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Abstract. We present numerical investigations of the transmission properties of electrons in a normal
quantum wire tangentially attached to a superconductor ring threaded by magnetic flux. A point scatterer
with a d—function potential is placed at node to model scattering effect. We find that the transmission
characteristics of electrons in this structure strongly depend on the normal or superconducting state of
the ring. The transmission probability as a function of the energy of incident electrons, in the case of a
superconductor ring threaded by one quantum magnetic flux, emerges one deep dip, imposed upon the
first broad bump in spectrum. This intrinsic conductance dip originates from the superconductor state
of the ring. When increasing the magnetic flux from one quantum magnetic flux to two, the spectrum
shifts toward higher energy region in the whole. This conductance dip accordingly shifts and appears in
the second bump. In the presence of a point-scatterer at the node, the spectrum is substantially modified.
Based on the condition of the formation of the standing wave functions in the ring and the broken of
the time-reserve symmetry of Schrodinger equation after switching magnetic flux, the characteristics of
transmission of electrons in this structure can be well understood.

PACS. 73.23.-b Electronic transport in mesoscopic systems — 73.21.Hb Quantum wires — 74.80.Fp Point

contact; SN and SNS junctions — 85.35.Ds Quantum interference devices

1 Introduction

In recent years the studies of the transport properties
of electrons in normal-conductor-superconductor meso-
scopic structures have attracted much attention. The es-
sential feature of mesoscopic physics is the phase coher-
ence of the charge carriers. In the normal mesoscopic
structures the transport of electrons retains phase coher-
ence over the phase coherent length L,. The supercon-
ducting state is characterized by a macroscopic wave func-
tion, retaining its coherence ideally over arbitrarily large
length. The “hybrid” systems with the join of both meso-
scopics and supercoductivity bring a plenty of novel phys-
ical phenomena [1-5]. Many interesting phenomena have
been revealed in various “hybrid” mesoscopic systems, for
instance, normal-metal-superconductor (NS) junction, or
S—I1-8,5—-N-S8,S—I-N, N—I—N-S§ junctions [6-11].
Many of the novel characteristics in the NS junction orig-
inate from the unusual reflection, known as Andreev re-
flection [12]: An electron excitation above the Fermi level
in the normal metal is reflected at the normal-metal-
superconductors (NS) interface as a hole excitation below
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the Fermi level. The missing charge of 2e is converted as
a supercurrent [5].

Much of the present technological effort in this area
is aimed at fabricating a direct contact between a super-
conducting film and two-dimensional electron gas (2DEG)
in a semiconductor heterostructure. The transport can be
made ballistic by employing a high-mobility 2DEG con-
fined in semiconductor heterostructures. Thus, such a “hy-
brid” system would open the interplay subjects of Andreev
reflection and mesoscopic effects [13-15].

The numerical investigations of the electron conduc-
tance in a network of wires, such as a quantum waveg-
uide containing an array of stubs, a quantum waveguide
topology containing multiply serial-connected mesoscopic
rings, or laterally connected dangling mesoscopic rings,
have been extensively achieved [16-19]. The conductance
as a function of the Fermi wave number of electrons de-
pends on the number of the components and also on physi-
cal parameters and geometric configuration of the system.
By controlling the related parameters, the conductance
spectrum can be artificially tailored.

In this paper we present the quantum mechanical cal-
culations on transmission properties of the “hybrid” quan-
tum network. The model device consists of a main normal



494

NorS

X1 X0=0 X2

8 -scattering
potential

Fig. 1. Schematic diagram of the considered model device. A
main conductor quantum wire is tangentially attached to a ring
which can be normal conductor or superconductor. A scatterer
with the §—function potential is placed at the junction x¢ = 0.
The circumference of the ring is L and the magnetic flux is
threaded through the ring. The local coordinate system for
each branch is indicated. The electrons are injected into the
main wire from the left side.

conductor wire tangentially attached to a superconduc-
tor ring and a scatterer with the —function potential is
placed at node to model scattering effect. We find that
the transmission properties of electrons in this network
strongly depend on the normal or superconducting state
of the ring, the geometric size of the ring, the magnetic
flux threading through the ring, and the strength of the
repulsive or attractive scattering potential. The impor-
tant finding is that for a superconductor ring pierced one
unit quantum magnetic flux, an intrinsic conductance dip
emerges in the transmission probability spectrum, im-
posed upon the first bump. This conductance dip origi-
nates from the superconductor state of the ring. Based on
physical considerations and discussions, the properties of
transportation of electrons in the device can be interpreted
well.

