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Abstract

A neural fuzzy system learning with fuzzy training data is proposed in this study. The system is able to process and learn
numerical information as well as word information. At first, we propose a basic structure of five-layered neural network
for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and
membership functions for fuzzy inference. The inputs, outputs, and weights of the proposed network can be fuzzy numbers
of any shape. Also they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based
on interval arithmetics, a fuzzy supervised learning algorithm is developed for the proposed system. It extends the normal
supervised learning techniques to the learning problems where only word teaching signals are available. The fuzzy supervised
learning scheme can train the proposed system with desired fuzzy input—output pairs. An experimental system is constructed
to illustrate the performance and applicability of the proposed scheme. (© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Some observations obtained from a system are pre-
cise, while some cannot be measured at all. Namely,
two kinds of information are available. One is numer-
ical information from measuring instruments and the
other is word information from human experts. How-
ever, some of data obtained in this manner are hybrid;
that is, their components are not homogeneous but a
blend of precise and fuzzy information.

Neural networks adopt numerical computations
with fault-tolerance, massively parallel computing,
and trainable properties. However, numerical quan-
tities evidently suffer from a lack of representation
power. Therefore, it is useful for neural networks to be
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capable of symbolic processing. Most learning meth-
ods in neural networks are designed for real vectors.
There are many applications that the information can-
not be represented meaningfully or measured directly
as real vectors. That is, we have to deal with fuzzy in-
formation in the learning process of neural networks.
Fuzzy set is a good representation form for linguis-
tic data. Therefore, combining neural networks with
fuzzy set could combine the advantages of symbolic
and numerical processing. In this study, we propose
a new model of neural fuzzy system that can process
the hybrid of numerical and fuzzy information. The
main task is to develop a fuzzy supervised learning
algorithm for the proposed neural fuzzy system.
Most of the supervised learning methods of neu-
ral networks, for example the perception [1], the
backpropagation (BP) algorithm [2,3], process only
numerical data. Some approaches have been proposed
to process linguistic information with fuzzy inputs,
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fuzzy outputs, or fuzzy weights [4—7]. The common
points of these approaches are summarized as fol-
lows: (1) The a-level sets of fuzzy numbers represent
linguistic inputs, linguistic outputs, fuzzy weights, or
fuzzy biases. (2) The operations in neural network are
performed by using interval arithmetic operations for
o-level sets. (3) Fuzzy numbers are propagated
through neural networks. (4) Fuzzy weights are usu-
ally triangular or trapezoidal fuzzy numbers. Because
the real number arithmetic operations in the traditional
neural networks are extended to interval arithmetic
operations for a-level sets in the above fuzzified net-
works, the computations become complex (e.g. multi-
plication of interval) and time-consuming. Moreover,
since the fuzzy numbers are propagated through the
whole neural networks, the time of computations and
the required memory capacities are 2/ times of those
in the traditional neural networks, where / represents
the number of a-level sets. In this study, we attack
this problem by allowing numerical signals to flow in
the proposed network internally and reach the same
purpose of processing fuzzy numbers.

The objective of this study is to explore the
approach to supervised learning of neural fuzzy sys-
tems which receive only word teaching signals. At
first, we propose a basic structure of five-layered feed-
forward network for the network realization of a fuzzy
inference system. This connectionist structure can
house fuzzy logic rules and membership functions,
and perform fuzzy inference. We use o-level sets of
fuzzy numbers to represent word information. The
inputs, outputs, and weights of the proposed network
can be fuzzy numbers of any shape. Since numerical
values can be represented by fuzzy singletons, the
proposed system can in fact process and learn hy-
brid of fuzzy numbers and numerical numbers. Based
on interval arithmetics, a fuzzy supervised learning
scheme is developed for the proposed system. It gen-
eralizes the normal supervised learning techniques
to the learning problems where only word teaching
signals are available. The fuzzy supervised learning
scheme can train the proposed network with desired
fuzzy input—output pairs (or, equivalently, desired
fuzzy if-then rules) represented by fuzzy numbers
instead of numerical values.

