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Abstract

This study presents a model for obtaining the exact optimal solution of inventory replenishment policy problem. The
proposed model, called the “two-equation model”, includes two governing equations and a time-frequency algorithm: the
first equation determines the optimal replenishment times for a specified number of replenishments; the second equation
determines the optimal number of replenishments. The time-frequency algorithm includes two main procedures to solve
the first and second equations. In contrast to many approximation approaches, this model exactly solves the first
equation, a simultaneous non-linear equations system using a generalized matrix-based solver. This study also examines
the classical no-shortage inventory replenishment policy for linear increasing and decreasing trend demand. According to
these results, the solution given by the two-equation model is an exact solution. © 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The conventional approach used to determine
the optimal re-order point and re-order quantity is
the economic order quantity (EOQ) model. How-
ever, many constraints must be considered when
applying the EOQ model. One of these constraints
is the assumption of a constant demand rate, which
implies that the EOQ model cannot be applied to
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a time-dependent demand rate issue. But in an
actual situation, the demand rate of a product usu-
ally is function of time. Therefore, Donaldson and
others [1-17] removed the constant demand rate
constraint and initiated fundamental research into
time-dependent demand rate issue.

Donaldson [1] was concerned to find the lowest
total cost replenishment policy for an item with
a linear increasing trend demand; however, shortage
was not permitted. He adopted a complicated ana-
lytical approach to first determine the optimal num-
ber of replenishments, then he determined the
replenishment times accordingly. His computational
analysis is not simple: it develops tabular aids, but
needs interpolation. Henery [2] extended Donald-
son’s results by examining a general log-concave
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demand rate function. Since Donaldson’s analytical
approach requires complex calculations, Silver and
others [3-16] proposed various simpler approaches
giving approximations. Unlike the approximation
methods [3-16], Hariga [17] developed an analyti-
cal procedure that iteratively determines the optimal
replenishment schedule for both increasing and de-
creasing demand patterns. Hariga [18] provides
a review of these previous studies.

Donaldson’s approach [ 1] provided the analyti-
cal solution for the no-shortage linear trend in
demand replenishment policy. To the best of the
authors’ knowledge, from 1977 until now, Donald-
son’s approach has been applied only to cases of
linear increasing trend demand without shortage
[1], and with shortages [19,20]. Although Silver
and others [3-16] provided various simpler ap-
proaches than Donaldson’s, their approaches gave
approximations, rather than exact optimal solu-
tions. Even if these approximation approaches are
applied to more complicated replenishment policy
problems, their solutions are still only approxim-
ate, not exact. The iterative procedures proposed
by Henery [2] and Hariga [17] could provide
the optimal solution, but a recursive formula
for solving the replenishment times was needed.
Deriving such a recursive formula, however, com-
plicates their approaches and is subjected to the
type of demand rate function f(¢), particularly for
more complex demand rate functions such as the
non-linear demand rate function. Additionally,
they used the boundary condition (tc =0 or
t, = H) to judge convergence and generally the
convergence criterion is not equal to zero. There-
fore, their approaches may lead to the result that
the terminating time of the last replenishment peri-
od is not equal to the planning horizon after con-
vergence.

Much research into replenishment policy over
the past two decades has continued to focus on
fundamental methodology. This implies that
a powerful tool is still needed for investigating
realistic replenishment and production policies.
Providing a powerful methodology for replenish-
ment policy research is obviously the most impor-
tant issue: this is also the purpose of this study. This
study focuses on fundamental methodology
research for inventory replenishment policy to

provide a simple and accurate method for obtain-
ing an exact optimal solution. This study also
examines the classical no-shortage inventory
replenishment policy for linear increasing and
decreasing trends in demand. The computational
results demonstrate that the solution given by the
two-equation model can approach the accuracy of
Donaldson’s analytical solution [ 1]. To distinguish
the numerical solution given by the two-equation
model from Donaldson’s analytical solution and
the approximation methods, the numerical solution
is referred to as an exact solution that approaches
the accuracy of the analytical solution. The rest of
this paper will explain this approach in detail.

2. Assumptions and notations

A deterministic inventory replenishment policy
problem considered in this paper is based on the
work of Donaldson [1] with the following assump-
tions and notations:

Assumptions:

(1) A single item is considered.

(2) Rate of demand increases or decreases linearly
with time.

Shortages and deterioration are not allowed.
Planning horizon is finite.

Lead-time of inventory replenishment is zero.
Minimization of total cost is the objective.
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Notations:
w Total cost including replenishment cost
and holding cost.

W*m)  Lowest total cost for n replenishments.

¢y Replenishment cost per order.

Cy Inventory holding cost per unit per year.

D Total demand during the planning hor-
izon.