This paper is organized as follows: Section 2 presents
a brief description of the model device structure and the
necessary formulas used in the calculations. The numerical
results are presented in Section 3 with analyses. Finally,
the discussions and a brief summary are given in Section 4.

2 Model and formulas

The system considered here is a one-dimensional (1D)
semiconductor quantum wire tangentially attached to a
superconductor ring with a circumference L threading
magnetic flux @. As a model device, we assume that the
wire is narrow enough so that only electron motion in the
direction of the wires is of interest. A junction is formed
at xp = 0 and a scatterer with the d—function poten-
tial is placed at this node to model scattering effect. The
schematic of the model device is shown in Figure 1. A
small voltage is applied to the two ends of the main wire.

First consider the semiconductor wire. In order to
match the superconducting ring in the hybrid system, we
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prefer to employ Nambu space, i.e., the so-called electron-
hole space, for describing the motion of quasiparticles
in the normal conductor. The phase—coherent transport
of the electrons and holes is described by the following
equation:

Hy 0 un(x)) _ un(x)
( 0 —Hg) (UN(JU) =k on(z) )7 (1)
where uy(z) and vy (z) are the wave functions of the

quasiparticles (electrons and holes). The single-particle
Hamiltonian is

1

Hy = 2 2
0 2m7\]p32 MN, ()

where py represents the chemical potential of the 2DEG
and mj; is the effective electron mass in semiconductor,
for instance, in GaAs material, m} = 0.067mg, and myg
denotes the free electron mass. The wave function of quasi-
particles in the left main quantum wire separated at the
node can be expressed as

1\ . 1 ) 0\ .
Un(z1) = <0) elf+n A (0) e k2L B <1> elk-71,
(3)

where

2m; +F

ke = —N(‘;j ). (4)
Here E denotes the energy of incident electrons. In equa-
tion (3), the first term describes the incident electrons,
the second term corresponds to the electron reflection,
and the third term to the hole reflection from the junction.
The wave function in the exit of the main quantum wire
with the scattering boundary condition can be expressed
as

WR(QL'Q) = D1 (é) eik+gﬂ2 + D2 <?> eiik*z? (5)
The first term describes the electron transmission and the
second term corresponds to the hole transmission.

We now consider the superconductor ring. The
phase—coherent transport of the quasiparticle excita-
tions is described by the Bogoliubov-de Gennes equa-
tion (BdeG) [20]

(4 25) Gim) =2 () @

where u(x) and v(z) denote the wave functions of the
quasiparticles in superconductor. A(zx) is the pair poten-
tial. The single-particle Hamiltonian is

slp— SAP V@) s, ()

H =
0 2m0

where A and V(z) are the vector and scalar potentials,
respectively. pug is the chemical potential of superconduc-
tor. For simplicity, we neglect the self-consistency of the
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[Q%O(q¥%)2fus] -E Ao
det =0, (10)
A5 —[JTO(—H %)Q_MS] ~E
pair potential A, and assume that A(x) = Ay = const. in Solving equation (11), we can obtain four roots qf).

superconductor. When the wire width is small compared
to the superconducting coherence length & = hvg/(240)
(which represents the size of the Cooper pair), or when
the resistivity of the semiconductor is larger than the
normal resistivity of the superconductor, this approxima-
tion is appropriate. The magnetic flux is assumed to be
threaded into the superconducting ring. Thus, we have
A =(0,A40,0) and Ag = /27 R = $/L, R is the radius of
the ring. @ represents the magnetic flux threading through
the ring, & = BS, B is the magnitude of magnetic field
perpendicular to the ring plane, S is the surrounded area
by the ring.