This study is organized as follows: Section 2
describes the fundamental properties and opera-
tions of fuzzy numbers and their a-level sets. These

operations and properties will be used in later deriva-
tion. In Section 3, the basic structure of our neural
fuzzy system is proposed. A fuzzy supervised learn-
ing algorithm for the proposed system is presented in
Section 4. The learning algorithm contains structure
and parameter learning phases. In Section 5, simu-
lations are performed to illustrate the performance
of the proposed techniques. Finally, conclusions are
summarized in the last section.

2. Representation of word information

In our model, we use o-level sets of fuzzy numbers
(i.e., convex and normal fuzzy sets), as shown in Fig.
1, to represent word information due to their several
good properties such as closeness and good represen-
tation form. In using a-level sets, we consider a fuzzy
number to be an extension of the concept of the inter-
val of confidence [9]. Instead of considering the inter-
val of confidence at one unique level, it is considered
at several levels and more generally at all levels from
0 to 1. Namely, the level of presumption o, o € [0, 1]
gives an interval of confidence 4, = [\, a{'], which
is a monotonical decreasing function of «; that is,

(OC, > O‘)*’(Aa’ C 4,), (1)
or
o > o) — ([a,a"] C [d*, ")), 2)

for every a, o’ € [0,1],

membership grade membership grade

(a) Xy (b) Xy

Fig. 1. Representations of fuzzy number. (a) a-level sets of fuzzy
number. (b) discretized (pointwise) membership function.
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2.1. Basic definitions of fuzzy numbers

Some notations and basic definitions are given in
this subsection. We use the uppercase letter to repre-
sent a fuzzy set and the lowercase letter to represent
a real number.

Let x be an element in a universe of discourse X.
A fuzzy set, P, is defined by a membership function,

,UP(X), as
up:x —[0,1]. 3)

When X is continuum rather than a countable or finite
set, the fuzzy set P is represented as

P= [ o “)
X
where x € X. When X is a countable or finite set,

pP= Z up(x;)/x;, (5)

where x; € X. We call the form in the above equation
as a discretized or pointwise membership function.

A fuzzy set, P, is normal when its membership
function, pp(x), satisfies

max pp(x) = 1. (6)

A fuzzy set is convex if and only if each of its
o-level sets is a convex set. Equivalently, we may say
that a fuzzy set P is convex if and only if

pp(Zx1 + (1 = A)xz) = min[up(xy), up(x2)], (7

where 0<A<1, x;€X, x, e X
The a-level set of a fuzzy set P, B, is defined by

Py = {x|up(x) = o}, ®)

where 0<a<1, xeX.

A fuzzy set P is convex if and only if every B, is
convex; that is, P, is a closed interval of R. It can be
represented by

p, =[P”,P{"], ©)

where o € [0, 1]. A convex and normalized fuzzy set
whose membership function is piecewise continuous
is called a fuzzy number. Thus, a fuzzy number can be
considered as containing the real numbers within some
interval to varying degrees. Namely, a fuzzy number P

may be decomposed into its a-level set, P,, according
to the resolution identity theorem [11] as follows:

P= U 0P, = Uoc[pﬁ”,pz

:/ sup orup, (x)/x. (10)

X

2.2. Basic operations of fuzzy numbers

In this subsection, we introduce some basic op-
erations of wa-level sets of fuzzy numbers. These
operations will be used in the derivation of our model
in the following section. More detailed operations of
fuzzy numbers can be found in [9].

Addition. Let 4 and B be two fuzzy numbers and
A, and B, their a-level sets, 4= J, a4, =], oc[a(y)
a1, B=,oB, =, a[b",b5"]. Then we can
write

A (+)By = [a, ()6, 58]

=1\ + b, d" + b1, (11)

where o« €[0, 1].

Subtraction. The definition of addition can be
extended to the definition of subtraction as follows.

