” i or P” i . Then” i term would project
a collinearqq̄ pair from the meson, while theP” i term would
not diminish only when theqq̄ pair carries noncollinear mo
menta. The second step is to substitute the leading part
amplitude s̄p into the convolution integral with the pion
wave functionf to factorize the leading and subleadin
power contributions,

f* ^ s̄p^ f5f0* ^ s̄p^ f01f0* ^ s̄p^ f1

1f1* ^ s̄p^ f01•••, ~5!

wheref0 andf1 denote the leading twist~LT! and next-to-
leading twist~NLT! pion DAs, respectively. Thef1 contains
both short-distance and long-distance contributions. T
short-distance contributions off1 arise from the noncol-
linear components ofki . By the equation of motion, the
noncollinear components ofki will induce one quark-gluon

FIG. 1. The leading diagrams forg* p→p.
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vertex iga and one special propagatorin” i /2xi @27#. Because
the special propagator is not propagating on the light c
associated with the meson, the quark-gluon vertex and
special propagator should be incorporated into the hard fu
tion, s̄p . In this way, f1 is factorized into f1

'(f1
H)aw1a8

a (f1,D)a8 and the short-distance piece (f1
H)a is

absorbed intos̄p . This leads to the third step,

f0* ^ s̄p^ f15f0* ^ s̄p^ @~f1
H!adw1a8

a
~f1,D!a8#

5f0* ^ ~ s̄pdf1
H!a ^ w1a8

a
~f1,D!a8, ~6!

where (f1,D)a8 containing the covariant derivativeDa8

5 i ]a82gAa8 is implied. The related Feynman diagrams f
this type of correction are displayed in Fig. 2. In these d
grams, the quark propagator with one bar denotes the sp
propagator.

We now describe the final step of the collinear expansi
The second term of Eq.~3! can contribute in subleading or
der of the power correction as it convolutes withf0. The
momentum factorka is absorbed byf0 to become a coordi-
nate derivative, denoted askaf0[f1,]

a . Consider the other

contributions s1'f0* ^ (s̄p)a ^ w1a8
a f1,A

a8 from Fig. 1~b!,
wheref1,A

a contains gauge fields. Because of color and el
tromagnetic gauge invariance, the diagrams from Fig. 3
necessary. Note that the termw1a8

a Aa8 appears automatically
in the light-cone gauge. To arrive at a final result, some c
should be taken. There are two kinds of contributions. T
contributions of the first kind are from those diagrams
which the pion DAs contain the covariant derivative. We c
set these as

FIG. 2. The NLO power correction diagrams forg* p→p. The
propagator with one bar means the special propagator.

FIG. 3. The other NLO power correction diagrams forg* p
→p.
6-2
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APPLICABILITY OF PERTURBATIVE QCD AND NLO . . . PHYSICAL REVIEW D65 074016
f0* ^ ~ s̄p!a ^ w1a8
a f1,]

a81f0* ^ ~ s̄p!a ^ w1a8
a f1,A

a8

[f0* ^ ~ s̄p!1^ ~f1,D!, ~7!

where we have employedf1,]
a 1f1,A

a 5f1,D
a . The contribu-

tions of the other kind are from those diagrams in which
DAs contain only gluon fields. Because of gauge invarian
the gluon fields need to be converted into field streng
That is, we need to make the following substitution for t
gluon field:

Aa→ 1

y
Gabn1b , ~8!

where the gluon field is associated with momentumyP1 and
the factor 1/y is then absorbed by the corresponding parto
amplitude (s̄p)a such that (s̄p)a→(s̄p

G)a . These contribu-
tions are expressed as

f0* ^ ~ s̄p
G!a ^ w1a8

a f1,G
a8 [f0* ^ ~ s̄p

G!1^ ~f1,G!, ~9!

wheref1,G
a means that it containsGab. The last two steps o

the collinear expansion can be applied for the final-state p
to calculate the other contributions. Finally, we write the a
plitude of the processg* p→p under the collinear expan
sion up toO(1/Q4) as

s01s1'f0* ^ s̄p^ f0

1f0* ^ @s̄pdf1
H1~ s̄p!1# ^ f1,D

1f1,D* ^ @~f1*
H!ds̄p1~ s̄p!1* # ^ f01f0* ^ ~ s̄p

G!1

^ f1,G1f1,G* ^ ~ s̄p
G!1* ^ f0 . ~10!