H Planning horizon.

f@) Demand rate function f(t)=a + bt,
f(t)=0.

a Demand rate at t = 0.

b Rate of demand change per unit of time,

b >0 for linear increasing trend and
b < 0 for linear decreasing trend.
o Ratio of a to b, = a/b.
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0i(1) Inventory function of ith replenishment
period, Q;(1) = [if(w)du, t; _; <t <t;.
t; Terminating time of ith replenishment

period or starting time of (i + 1)th replen-
ishment period.
Jif (u)du

tm ti Sty <ty fltn) =
liv1 — 1

A;, D;, Coefficients of simultaneous equations
B; system of variables t;_4, t;, t;+, respec-

tively.

n Number of replenishments.

n* Number of replenishments obtained by
EOQ model.

no Optimal number of replenishments.

[x] Gauss function of x.

s Decreasing direction index for total cost.

EPS Convergence criterion of ¢;’s iteration.

k Number index of ¢;’s iteration.

3. Two-equation model

In this study, the total cost includes the replen-
ishment cost and holding cost, and can be ex-
pressed as follows:

W =ncy + ¢, i J‘“ Q;(u)du. (1)
In Eq. (1),
@m=fﬂmw. )

In Eq. (2), Q;(t) represents the inventory function
after the ith replenishment and prior to the (i + 1)th
replenishment. In the classical problem of no-short-
age inventory replenishment for a linear trend, Q;(t)
is determined using the following differential equa-
tion and condition:

do;(t
SO _ o, 1 <i<t o)
dt
Qi(t;) = 0. (4)
From (1), the total cost W is a function of replen-
ishment times ¢; (i = 1,2, ...,n — 1) and number of

replenishments n for a given ¢, ¢, and f(#). Since
there are two kinds of variable in (1), i.e. t; and n,

two equations are needed to obtain the lowest total
cost for the replenishment policy problem. One of
these two equations determines the optimal replen-
ishment times for a specified number of replenish-
ments; the other determines the optimal number of
replenishments.

The two-equation model proposed herein in-
cludes two main procedures to solve the inventory
replenishment policy problem. The first procedure
determines the optimal replenishment times for
a specified number of replenishments; the second
procedure determines the optimal number of re-
plenishments. Each procedure has one equation.
The two procedures and relative equations for solv-
ing the problem of no-shortage inventory replen-
ishment with a linear trend demand are presented
in the next subsections.

3.1. First procedure: Determine the optimal
replenishment times under a specified
number of replenishments n

To obtain the optimal replenishment times under
a specified number of replenishments n, the first and
second derivative of W against t; are

6@?’ N cz[(t" — ti-)f () — i f (W) du}
iélj,,n—L )
a;TI:zV =c, [Zf(ti) +(t; — ti_l)dg(tti")], ©)
Let 0W /ot; = 0; then

Jerfdu = (6 — t;-1) f(8:), o

i=1,2,...,n—1

The linear increasing and decreasing trend de-
mand functions f(¢) = a + bt are both log-concave,
i.e. the derivative of log(f(¢)) is a decreasing function
of time. If inequality (4) in Henery [2] appears as
(8), then Eq. (6) becomes Eq. (9).

df(t;
160+ = 10T s p ), ®)
0w df(t;
L [CRYGREEey
L 1 9
> e [f(t:) + f(tiv1)] > 0. ©
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Because 0*W /ot? > c,[f(t:) + f(ti+1)] > O,
O*Wot;_0t; = — ¢y f(t;),

W Jot,0t,41 = — 3 f(tisr),

and for j #i—1,i,i+ 1,

O*W jot;ot; = 0,

then we can prove that the Hessian matrix H,,; as-
sociated with W is positive definite by taking any
non-zero vector Z, and proving that Z'H,,Z > 0 is
always true. Therefore, under a specified number of
replenishments n, the replenishment times ¢t;
(i=1,2,...,n— 1), which are satisfied with Eq. (7)
and ty = 0, t, = H will be unique and can then
produce the lowest total cost W*(n), as obtained
from Eq. (1). Eq. (7) is the governing equation for
determining replenishment times, and is the, so-
called, first equation in the two-equation model.

Eq. (7) is a simultaneous non-linear equations
system with t; as variables. This feature has not
been pointed out by past research. Therefore, until
now, there has been no research that solved (7)
using the general numerical techniques normally
used for solving a simultaneous non-linear equa-
tions system. Even in the approaches presented by
Henery [2] and Hariga [17], they used a recursive
formula to solve (7).