In order for the convenience of calculations, we intro-
duce the local coordinate system for each circuit such that
the direction is along the electron-current direction and
the origin is taken at the intersection of the left branch
of the ring with the main wire, as shown in Figure 1, the
arrows indicate the assuming direction of electron-current
at each branch. In the local coordinate system, the BdeG
equation reads as follows:

See equation (8) above

where sign F corresponds to the left-half/right-half ring.
We assume that the solution takes a form of

(o) = (5) ©

and we substitute this formal solution into equation (8),
then we derive an equation for determining the wave num-
ber ¢

See equation (10) above

where we set V(x) = 0 for simplicity and 8 = 27P/po;
¢o = hc/e is the quantum magnetic flux. Thus, we obtain
an algebraic equation for determining ¢ as

0 0 -~
“42“’2[—2+1] 2§—F +
a —2q (qFL) T T
0 2 =2 A2l
[(qFL) —1—FE*+4|A*| =0. (11)

Here, we introduce ¢ = ¢/qr, E = E/us, Ay = Ao/ s,
and gp = /2mopus/h.

They correspond to the positive (q(j) ) or negative (g

group velocity of electronlike excitations, similarly, the
positive (q(_+)) or negative (q(__)) group velocity of holelike
excitations. The corresponding wave functions are

(£)
u(x) _ ai iq(ii)x
g )T
v(x) B
The wave functions are required to be normalized.
In order to avoid solving this fourth order algebraic
equation, we prefer to use another approach to determine

g. For the left-half superconducting ring, equation (8) can
be written explicitly as

(*))

(12)

{@ - LLV —1- E} ule) (z) + Al (z) = 0,
qr
(13a)

~. 0 ~ ~
{(q +—=)2 -1+ E] o) () — A0 (1) = 0.
qrL
(13b)
Equations (13a) and (13b) can be simply solved by use of

an expanded basis approach [21,22] (u, v, @ = qu, v = qv).
We can easily derive an eigen equation as

0 0 1 0
0 0 0 1
GEPelE] Ak 2 o
A * 0 20
A [ (qF—L)2+1 El 0 -7
u u
v ~ v
X u =4q u (14)
v 0}

For a given incident energy FE, we can obtain a set of
eigen wave numbers {&ii)} and the corresponding eigen
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wave functions

e @)N _ (N g,
Hen) " g ) T
vy (2) B
In the local coordinate system, the wave function of
quasiparticles at the left-half superconductor ring can be

expressed as
(+) o)
« (=)~
Wéleft)(x)zof)( + ) Lot )( - ) i7"z
(+) + (
8 ﬁ+
) 5

(15)

7Dz

+) (;E:)eia‘“i +c) ( (16a)
and for the right-half ring, it is
et (1) zC(j) (;g;>e~H)L _igw
+
e (;ﬁi) T
+

4o (;E—:)el—(j)ze@ﬂx,
re (;E_;)eﬁ( T (16)

where Ej(f)

= qi)/qp , T =qpxr, T =qpx’,and L = qpL.
The amplitude of coefficients, Ay, B_, C'(f), D1, and D5,
are determined by the continuity of the wave function and
the general Kirchhoft’s current law (KCL) [23,24]. The
general KCL requires that at each node the sum of the
quantities T;* Y*(IV + 27A/¢o)¢ from all the individual
branches must be zero. It follows

. [i%+ %;1 ()M()

>

Here we model the scattering at the junction by a
d—function potential

Ul)

Zi/f(ﬂfo) (17)
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l=3¢0

= Z5(x), (18)

where Z is the strength of the scattering potential. Thus,
we have

W (0) = 5" (0) = w(0), WG (0) = wg(L):
(19a)
1 dvg | 1 [awl™ awd™™7 1 dey
my dr  mg| dz dz Comiy dr
2
ﬁZWNa at xg = 0, (].gb)
because A1) (zy) = —A8M) (30) = &/L; they are can-

celled each other.
Finally, we can derive the following equation for deter-
mining the related coefficients in a matrix form:

See equation (20) above

where
(£) _ ~(+) N O‘(f)
ay (1—e )( +) |3 (21a)
B

)

_ it L (;%Ei>>; (21b)
)
)

+
~ /1
€ = (m s +1qFLZ)<O : (21c)
N
= (0
co=(— JrquLZ)<1 ; (21d)
N
mok . =~ (1
ez = ( TrOLfV+ —igrLZ) <0> (21e)

Here we introduced the dimensionless quantities: Ei =
ks/ar, Z = Z/(psL).