A(=)B, = [a, a1 (—)[BY", 5]

_ [a(loc) _ bgoc)’a(zd) _ b(lfl)]’ (12)
where o« € [0, 1].
Multiplication by an Ordinary Number. Let 4 be a

fuzzy number in R and & an ordinary number & € R.
We have

o {[kaﬁ“’,kag“)], ifk >0
A, =

13
[ka$”, ka\], if k < 0. (13

Multiplication. Here we consider multiplication of
fuzzy numbers in . Consider two fuzzy numbers 4
and B in R*. For the level a of presumption, we have

A,()By = [a\", a1, 551

=[a” - b, af" - byV]. (14)
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The reader is referred to [9] for the general case that
A and B are fuzzy numbers in R.

The operations on fuzzy numbers can be performed
on the basis of the extension principle. Let G(4, B)
be an operation on fuzzy numbers 4 and B by giv-
ing a function g(x, y). The membership function of
G(A4, B), 1c,p)(2), is obtained by extension princi-
ple as follows:

UG4,B)(2)
_ SUP  yyeq— () (Ha(X) A (1)) if g7'(z) # 0,
0 if g7'(z) =0,

(15)

where x€A, yeB, z€Z.

If G(-) is addition, subtraction, or multiplication as
above, the result can be easily obtained by using the
a-level sets of 4 and B as above operations. It can be
proved easily that these operations based on a-level
sets and the extension principle are equivalent [9].
When G(-) is one of the operations given above, if 4
and B are fuzzy numbers in &, then G(4, B) is also a
fuzzy number.

Difference. We can compute the difference between
fuzzy numbers 4 and B by

. 1 . Y ) )
diff (4,B) = 52:[@1 BV (@ — ).

(16)

Fuzzification. Fuzzification is a mapping from an ob-
served input space to fuzzy sets. Namely, Fuzzifica-
tion is an operation that obtains the membership grade
of x, up(x), to fuzzy number P. The values pp(x) can
be easily obtained by using the following procedure.
In this procedure, the notation 4 represents the number
of quantized membership grade.

Procedure: Fuzzification search
Inputs. The order set S = {p(lo), p(ll/h), p?/’”,...,pﬁ”,

1 0
p(2 ),...,pg )},x.

Output. 4.

Step 1. Use binary search or sequential search
to find the correct position in S; that
is, to find p@ and p® such that
PO<x< p®), p@, pb) s

membership grade

0.0

pla)> p® X,

Fig. 2. Illustration of the fuzzification search procedure (the value
of ¢ is equal to &).

Step 2. 4=a+ (x — p)b — a)/(p® — p@).

Step 3. Output &, and stop.

After this recursive calculation, the value & is equal
to the value of 1,(x) as shown in Fig. 2. If we use
the binary search method, the processing time with
this procedure is proportional to log, 4. If we use the
sequential search method, the processing time is O(%).
Therefore, performing this procedure is very easy and
not time consuming.

Defuzzification. In many practical applications such
as control and classification, numerical (crisp) data
are required. That is, it is essential to transform a
fuzzy number to a numerical value. The process map-
ping a fuzzy number into a nonfuzzy number is called
“defuzzification”. Various defuzzification strategies
have been suggested in [12,13]. In this subsection, we
describe two methods (MOM, COA) that transform a
fuzzy number in the form of a-level sets into a crisp
value.

o Mean of maximum method (MOM)

The mean of maximum method (MOM) generates
a crisp value by averaging the support values whose
membership values reach the maximum. For a dis-
crete universe of discourse, this is calculated based on
membership function by

Z_ﬁ-:l Zj
S a7)

where / is the number of quantized z values which
reach their maximum membership value.

zy) =
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For a fuzzy number Z in the form of a-level sets, the
defuzzification method can be expressed according to
Eq. (17) as

(le) +Z(l))
2

where defuzzifier represents a defuzzification opera-
tion.
o Center of area method (COA)

Assuming that a fuzzy number with a pointwise
membership u, has been produced, the center of area
method calculates the center of gravity of the distri-
bution for the nonfuzzy value. Assuming a discrete
universe of discourse, we have

i Xikz(x))
Z_;l:1 ,uZ(xj) ’
For a fuzzy number Z with the representation

form of a-level sets, it can be expressed according to
Eq. (19) as

defuzzifier(Z) = zy = (18)

(19)

>,z +z “))

defuzzifier(Z) = zy = 23 o

(20)