Where NLT DAs f1,D and f1,G are involved in the NLO
power correction.

The remaining tasks to be considered are the factor
tions of the spin indices, the color indices, and the mom
tum integrals over the loop partons. We refer the reade
@25# for details of these factorizations. For factorization
spin indices, we employ the expansion of the meson DA i
its spin components as

f0,15(
G

f0,1
G G, ~11!

whereG denotes the Dirac matrixG51,gm,gmg5 ,smn, and
f1 representsf1,D or f1,G . The choice of the lowest twis
componentsf0,1

G of f0,1 can be made by employing powe
counting@25#. For the factorization of the color indices, w
employ the convention that the color indices of the par
amplitudes are extracted and attributed to the meson D
The factorization of the momentum integral is performed
making use of the fact that the leading parton amplitu
depend only on the momentum fraction variablesxi . The
momentum integrals are then converted into the integ
over fraction variables.
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III. O„QÀ4
… CONTRIBUTIONS

The amplitude for theg* p→p process can be param
etrized in terms of the pion form factor,

A~g* p→p!52 iepFp~Q2!~P1
m1P2

m!, ~12!

whereQ25(P22P1)2 denotes the virtuality of the off-mass
shell photon andep is the pion charge. The leading contr
bution of the pion form factorFp(Q2) is expressed as

Fp
LO~Q2!5

128pas~Qeff
2 !

9Q2 E
0

1

dxE
0

1

dy
f~x!f~y!

xy
. ~13!

Applying f(x)53 f px(12x)/A2 into Eq.~13!, one can get

Fp
LO~Q2!5

16pas~Qeff
2 ! f p

2

Q2
, ~14!

where f p593 MeV will be used below in the numerica
analysis.

We now describe the calculations of the NLO power c
rection. We shall employ the light-cone gauge. The lead
Feynman diagrams displayed in Fig. 4 are considered. A
explicit evaluations for each diagram, we find the nonvani
ing contribution is from Fig. 4~d!. The result then reads

Fp
NLO~Q2!52

256pas~Qeff
2 !

9Q4

3E
0

1

dxE
0

1

dy
@G~x!1G̃~x!#f~y!

x2y
1~x↔y!,

~15!

where G(x) and G̃(x) denote twist-4 pion DAs@25#. To
simplify the situation further, we assume thatG(x) andG̃(x)

FIG. 4. The leading NLO power correction diagrams forg* p
→p. The Hermitian conjugate diagrams are implied.
6-3



TSUNG-WEN YEH PHYSICAL REVIEW D 65 074016
FIG. 5. Plot of the leastx2 fit ~solid line! and
C.L.599.73%~dash line! for Q2Fp(Q2). The ex-
perimental data are taken from@1–3#.
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contribute equally. A remark for the calculation is that w
have employed the spin tensorsi e'

abgb for G(x) and

d'
abgbg5 for G̃(x), where e'

ab5eabglP1gn1l and d'
ab

5P1
an1

b1n1
aP1

b2gab.
We have employed the effective couplingas(Qeff

2 ) with
the argumentQeff

2 [^xyQ2&, where the brackets denote th
average under a nonperturbative QCD vacuum. This is c
trary to the usual approach in PQCD, in whichas(Q

2) is
taken to be running withQ2. The scalexyQ2 of as is chosen
as the momentum transfer of the exchanged gluon. From
factorization point of view, we may incorporate^xyQ2& into
^x&^y&Qfact

2 by a factorization scaleQfact, which denotes a
scale to separate the perturbative and nonperturbative
namics. After substitutingG(x)53A2p2f p

3 x(12x) @25# and
evaluating the integrals, there still remains an infrared div
gence@10,28#

Fp
NLO~Q2!52

512p3f p
4 as~Qeff

2 !