The reflection and transmission probabilities for the
incident electrons are related to the above mention
coefficients as

Ree = (|07 1/05P) AL 1% (22a)

= <|v<f>|/v<+>>|3,|2; (22b)
Tee = ([0{71/057) D1 (22¢)
The = ([0]/0$) Do (22d)
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Fig. 2. Typical spectra of transmission probabilities of elec-
trons as a function of the energy of incident electrons for dif-
ferent gr L. The quantum magnetic flux threading through the
ring is /7 = 1.0. The parameters used are: mpy = 0.067mo,
UN = s, Z = 0.0; (a) for grL = 19.97, (b) for qr L = 20.0,
and (c) for gp L = 20.27. All solid curves correspond to super-
conductor ring with ﬁo = 0.02 and dashed curves to normal
metal ring. Two curves in each plot have been separated ver-
tically by 0.7 for clarity. The marked ‘S’ indicates the intrinsic
conductance dip related to the superconductor state and ‘O’
indicates the dip belonging to the occasional lift of the degen-
erate eigen energy of electrons in the ring.

Here v(ii) is the velocity of quasiparticles. For this partic-

ular system, we have
Rhe = The.

Note that the probability conservation requires

Ree + Reh + Tee + The =1 (23)

3 Results and analyses

To reveal the character of this model device, we now cal-
culate the transmission probability T¢. as a function of en-
ergy (E/us) of the incident electrons for several values of
qr L and different magnetic flux. The results are displayed
in Figures 2 and 3. The parameters used in calculations
are: my = 0.067mg, uny = ps, without the scattering,
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Fig. 3. Same as Figure 2 except for 8/7 = 2.0. (a) for gr L =
19.97, (b) for gr L = 20.0m, and (c) for gpL = 20.27. All solid
curves correspond to the superconductor ring.

i.e., Z = 0: (a) for ¢pL = 19.97 and §/7 = 1.0; (b) for
grL = 20.0m and 6/7 = 1.0; and (c) for ¢pL = 20.27
and 6/m = 1.0. Figures 3(a—c) just are the analogous to
Figures 2(a—c) except for /7 = 2.0. For a superconduc-
tor loop, the magnetic flux @ threading through its hole
should be taken a series of discrete quantization values:
D/pso = n, ¢ps0 = hc/2e = ¢o/2 is the quantum flux for
Cooper pair; thus 0 = 278/¢pg = nm, n = 1,2,3... All
dashed curves correspond to the case of the normal metal
ring (i.e., Ag = 0), while all solid curves correspond to the

superconducting state of ring with Ay = Ag/us = 0.02.
Two curves in each plot have been separated by 0.7 for
clarity. The marked ‘S’ in Figure 2b indicates the conduc-
tance dip related to the supercoductor state and ‘O’ indi-
cates the conductance dip belonging to the occasional lift
of the original degenerate eigen energy of electrons in the
ring. It is clearly seen from these plots that for the normal
metal ring pierced through an exact quantization quan-
tum flux of 8/ = 1, or 2, the transmission probability
spectrum exhibits periodically oscillatory behavior. When
changing 6 /7 from 1.0 to 2.0, the spectrum only produces
a simple shift to right in the whole. When the ring becomes
the superconductor state and a unit quantum magnetic
flux is pierced its hole, a novel phenomenon takes place: A
narrow and deep conductance dip emerges, imposed upon
the first broad bump, as shown in Figures 2a, b, and ¢
(solid lines). It is worth emphasizing that this conduc-
tance dip is not observed in the next or any further bumps.
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Fig. 4. Evolution of spectra of transmission probabilities of electrons as a function of the energy of incident electrons with
the gradual increase of magnetic flux. The relevant parameters used are as follows: grL = 20.0m; Ao = 0.02; pun = ps;
my = 0.067mo; Z = 0.0; (a) /7 = 0.17; (b) /7 = 0.73; (c) /7 = 1.0; (d) /7 = 1.17; (e) 8/7 = 1.85; and (f)0/7 = 2.0. All

solid curves correspond to the superconductor ring with A¢p = 0.02 and dashed curves to the normal metal ring. Two curves in
each plot have been separately by 0.7 for clarity. The marked ‘S’ indicates the conductance dip related to the superconductor
state and ‘O’ indicates the dip belonging to the occasional lift of the degenerate eigen energy of electrons in the ring .