3. Basic structure of the neural fuzzy system

In this section, we construct an architecture of
neural fuzzy system that can process fuzzy and
crisp information. Fig. 3 shows the proposed net-
work structure which has a total of five layers. This
five-layered connectionist structure performs fuzzy
inference effectively. We shall describe the signal
propagation in the proposed network layer by layer
following the arrow directions shown in Fig. 3. This
is done by defining the transfer function of a node in
each layer. Signal may flow in the reserve direction in
the learning process as we shall discuss in the follow-
ing sections. In the following description, we shall
consider the case of single output node for clarity. It
can be easily extended to the case of multiple output
nodes. A typical neural network consists of nodes,
each of which has some finite fan-in of connections
represented by weight values from other nodes and
fan-out of connections to other nodes (see Fig. 4).
The notations u and U represent the input crisp and
fuzzy numbers of the node, respectively. The nota-
tions o and O represent, respectively, the output crisp

é Layer 5 : Merging

Defuzzification

Layer 4 : MAX

Layer 3 : MIN

Layer 2 : Matching
Fuzzification

cee Layer 1 : Input

Fig. 3. The five-layered architecture of the proposed neural fuzzy
system.

k .
o; (i)

PN

Ut Ut ... Us
(W) (uds ) ()

Fig. 4. Basic structure of a node in the proposed neural fuzzy
system.

and fuzzy numbers. The superscript in the following
formulas indicates the layer number.

Layer 1 (Input). If the input is a fuzzy number, each
node in this layer only transmits input fuzzy number
X; to the next layer directly. No computation is done
in this layer. That is,

0! = oo 031 = X = Uoc[xfi”, 21 @y

o
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If the input is a crisp number x;, it can be viewed as a
fuzzy singleton, i.e.,

0[1 U 06[01(“)9 1(1)] U oo, xi. (22)

o o

Note that there is no weight to be adjusted in this layer.

Layer 2 (Matching/Fuzzification). Each node in this
layer has exactly one input from some input linguistic
node, and feeds its output to rule node(s). For each
layer-2 node, the input is a fuzzy number and the out-
put is a numerical number. The weight in this layer
is a fuzzy number W.X;;. The index i, j means the jth
term of the ith input linguistic variable X;. The trans-
fer function of each layer-2 node is,

1 o
[ =diff (WX, Up) = 52[(“1(;? 2Oy

+(wxy — up ), (23)

of = a(f}) = e VP, (24)

where o is the variance of the activation function a(-).
It is a constant given in advance. The activation func-
tion a(-) is a nonnegative, monotonically decreasing
function of ,-12» €[0,00], and a(0) is equal to 1. For
example, a(-) can also be given alternatively as

2
of = a(f3) =r', (25)
where 0<r<1, or
2
0%,' = a(fiZj) = m, (26)

where 1 is a nonnegative constant.

Layer 3 (MIN). The input and output of the node in
this layer are both numerical. The links in this layer
perform precondition matching of fuzzy logic rules.
Hence, the rule nodes should perform fuzzy AND
operation. The most commonly used fuzzy AND op-
erations are intersection and algebraic product [13].
If intersection is used, we have

0} = min(u3,u3,...,1). (27)

On the other hand, if algebraic product is used, we
have

0} =3 ...u. (28)

Similar to layer one, there is no weight to be adjusted
in this layer.

Layer 4 (MAX). The nodes in this layer should per-
form fuzzy OR operation to integrate the fired rules
which have the same consequent. The most commonly
used fuzzy OR operations are union and bounded sum
[13]. If the union operation is used in this model, we
have

0? = max(u?,u‘z‘,...,ui). (29)

If the bounded sum is used, we have
of =min(1,uf +uj + -+ u}). (30)

The output and input of each layer-4 node are both
numerical values.