Q4 S E ~12x!

x
dxD ~16!

which is from on-shell quark lines. This divergence cann
be completely resolved under perturbation theory. There
quires a resummation over the soft divergences assoc
with the virtual quark lines. One also needs to introduce a
function to absorb these divergences. We shall skip the
tailed perturbative structure of these divergences@10–12,28#.
The initial function for such a jet function is nonperturbativ
We denote the jet function asJ(Qeff

2 ) and reset the NLO form
factor as

Fp
NLO~Q2!52

512p3f p
4 as~Qeff

2 !J~Qeff
2 !

Q4
. ~17!

CombiningFp
LO(Q2) andFp

NLO(Q2), we obtain
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Fp~Q2!5
16pas~Qeff

2 ! f p
2

Q2 S 12
32p2f p

2 J~Qeff
2 !

Q2 D
1O~Q26!. ~18!

Inspired by the above theoretical pion form factor, we c
perform a least-x2 (xmin

2 57.967 42) fit to the data@1–3# to
obtain a phenomenological form factor,

Fp
fit~Q2!5

A

Q2 S 12
B

Q2D , ~19!

where A50.468 9520.043 29
10.042 53 with 6s accuracy and B

50.3009. Thex2 analysis for the data is shown in Fig. 5.
is obvious that the data point at 10 GeV2 is the result of
allowed errors. However, due to a small available range
Q2 for the data, it is difficult to determine the asymptotic
the scaled form factorQ2Fp(Q2) at largeQ2. Comparing
Eqs.~18! and ~19!, we are led to the following conclusions

~i! The argument ofas(Q
2) should be interpreted as a

effective Qeff
2 [^x&2Qfact

2 . That is, we need to takeas(Q
2)

as an effective coupling constant. The average fract
has the valuêx&'0.5760.03 for Qfact51 GeV andLQCD

50.3 GeV. The values of^x& and Qfact
2 depend on

the model for the pion DA@the asymptotic~AS! model#. If
we perform a similar analysis by employing the Chernya
Zhitnitsky ~CZ! model f(x)515f px(12x)(122x)2/A2
and G(x)515A2p2f p

3 x(12x)(122x)2 @25#, we can
have Qfact

2 513.1223.39
15.79 GeV2 for ^x&'0.5 or Qfact

2

532.828.5
114.5 GeV2 for ^x&'0.1. It is clear that the CZ mode

is less consistent with PQCD than the AS model.
~ii ! A less model-dependent property of the effective co

pling constant can be described. The change inLQCD would
affect the location of the average fraction variable^x& for a
fixed factorization scaleQeff . On the other hand, for a fixed
^x&, Qeff would vary with LQCD. Nevertheless, there onl
exist finite possible consistent solutions forLQCD, Qeff , and
^x&.
6-4
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FIG. 6. The comparisons betweenRp
I /p,

Rp
II /p, as(mR

2)/p, andas(Qeff
2 )/p.
AS

or

he

,

O

r
for

d

e
n-

sid-
two
D
n

~iii ! The effective value of theJ function atQeff
2 is also

model-dependent with a value of about 0.11 for the
model and 0.026 for the CZ model.

~iv! Because the pion-photon transition form fact
Fpg(Q2) up to O(1/Q4) takes the form@25#

Fpg~Q2!5
2 f p

Q2 S 12
8p2f p

2

Q2 D , ~20!

it is interesting to define the ratioRp @5#,

Rp
I ~Q2!5

Fp
fit~Q2!

4pQ2Fpg
2 ~Q2!

, ~21!

which has a theoretical expression valid forQ2>1 GeV2,

Rp
I ~Q2!5as~Qeff

2 !S 11
16p2f p

2 @122J~Qeff
2 !#

Q2

2
64p4f p

4

Q4
1O~1/Q6!D . ~22!

Comparing the prediction ofFpg in Eq. ~20! with the data
@29# givesx2512.8 for 15 data points. Note that theFpg in
Eq. ~20! is multiplied by 5/3 if the CZ model for the pion
DAs has been employed. The ratioRp

I is then smaller by
9/25. However, it has been shown@25# that the data@29# for
theFpg form factor are more suited to the AS model than t
CZ model, because the result with CZ DAs hasx25390~see
the Fig. 3 in@25#!. Since Eq.~20! is close to the experiment
we may take it as a fit to the data. The ratioRp

I (Q2) is a ratio
of observable over observable.