This is fully different from the conventional conductance
dip produced by the magnetic splitting of the degener-
ate eigen states in the ring; the conventional conductance
dips always emerge in every broad bump of the transmis-
sion probability spectrum. Therefore, hereafter we refer
this special conductance dip to the intrinsic conductance
dip strongly related to the superconductor state of ring.
The position of conductance dip strongly depends on the
geometrical size of the ring, circumference of L. When de-
creasing (or increasing) gp L from grL = 20.07, the con-
ductance dip shifts toward lower (see Fig. 2a) (or higher,
see Fig. 2¢) energy region. In addition, in comparison to
normal metal ring, with the exception of this intrinsic con-
ductance dip, there is another shallower conductance dip
occurred inside the first bump, which is marked by ‘O’ in
Figure 2b for the recognition. We also employ these marks
in other figures. The occurrence of this conductance dip is
occasional, we will discuss it in the next paragraph for de-
tails. This occasional conductance dip differs completely
from the conventionally magnetic producing dip appear-
ing in every bump. When introducing a small perturba-
tion in gp L or @, this dip can disappear. When increasing
0/m from 1.0 to 2.0, the profile of the spectrum is var-
ied as follows: The zero transmission at zero energy point

in spectrum converts into a unity transmission peak (see,
Figs. 2b and 3b), accordingly, the spectrum looks like to
do a simple shift to right in the whole. Consequently, the
dip now appears in the second bump owing to this whole
shift.

To sufficiently reveal the physical origin of this intrin-
sic transmission dip, we first artificially switch much weak
magnetic flux threading through the ring and then grad-
ually increase the flux step by step. We carefully envisage
the evolution of the transmission probability spectra of
electrons. The results are displayed in Figure 4. In or-
der to present a full insight, we plot all the figures from
the negative energy (for the holelike quasiparticles) to the
positive energy (for the electronlike quasiparticles). The
relevant parameters used in calculations are as follows:
grL = 20.0m; uy = ps; my = 0.067mgy; Z = 0.0; (a)
0/m =0.17; (b) /7 = 0.73; (¢) /7 = 1.0; (d) §/7 = 1.17;
(e) 8/m = 1.85; and (f)d/m = 2.0. All solid curves cor-
respond to the superconductor ring with Ay = 0.02 and
dashed curves to the normal metal ring. Two curves in
each plot have been separated by 0.7 for clarity. At zero
flux, the conductance spectra for both normal and super-
conductor rings exhibit almost the same behavior, they
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display conventionally periodical oscillations. As well dis-
cussed in references [16-19], T, unity peaks in spectra
are completely determined by the eigenstates of electrons
survived in the ring. At zero flux or integer multiple of
quantum magnetic flux, the eigenstate of the electrons
with clockwise and counterclockwise travels is two—fold
degenerate, consequently, the conductance spectrum al-
most retains similar. When we increase the flux by one
(two) quantum magnetic flux, the conductance spectrum
simply shifts toward higher energy region by one (two)
period 0.1 (0.2) for electronlike quasiparticles (E > 0) (or
lower energy region for holelike quasiparticles (E < 0))
in the whole, as seen in Figures 4c and f. However, when
the flux threading through the loop is non-integer mul-
tiple of the quantum magnetic flux, a narrow and deep
conductance dip occurs inside every broad bump. Thus,
each originally complete bump now splits into two com-
ponents separated by a deep conductance dip, as shown
in Figures 4a, b, d, and e (dashed lines). As the magnetic-
field breaks the time-reversal symmetry of the Schrédinger
equation, therefore, the degeneracy of the original two-fold
degenerate-eigenstates of electrons, corresponding to the
clockwise and counterclockwise travels of electrons in the
ring, now is lifted. It leads to the splitting of the spec-
trum. Therefore, when switching small magnetic flux, for
instance, §/m = 0.17, this trivial magnetic splitting in
spectrum takes place in both cases of normal and super-
conductor rings. Every bump splits into two components.
However, it is noted that the central part of spectrum
around the zero energy point now occurs a substantial
change (see Fig. 4a). For the normal ring, there exists
a conventional conductance dip belonging to the mag-
netic splitting of the degenerate eigen states, as shown
by the dashed line in Figure 4a, on the contrary, in the
case of superconductor ring, this conductance dip com-
pletely disappears, replaced by a unity peak. Meanwhile,
two narrow and deep conductance dips, marked by ‘S’,
are brought about and symmetrically located at two sides
of the zero energy point, as shown by the solid line in
Figure 4a. We may have some evidences to believe that
these two conductance dips definitely originate from the
superconductor state. Their energy positions Eg/ug are