3.2. Second procedure: Determine the optimal
number of replenishments n

Optimal replenishment times t; and lowest total
cost W*(n) under any number of replenishments n,
can be obtained using the first procedure. If we can
obtain the optimal number of replenishments n,,
then we can obtain the optimal replenishment
times and the lowest total cost for the replenish-
ment policy problem using the first procedure. To
obtain the optimal number of replenishments, the
second procedure is carried out from an appropri-
ate n until the lowest total cost W*(n) stops
decreasing and starts to increase, i.e. if Eq. (10) is
satisfied, the optimal number of replenishments
ng=n—1:

Min{W*(n — 2), W*@n — 1), W*(n)} = W*n — 1).
(10)

Eq. (10) is the governing equation to determine
the optimal number of replenishments and is the
so-called second equation in the two-equation
model. Clearly, if we can solve Eq. (7) exactly, and
calculate the lowest total cost W*(n) under the num-
ber of replenishments n from an appropriate n until
Eq. (10) is satisfied, we can obtain the exact optimal
solution of the replenishment policy problem.

The classical no-shortage inventory replenish-
ment policy with a linear trend in demand is gov-
erned by the first and second equations stated
above. If we can solve the first equation exactly,
under any number of replenishments, we can easily
obtain the exact optimal solution for the replenish-
ment policy problem. This is the basic concept of
the two-equation model. For more realistic situ-
ations such as the replenishment policy that con-
siders inventory with deterioration, allowable
shortages, etc., the first equation will be more com-
plex than Eq. (7). The concept of the two-equation
model and the proposed time-frequency algorithm
that is listed in the next section, are still adequate for
obtaining the optimal solution in such situations.

4. Numerical technique and algorithm

In a general case, Eq. (7) is a simultaneous non-
linear equations system,; it is also difficult to solve.
Therefore, the related investigations [3-16] did not
solve (7) directly, but used various approximation
methods. In fact, we can solve Eq. (7) by using
a simple numerical method. For example, substitu-
ting f(t) = a + bt into Eq. (7), we can obtain Eq.
(11). Eq. (11) is a simultaneous non-linear equations
system of variables t; (i = 1,2, ...,n — 1), and can be
solved directly using the general numerical tech-
niques used for solving a simultaneous non-linear
equations system. In an iterative process for solving
t;, the value of t;_; and t;;; in Eq. (11) can be
substituted with the last respective iterative value.
Treating Eq. (11) thus, it can be transformed into
a quadratic equation of t; under each iteration; we
can then solve ¢; by taking the positive root of the
quadratic equation directly, as in Eq. (12):

3t12 + (4OC - 2ti,1)ti - (20“1'7 1 + ZOCtH_l + ti2+1) = O,
i=12..,n—1, (11)
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S o)+ /(i y + o) + 31y + )
3 b
n—1. (12)

The numerical method stated as above is very
simple but subjected to the type of demand rate
function f(t). Therefore, this study first proposes
a matrix-based solver to solve (7) directly. The first
step is to linearize Eq. (7), i.e. according to the mean
value theorem of integration, the left-hand side of
Eq. (7) can be written as (13):

f“f(u) di = (s — )f () 1 <ty < tisy. (13)

By substituting Eq. (13) into Eq. (7), Eq. (7) can
be simplified as Eq. (14), that is a simultaneous
linear equations system:

Aitifl +Diti+Biti+1zoa i:1,2,...,n—1.

(14)

In Eq. (14), the coefficients of variable t;_{, t;,
ti+q are

A= —f(t;), Bi= —fl(t,)=
D, = — A, — B,

Jif () du
tivi —t; (15)

The combination of Eq. (14) with boundary con-
ditions t, = 0, t, = H can be formulated as matrix
form Eq. (16):

1 to
Ay Dy B Iy
Al Di Bl tl

An—l Dn—l Bn—l tn—l

Because the coefficients in Eq. (16) are relative to
replenishment times t;, Eq. (16) must be solved by
the iterative method. In the iteration process, the
value of t; and t;;; in Eq. (15) can be substituted
with the last iterative value, respectively. In addi-
tion, the integration of coefficient B; can be cal-

culated directly or by using a numerical integration
method if necessary.

Eq. (16) is a simultaneous equations system with
tri-diagonal band matrix, t;, which can be easily
solved during each iteration. The coefficients A4;, B;,
D; in Eq. (15) can be calculated for any type of
demand rate function f(¢). Even for the more com-
plex first equation, a new expression of coefficients
A;, B;, D; like Eq. (15) can be found, and Eq. (16)
still can be used to solve t;.