As the pion-photon transition form factor with the NL
correction, which has the expression

Fpg
as ~Q2!5

2 f p

Q2 S 12
5

3

as~mR
2 !

p D ~23!
07401
with mR
25Q2/9, can also explain the data (x2557.8), we can

define a similar ratio

Rp
II ~Q2!5

Fp
fit~Q2!

4pQ2@Fpg
as ~Q2!#2

~24!

whose expression reads

Rp
II ~Q2!5as~Qeff

2 !S 11
10

3

as~mR
2 !

p
2

25

9

as
2~mR

2 !

p2

2
32p2f p

2 J~Qeff
2 !

Q2
1O~as

3!D . ~25!

The Fpg
as (Q2) in Eq. ~23! is calculated by the AS model fo

the leading twist pion DA and the usual one-loop formula
the QCD running coupling constant,

as~Q2!5
4p

b0ln
Q2

LQCD
2

, ~26!

whereLQCD50.2 GeV andb051122/3nf with nf52 have

been used. We compareRp
I (Q2)/p andRp

II (Q2)/p in Fig. 6.
The errors for the ratiosRp

I (II ) are from the errors associate
with the fit pion form factorFp

fit . Also plotted areas(Qeff
2 )/p

and as(mR
2)/p employed inFpg

as . From Fig. 6,Rp
I (II ) are

larger thanas(mR
2) by about a factor of 3–5. The differenc

betweenRp andas cannot be compensated for even by i
cluding the experimental errors for theFpg form factor,
which can enlarge the error range forRp by 100%. This
seems to indicate that the other effects we have not con
ered may be important. For example, we can encounter
possibilities: the NLO correction and the effects of QC
coupling in the low momentum region. The NLO correctio
can give contributions of at most 10%@see point~V!#. As for
6-5



an of
or
n
and
ur-

e

TSUNG-WEN YEH PHYSICAL REVIEW D 65 074016
the QCD coupling in the low momentum region, which c
be modeled by an effective charge@30#,

aV~Q2!5
4p

b0

Q21mg
2

LV
2

~27!

with nonperturbative parametersLV and mg being a few
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07401
hundred MeVs, still cannot account for the large value
Rp . However, due to the low quality of the available data f
the pion form factor, it is difficult to draw a firm conclusio
regarding the above discrepancy between experiment
theory. We expect that future experiment could support f
ther evidence to resolve the above problem.

~V! By taking into account the contributions from th
O(as

2) corrections to the leading twist pion form factor@31#,
Eq. ~18! is then modified as
Fp~Q2!5
16pas~Qeff

2 ! f p
2

Q2 H 11
as~Qeff

2 !

p Fb0

4 S ln
1

18
1

14

3 D23.92G J S 12
32p2f p

2 J~Qeff
2 !

Q2 D 1O~Q26!. ~28!
er

lly
ut

ach

ns
on
s

.

ate
The maximum values of the NLOas corrections have bee
taken @31#. With the O(as

2) corrections, it only amounts to
reinterpreting the scaleQeff involved in the coupling constan
as(Qeff

2 ). The value of the jet function is unchanged. Th
can be seen from the expression ofFp

fit(Q2), where the ex-
pansion is strictly ordered in 1/Q2. The analysis forQeff is
close to that described in point~i! within 5%. TheO(as

2)
correction for the ratioRp can also be considered by direct
applying Eq. ~28!. We find that the effects of theO(as

2)
correction forRp are about 5–10 %. Of course, the comple
O(as

2) corrections are still not available. The analysis ma
here only reflects partial effects and seems too simple.

IV. DISCUSSIONS AND CONCLUSIONS

We now estimate the percentage of perturbation contr
tions to the pion form factor. Our approach is to extend
analysis of Isguret al. by including the NLO power correc
tion. The analysis of Isguret al. estimates the perturbatio
contributions of the pion form factor by employing the fra
tional function f (e)

f ~e!5E
0

1

dxE
0

1

dy u~xy2e!
f~x!f~y!

xy
. ~29!