+0.01914, very close to Ay = 0.02. As increasing Ay, the
absolute values of their energy positions are increased. For
instance, |Es/us| = 0.03818,0.04776,0.05737 correspond

to Ag = 0.04,0.05,0.06, respectively, very close to their
relevant pair potential. The second evidence is that this
intrinsic conductance dip only occurs in the first bump,
numbering from zero energy point. It fully differs from
the conductance dip related to the usually magnetic split-
ting of spectrum, appearing in every bump. In contrast,
this intrinsic conductance dip only lies in the central bump
now. The third evidence is that when the energy of the in-
cident electrons can be comparable with Ay, the coupling
effect owing to the presence of pair potential may lead to
a phase compensation of the wave function, thus, the nor-
mal conductance dip produced the magnetic splitting now
is converted into a unity peak. When increasing the flux,
from 6/7 = 0.17 to 0.73, the spectrum over the positive
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energy range shifts to right in the whole. There exist two
conductance dips in the first bump of the spectrum now,
one broad dip corresponds to the magnetic splitting of the
spectrum, in comparison with the spectrum of the normal
ring. The other conductance dip with much narrow width,
marked by ‘S’, should be ascribed to the superconductor
state. This intrinsic conductance dip is developed from ‘S’
dip of Figure 4a. The original central bump containing
the ‘S’ dip now shifts in the whole toward higher energy
region and becomes the first bump in Figure 4b. As contin-
uously enhancing /7, arriving at 1.0, one unit quantum
magnetic flux (see, Fig. 4c), the eigen states are recovered
two fold degeneracy. Thus, the magnetic spitting of spec-
trum disappears for the normal ring and the corresponding
spectrum looks like to make a shift in the whole toward
higher energy region by one period 0.1 for the electronlike
quasiparticles, as shown by the dashed line in Figure 4c.
However, for the superconductor ring, two deep conduc-
tance dips, marked by ‘S’ and ‘O’, occur in the first bump
(see Fig. 4c, solid line). The occurrence of ‘O’ conductance
dip is produced by the influence of the pair potential, lead-
ing to the occasional splitting of spectrum. The survival
of this dip is relatively unstable and much sensitive to the
weak fluctuation of the parameters of structure. For in-
stance, by introducing a small perturbation of gpL or 6 ,
this dip becomes much shallow or can be eliminated com-
pletely. The other deep dip, marked by ‘S’, is related to
the nature of the superconductor states, which is relatively
robust and stable to the perturbation of the parameters
of system, only sensitive to the phase transition between
the normal and superconductor states. Consequently, we
easily judge and distinguish them: Which one is ‘O’ or ‘S’
dip. When we further continuously increase the flux to-
ward 0/ = 2.0, the spectrum shifts to higher energy re-
gion in the whole, and the intrinsic dip always is survived
in the first bump, as shown in Figures 4d—f. Finally, at
0/m = 2.0, the conductance dip associated with the mag-
netic splitting of spectrum disappears again. The intrinsic
dip now lies on the second bump, numbering from the zero
energy point, owing to the whole shift of the spectrum.