Layer 5 (Merging/Defuzzification). In this layer,
each node has a fuzzy weight WY;. There are two
kinds of operations in this layer. When we need a
fuzzy output Y, the following formula is executed to
perform a “merging” action:

5
W WY;
05 = | | o™, 03] = v = 2 i WYy
’ 5
LzJ 2 4

Namely,

Y = U 780 Y= alwyly wyl,

o

€29)

(32)
where
5.0 ()
y(loc) _ Zi ul W-;}il , (33)
DR’
5.,
ygoc) Zi U; W{IQ (34)
Do

From the above description we observe that only
layer-1 inputs and layer-5 outputs of the proposed net-
work are fuzzy numbers (in the form of a-level sets).
Real numbers are propagated internally from layer two
to layer four in the network. This makes the opera-
tions in our proposed network less time-consuming as
compared to the neural networks that can also pro-
cess fuzzy input/output data but require fuzzy signals
flowing in it.
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4. Supervised learning of the basic neural fuzzy
system

In this section, we shall derive a supervised learn-
ing algorithm for the structure of the proposed neu-
ral fuzzy system. This algorithm is applicable to the
situations that pairs of input—output training data are
available.

In general, the fuzzy rules for training are

Rpl IF)C] iSXpl
THEN y is Y,

and...and x,is X,

where p=1,2,...,m, and m is the total number of
training rules. These fuzzy if-then rules can be viewed
as the fuzzy input—output pairs, (X,1, X2, ..., Xpn; ¥p),
where p=1,2,...,m. If the input or output are crisp
data, the corresponding fuzzy elements in the training
pairs become numerical elements.

Before the learning of the neural fuzzy system,
an initial network structure is first constructed. Then
during the learning process, some nodes and links in
the initial network are deleted or combined to form
the final structure of the network. At first, the number
of input (output) nodes is set equal to the number of
input (output) linguistic variables. The number of
nodes in the second layer is decided by the number
of fuzzy partitions of each input linguistic variable x;,
|T(x;)|, which must be assigned by the user. The fuzzy
weights WX;; in layer two are initialized randomly
as fuzzy numbers. One better way is to distribute the
initial fuzzy weights evenly on the interested domain
of the corresponding input linguistic variable. As for
layer three of the initial network, there are [ [, [7(x;)|
rule nodes with the inputs of each rule node coming
from one possible combination of the terms of input
linguistic variables under the constraint that only one
term in a term set can be a rule node’s input. This
gives the preconditions of initial fuzzy rules.

Finally, let us consider the structure of layer four
in the initial network. This is equivalent to determin-
ing the consequents of initial fuzzy rules. To do the
initialization, the number of fuzzy partitions of the
output linguistic variable y, |T(y)|, must be given in
advance. The initial fuzzy weights WY; in layer four
are distributed evenly on the output space. We let the
layer-5 nodes to perform up-down transmission. In the
up-down transmission, the desired outputs are pumped

into the network from its output side and the opera-
tions in layer five are the same as those in layer two.
Signals from both external sides of the network can
thus reach the output points of term nodes at layer
two and layer four. Since the outputs of term nodes
at layer two can be transmitted to rule nodes through
the initial architecture of layer-3 links, we can obtain
the output (firing strength) of each rule node. Based
on the firing strengths of rule nodes (o} ) and the out-
puts of term nodes at layer four (0;‘), we can de-
cide the correct consequent links of each rule node by
unsupervised (self-organized) learning method [21].
The links at layer four are fully connected initially.
We denote the weight on the link from the ith rule
node to the jth output term node as w;;. The Hebbian
learning law is used to update these weights for each
training data set. The learning rule is described as
Aw;j = cojo?, (35)
where c is a positive constant. After the learning, only
one link with the biggest weight in the fan-out of a
layer-3 (rule) node is remained as its consequent.

With the above initialization process, the network is
ready for learning. We shall next propose a two-phase
supervised learning algorithm for our five-layered neu-
ral fuzzy system.