The parametere describes a cutoff onxy in order to keep
higher-twist contributions and higher-order effects at a r
sonably small level. The reference scale is chosen at 1 G
Since f (e) is a mixture of perturbative and nonperturbati
contributions, the perturbation parts are those correspon
to large values ofxyQ2. For the AS model,f (e) reaches
90% for e51/150. This implies that the naive perturbativ
contribution is 90% accurate forQ25150 GeV2. As for the
pion form factor with NLO power corrections, the functio
f (e) is modified, accordingly, as

f ~eNLO!5E
0

1

dxE
0

1

dyu~xy2eNLO!
f~x!f~y!

xy
, ~30!

whereeNLO5e(12c) with c50.3009. It is easy to find tha
f (eNLO) reaches 90% foreNLO51/150 or e51/105. This
e

-
e

-
V.

ng

means that the perturbative contribution with NLO pow
corrections is 90% accurate forQ25105 GeV2. One may
see that the inclusion of NLO power corrections can rea
improve the range of perturbation contributions by abo
30%. As for the CZ model, the analysis can be made to re
a similar conclusion.

We now analyze the effects of the NLO power correctio
from the operators composed in terms of two twist-3 pi
DAs @10–12,15#. This type of NLO power correction take
the expression

Fp
NLO~Q2!5

16pas~Q2! f p
2 mp

4

Q4m0
2

J2~Q2!. ~31!

The functionJ(Q2) is the jet function as introduced before
The factormp

2 /m0 relates to the quark condensate^0uq̄qu0&
as

mp
2

m0
52

2

f p
2 ^0uq̄qu0&. ~32!

Using the standard value of the quark condens

^0uq̄qu0&(1 GeV)5(2240 MeV)3, one has mp
2 /m0

'1.56 GeV in comparison with (16p2f p
2 )1/2'1.17 GeV. By

substitutingas(Q
2) by as(Qeff

2 ) andJ(Q2) by J(Qeff
2 ) in Eq.

~31! and adding Eq.~31! into Eq. ~18!, we can arrive at

Fp~Q2!5
16pas~Qeff

2 ! f p
2

Q2 S 12
32p2f p

2

Q2
J~Qeff

2 !

1
mp

4

Q2m0
2

J2~Qeff
2 !D 1O~Q26!. ~33!

This implies that the value of the jet function,J(Qeff
2 )

'0.124, is changed by about 10%. It is obvious that Eq.~31!
is as important as Eq.~18!.
6-6
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It is instructive to check whether the Sudakov form fac
can compete with the NLO power correction. The Sudak
form factor arises when one performs a resummation o
the soft radiative gluons@5,6#. For the pion form factor, the
associated Sudakov form factor behaves like

expF2
8CF

b0
lnS Q2

L2D lnS ln~Q2/L2!

ln~k'
2 /L2!

D G
5S L2

Q2D (8CF /b0)ln[ln(Q2/L2)/ln(k'
2 /L2)]

, ~34!

wherek' is the transverse momentum of the loop mome
tum andL representsLQCD, and we have usedCF5 4

3 . It is
seen that the Sudakov form factor atk''L, where the
power expansion makes sense, decreases faster than
power suppression forQ2.L2. Therefore, theQ2 behavior
of the pion form factor at moderateQ2 is mainly controlled
by the power correction.

We have developed a power expansion scheme forg* p
→p. The NLO power correction to the pion form factor h
been calculated. By employing the form of the pion for
factor with NLO power correction, we then perform a lea
x2 analysis for the data to derive a phenomenological p
ys

07401
r
v
er

-

any

-
n

form factor. By comparing the phenomenological and t
theoretical form factors, we arrive at the conclusion that, d
to the nonperturbative QCD vacuum, the strong-coupl
constant should be identified as an effective coupling c
stant with a factorization scale equal to 1 GeV. In additio
the averaged fraction variable is located at 0.5 in agreem
with the AS model for the pion DA. The CZ model fails t
give a consistent explanation for the data, because its rela
factorization scale is in the range of 3 –7 GeV.

From the results of this paper and@25#, we see that the
power correction for exclusive processes is not negligi
and requires detailed investigations. Over past decades
have accumulated abundant data for exclusive proces
Most data are in the low-energy region, which is where
power correction plays an important role. The leading or
asymptotic contribution only gives information about th
hadronic wave function, the static property of QCD, wh
the power correction can reveal the dynamics of QCD.
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