These results can be well interpreted based on the fol-
lowing physical discussions. For the normal metal ring,
when an electron with the energy F is injected into a ring
of the circumference L, at zero flux, the condition of the

occurrence of the standing wave is el4nl = ei2n7m — 1

where n is an integer number and ¢, /qr = /1 + E,/ps.
When we choose L = 20.0m/qr and the wave number
of the injected electron just is ¢ = gp, (i.e., E = 0),
therefore, we have qL. = qpL = 20.07, a standing wave
is formed now; electrons always are favorable to reside in
this eigen state of the ring. Since at zero flux, the eigen
state of +¢,, associated with E,, is two-fold degenerate; for
each E, there are two currents flowing through the ring:
one is clockwise and other is counterclockwise. Both they
have the same magnitude, therefore, the net current flow-
ing through the ring vanishes. Apparently, the incident
electrons do not feel the existence of the ring at zero flux.
Therefore, T.. should be equal unity. However, as soon
as switching any small flux, the magnetic field breaks the
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time-reverse symmetry of the Schrédinger equation, thus,
the originally two-fold degenerate eigen states now are
lifted. It leads to the clockwise and counterclockwise cur-
rents in the ring can not be cancelled with each other and
it results in a net current flowing through the ring. Con-
sequently, T.. becomes zero, a unity-depth dip emerges at
zero energy point for any weak flux, as seen in the dashed
line in Figure 4a.

We now turn to discuss the situation of the supercon-
ducting ring. The difference between two cases lies in the
fact that the superconductor possesses a finite pair po-
tential of Ag. Thus, the quasiparticles — electronlike and
holelike — are coupled each other by this pair potential.
The dispersion relation of electronlike quasiparticles in su-
perconductor at zero magnetic flux is given by

a/ar = 1+ /B — 12l /pis.

Consequently, for a given ¢, there exist two values of
energy +Fg. Only when ¢ is real, the state corre-
sponds to non-decaying state. The condition of the cre-
ation of the eigen states still requires ¢L = 2nw. For
a given L = 20.0n/qr and gL = 20.0m, there exist
two eigen states with the energies +Fg, which satisfy

\/1+ V(EZ —|A0?)/ps = q/qr = 1. At zero flux, for

each |Eg|, there exist clockwise and counterclockwise cur-
rents corresponding to +q. They are cancelled with each
other, leading to zero net current in the ring, thus, T..
takes unity. However, when switching small magnetic flux,
owing to the broken of the time-reverse symmetry of the
Schrodinger equation, the originally two-fold degenerate
states associated with 4¢q are lifted. It causes a net per-
sistent current flowing in the ring. Thus, two dips in spec-
trum should emerge at the symmetric energy positions
with respect to zero energy point, +FEg, as shown by
solid curve in Figure 4a. When gL deviates from 20.0m,
for instance, grL = 19.97 (or 20.27), in order to match
the condition of the formation of the standing waves in
the ring, ¢L = 2nm, it needs to compensate (or extract)
a deficit (or extra quantity) of the phase and requires
q/qr = 20.0/19.9 > 1 (or q/qr = 20.0/20.2 < 1). Thus,
the first zero point of T.. should appear at ¢ > gr (or
q < qr) energy position, as shown in Figure 2a (or Fig. 2¢).
Therefore, the first conductance bump shifts to right or
left, accordingly. This intrinsic conductance dip then shifts
to left (see, Fig. 2a) (or right, see Fig. 2c), comparing to
the case of gp L = 20.07 (see, Fig. 2b) visually.

We now study the effect of the scatterer placed at the
node on the transmission spectrum. The scattering effect
is modelled by a d—function potential with the strength
of Z. Spectra of transmission probabilities of electrons for
different strengths of repulsive (Z > 0) (attractive Z < 0)
scattering potentials are displayed in Figure 5. The pa-
rameters are: uy = pg; grL = 20.2m; my = 0.067mo;

0/7 = 1.0. (a) for Z = +0.05; (b) for Z = +0.08; and
(c) for Z = 40.10. All solid curves correspond to the su-

perconductor ring with ﬁo = 0.02 and dashed curves to
the normal ring. Two curves in each plot have been sepa-
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Fig. 5. Spectra of transmission probabilities of electrons for
different strengths of repulsive (Z > 0) scattering potential.
The parameters are: un = ps; qrL = 20.0m; my = 0.067mo;
0/m = 1.0E. (a) for Z = 40.05; (b) for Z = +0.08; and (c) for
Z= +0.10._All solid curves correspond to the superconductor
ring with Ap = 0.02 and dashed curves to the normal ring.
Two curves in every plot have been separated by 0.7 for clarity.