4.1. Parameter learning phase

A gradient-descent-based backpropagation algo-
rithm [21,22] is employed to adjust fuzzy weights in
layer two and layer four of the proposed network. If
the FCLO is used, the error function to be minimized
is
e=diff (Y,D)

! @) _ ) @ _
:5%]w17d1f+w2fd2ﬂ, (36)

where Y = J, of y{“), yg“)] is the current fuzzy output
and D= |J, a[d\”,d"] s the desired fuzzy output. If
the FCNO is used, the error function to be minimized
is

1
e= (), (37)

where y is the current output and d is the desired
output. We assume that W = J, a[w'™,w{"] is the
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adjustable fuzzy parameter in layer two and layer four.
Then to update fuzzy weights means to update the
parameters wf and w(“) We shall next derive the
update rules for these parameters layer by layer based
on the general learning rule

0
w<t+1>=w(t>+n(—e), (38)
ow
where w represents w( ) or wé ), and n is the learning

rate.
Layer 5. The update rules of wy'™ and wyy” are de-
rived from Eqs. (33) and (34) as follows:

de e ay(l) — (! (2) d(oc)) (39)
awy(x) ay(“) awy(“) > uis’

Oe Oe 6y(“) (o) d(“) 40
awy(o’) ay(“) ow (7) =0 )Zl uf (40)

The error signals to be propagated to the preceding
layer are

Oe oet”

55(“) _ _ 1 ( () d(“)) (41)
O Y

o= O 0w g (42)
2 503(%) ayga) by 2 P

where
(0() (y(x) d(la))z, (43)
(7) _ (y(“) dgx))z' (44)

Layer 4. In this layer, there is no weights to be
adjusted. Only the error signals need to be computed
and propagated. The error signal &7 is derived form
Eq. (29) as follows:

54_& az (e(“) (a))
LT o0 do?

— Z (54(“) 4(“) (45)

where

5
54(1) 065“) - a@ga) 601(“)

L S CR
55<x>5y1 55(«)“’)’51 — 3 wwyy (46)
do} ! (> u?)? ’
1 1
560 _ aeg“) B 06(2“) 603(“)
2 ot oo X® dof
55(1)53/1 saWys) = 30, upwyly 7
B oof ! Qo w)?
1 l

Layer 3. As in layer four, only the error signals need
to be computed. According to Eq. (27), this error sig-
nal &7 can be derived as

e _ de dof
B 0o} 00}

48
0 otherwise. (48)

_ { 5t if of = max(ul,.. . u}),
Layer 2. In this layer, there are fuzzy weights WX
to be adjusted. The update rules can be derived from
Egs. (23) and (24) as follows:

de B de 60? 30%,- B 3 60,3 502 (49)
8wx§7’1) 6013 50121 6wx§j‘1) 00!} ow. xz(jxl)’
Oe de 00} 00 , 00} 00}, (50)
ﬁwx(“) 603 60 owx (“) " 00} awxl(j‘?‘z)’
where
do} _ |1 if of = min(ui,....u}) 51)
80% 0 otherwise,
and
2 2 2
60,»]» =o%Ine | — zfij 6f
0wx§;]) Y 20 wal(;l)
o} /i (wxfj“l) —u’), (52)
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£,

(b) the structure after leaming

Fig. 5. Illustration of consequent combination.

Layer5:
4 1
ol Oj
Layer4: @ e
™ o
i J
Layer 3 e @ e
(a) the structure before learning
6012 fz 2,
= —o 5 Onxg) —u”). (53)

owx;

4.2. Structure learning phase

In this subsection, we propose a structure learning
algorithm for the proposed neural fuzzy system to re-
duce its node and link number. This structure learning
algorithm is divided into two parts: One is to merge
the fuzzy terms of input and output linguistic vari-
ables (term-node combination). The other is to do rule
combination to reduce the number of rules. We shall
discuss these two parts separately in the following.

A. Term-node combination scheme

Term-node combination is to combine similar terms
in the term sets of input and output linguistic vari-
ables. We shall present this technique for the term set
of output linguistic variables. The whole learning pro-
cedure of initialization is described as follows:

Step 1: Perform parameter learning until the out-
put error is smaller than a given value;
i.e., e<error_limit, where error_limit is a
small positive constant.

Step 2: If  diff (WY;, WY;)<similar_limit ~ and
similar_limit is a given positive constant,
remove term node j with fuzzy weight
WY; and its fan-out links, and connect rule

node j in layer 3 to term node i in layer
four (see Fig. 5).