rately by 0.7 for clarity. The magnified plots of transmis-
sion probability spectra around the intrinsic dip are shown
in Figure 6: (a2) for Z = £0.05; (b) for Z = £0.08; and (c)
for Z = 4+0.10. Two curves have been separated vertically
for clarity. It is clearly seen from these curves that the
spectra exhibit saw-tooth oscillations with the same pe-
riod as that without scatterer. The intrinsic conductance
dip can be observed in all plots. The energy position of
the conductance dip is not affected with the change of the
scattering strength and the type of scattering potential: re-
pulsive or attractive potential, as shown in Figures 6 (a—c).
The effect of the scattering on the spectrum only leads to
a decrease of T,. magnitude with the increase |Z|. Mean-
while, when we replace the repulsive scattering potential
by an attractive potential, it is found that the inclined
direction of each bump in the spectra is reversed.

4 Discussions and summary

For simplicity, we employ a d—function potential with
a single parameter Z to model the scattering effect at
the junction phenomenologically. If the junction possesses
some spatial structures, this §—function scattering poten-
tial still keeps effective. Referring to our previous paper,
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Fig. 6. Magnified plot of transmission probability spectra
around the intrinsic dip for different strengths of repulsive
(Z > 0) (attractive Z < 0) scattering potential; (a) for
Z = 40.05; (b) for Z = +0.08; and (c) for Z = =+0.10.
Two curves have been separated for clarity.

[25] we can introduce impedance factors for geometric and
potential scatterers and develop a recursive algorithm. We
find that the impedance factor Z of a complicated side-
branch structure can be evaluated from impedance fac-
tors of the individual parts contained in the structure
as in the classical resistance-network calculation. Finally,
the complex junction structures can be stimulated by a
d—function potential after introducing the corresponding
impedance factor as the potential strength.

In summary, we have presented numerical investiga-
tions of the transmission properties of electrons in the
model device which consists of a main quantum wire tan-
gentially attached to a ring. The ring can be normal metal
or superconductor, and the magnetic flux threads through
this ring, as well as a scatterer is placed at the node. We
display the transmission probability spectra as a function
of the energy of the incident electron for various geomet-
ric and physical parameters. We find that the spectra
strongly depend on the normal or superconductor state
of ring. When introducing unit quantum magnetic flux,
for the normal ring, the transmission probability spectra
display usually periodical oscillations. However, for the
superconductor ring, an intrinsic conductance dip occurs,
imposed upon the first bump of the spectrum. This con-
ductance dip always is survived in the spectra, regardless
of the change of magnetic flux, the geometric size of the
ring, and the scattering effect. The energy position of this
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dip depends on the circumference of ring and magnetic
flux. When increasing the magnetic flux, from 6/7 = 1.0
to 2.0, the spectrum almost remains similar pattern ex-
cept for a simple shift toward higher energy region in the
whole. This intrinsic conductance dip is relatively robust
and stable to the perturbation of physical and geometric
parameters of system, only sensitive to the phase tran-
sition between the normal and superconductor states. In
the presence of the scatterer with the d—function potential
at the node, the spectra become periodically modulated
function with the inclined bump unit, and the intrinsic
conductance dip still is survived. The energy position of
the conductance dip is not affected with the change of the
scattering strength, regardless of repulsive or attractive
potential. When changing the the type of scattering po-
tential, from repulsive to attractive, the inclined direction
of each unit bump in the spectra is reversed. Based on
the condition of the formation of the standing waves in
the ring and the consideration of the broken of the time-
reverse symmetry of the Schrédinger equation after intro-
ducing any small magnetic flux, these main findings can be
interpreted well. We also reveal the nature of this intrin-
sic conductance dip and its origin, from the studies of the
detailed evolution of spectra with the gradual increase of
magnetic flux. We provide some appropriate supports to
confirm the fact that the intrinsic conductance dip indeed
originates from the superconductor state.
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