Step 3: Perform the parameter learning again to
optimally adjust the network weights.

B. Rule combination scheme

After the fuzzy parameters and the consequents of
the rule nodes are determined, the rule combination
scheme is performed to reduce the number of rules.
The conditions for applying rule combination has been
explored in [17] and are given as follows.

(1) These rule nodes have exactly the same conse-
quents.

(2) Some preconditions are common to all the rule
nodes, that is, the rule nodes are associated with
the same term nodes.

(3) The union of other preconditions of these rule
nodes composes the whole terms set of some input
linguistic variables.

If some rule nodes satisfy these three conditions, then
these rules can be combined into a single rule. An
illustration in shown in Fig. 6.

5. Illustrative examples

In this section, we shall use two examples to
illustrate the performance of the proposed neural
fuzzy system.
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Fig. 6. Illustration of rule combination.
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Fig. 7. The membership functions of the input linguistic value
“very small” (X1), “small” (X2), “large” (X3) in Example 1.

Example 1. Fuzzy input and fuzzy output.
Consider the following three fuzzy if-then rules for

training:
Ry: IF x is very small (X1), THEN y is very large
(D1),

Ry: TF x is small (X2), THEN y is large (D2),

R3: TF x is large (X3), THEN y is small (D3),

where the fuzzy numbers “small”, “large”, “very
small” are given in Fig. 7. Fig. 8 shows the learning
curve. The error tolerance is 0.0001 and the number
of a-cuts is 6. After supervised learning, the fuzzy
outputs of the learned network and the corresponding
desired outputs are shown in Fig. 9. The figure shows
that they match closely. The two learned (representa-
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Fig. 9. The actual fuzzy outputs, Y1, Y2, Y3 of the learned neural
fuzzy system and the corresponding desired fuzzy outputs, D1,
D2, D3 in Example 1.

tive) fuzzy rules after learning (condensing) are:

IF x is WX1, THEN y is WY1, and
IF x is WX2, THEN y is WY2,

where the fuzzy weights after learning are shown in
Fig. 10. For illustration, Figs. 11 and 12 show the
change of fuzzy weights in the learning process. Hence
the original three fuzzy rules have been condensed
to two rules, and these two sets of rules represent
equivalent knowledge.

Example 2. Fuzzy input and fuzzy output.
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Fig. 10. The learned fuzzy weights of the network in Example 1.
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Fig. 11. Time evolving graph of fuzzy weights WX'1, WX2 during
the learning process in Example 1.

There are five training data in Fig. 13. Fig. 15 shows
the fuzzy weights after training. In order to examine
the generalization ability of the trained neural network,
we presented the three fuzzy inputs for testing in Fig.
14. In these figures, five level sets corresponding to
h=0,0.25,0.5,0.75,1 are depicted.

6. Conclusions

In this study, we proposed the learning techniques
for neural fuzzy systems to process both numerical
and word information. The developed systems have
some characteristics and advantages: (1) The inputs
and outputs can be fuzzy numbers or numerical num-
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Fig. 12. Time evolving graph of fuzzy weights WY1, WY2 during
the learning process in Example 1.
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Fig. 13. The training data in Example 2.

bers. (2) The network weights are fuzzy weights. (3)
Owing to the representation forms of the a-level sets,
the fuzzy weights, fuzzy inputs, and fuzzy outputs can
be fuzzy numbers of any shape. (4) Except the in-
put and output layers, numerical numbers are propa-
gated through the whole network; thus the operations
in the proposed neural fuzzy systems are not time-
consuming and the required memory capacity is small.
The developed systems have fuzzy supervised learn-
ing capability. With fuzzy supervised learning, these
systems can be used for fuzzy expert systems, fuzzy
system modeling, and rule base concentration. When
learning with numerical values (real vectors), the pro-
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Fig. 14. The actual outputs and testing results in Example 2.
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Fig. 15. The fuzzy weights in Example 2.

posed systems can be used for adaptive fuzzy control.
Computer simulations and experimental studies sat-
isfactorily verified the performance of the proposed
neural fuzzy learning schemes.
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