The optimal replenishment times ¢; and lowest
total cost W*(n) under any number of replenish-
ments n can be calculated by using the first proced-
ure. The second procedure can be carried out from
n =1 until the lowest total cost W*(n) does not
further decrease and starts to increase. Obviously,
precisely estimating the optimal number of replen-
ishments as the starting number of replenishments
for the second procedure would allow us to mark-
edly reduce the total computation time. Herein, we
use an EOQ-based estimator to estimate the opti-
mal number of replenishments, i.e. using [n*] as the
starting number of replenishments for the second
procedure. The notation [x] represents the Gauss
function of x and n* is given by

DH
we = |22 (17)
2¢q

(16)

Solving the first and second equations produces
the optimal replenishment policy. This study pro-
poses a time-frequency algorithm that includes two
main procedures to solve the first and second equa-
tions and thus obtain the optimal replenishment
policy. The time-frequency algorithm is as follows:
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Step 1. Set n = [n*], s = 1.

Step 2. Calculate t; = iH/n,i =0,1,2,...,n.

Step 3. Solve t;,i=1,2, ...,n — 1, from (16) by
iteration, and calculate W*(n) from (1). If n = [n*]
then set s = s, n = n + s and go to Step 2 else go to
step 4.

Step 4. If Min{W*(n — 2s), W*(n — s), W*(n)} =
W*(n — s) then go to Step 6 else go to Step 5.

Step 5. If Min{W*(n — s), W*(n)} = W*(n) then
set s=s, n=n+ s and go to Step 2. If Min{W*
(n—s),W*n)} = W*n —s) then set s= —s,
n=n+2s and go to Step 2.

Step 6. Optimal number of replenishments
ny = n — s, optimal replenishment times ¢;, i = 0,
1, ...,n0-1.

In the above algorithm, the s value is the decreas-
ing direction index of W*(n); s = + 1 indicates that
W *(n) decreases as n increases. Moreover, s = — 1
indicates that W*(n) decreases as n decreases.

In Step 3 of the algorithm, the criterion for ¢;’s
convergence EPS must be specified according to
the requirement for accuracy. Accordingly, the
judgement of convergence is
gt -

Max ..,n—1. (18)

In inequality (18), subscripts k and k + 1 repres-
ent the number index of iteration. If inequality (18)
is satisfied after iterating k + 1 times, the iteration
has converged.

It is necessary to explain that the value of EPS
will affect the number of effective decimal places of
computed optimal replenishment times. Theoret-
ically, when the value of EPS approaches 0, the
solution given by the proposed approach will be
identical to the analytical solution. However, let-
ting EPS approach zero is unnecessary; that would
only increase computation time and, besides, there
are only a finite number of decimal places in the
optimal solution needed in practical applications,
even when using the analytical solution.

5. Model comparison

This study examines the classical no-shortage
inventory replenishment policy using the 12 linear

Table 1
The parameters of the 12 linear increasing trend sample prob-
lems

No a b H cy Csy
1 0 900 1 9 2
2 0 900 2 9 2
3 0 100 4 100 2
4 0 1600 3 42 0.56
5 6 1 11 30 1
6 6 1 11 50 1
7 6 1 11 60 1
8 6 1 11 70 1
9 6 1 11 90 1

10 100 150 1 30 2

11 100 150 1.5 30 2

12 100 150 2 30 2

increasing demand numerical examples used by
Amrani and Rand and others [12,13], and with the
linear decreasing demand numerical example used
by Phelps and Hariga [7,17]. Table 1 presents a set
of 12 sample problems, which is the same as
in [12,13]. Moreover, Table 2 summarizes the
calculated results.

Table 2 clearly demonstrates that the optimal
total cost of replenishment policy, calculated using
the approach proposed herein, are identical to the
solutions using Donaldson’s analytical approach
[1]. Obviously, the solution given by the proposed
method is superior to the approximation methods
[3-16].

For a more detailed examination, Tables 3 and 4
compare the optimal replenishment times using
Donaldson’s method, and the first sample problem
in Table 1 using the approach proposed herein. In
this comparison, EPS of the two-equation model
are taken as 5E-6 and 5E-14 for Tables 3 and 4,
respectively.

Tables 3 and 4 reveal that the smaller the EPS,
the closer are the optimal replenishment times ob-
tained using the approach proposed herein and
Donaldson’s analytical solution. For example, for
EPS = 5E-6, the optimal replenishment times ob-
tained by this study are correct to six decimal
places; for EPS = 5E-14, the optimal replenishment
times obtained by this study are correct to 14 deci-
mal places. The deviations between Donaldson’s
analytical solution and the solution using the two-
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Table 2
The results for the sample problems given in Table 1
No. Donaldson Percentage increase above the optimal
REE
Silver [3] Goyal and Ritchie [5] Tsado [6] Amrani and  Yang and Proposed
Gommes [4] Rand [12] Rand [13]

1 62.63 1.2555 0.1209 4.6229 4.6673 0.1029 0.0608 0.0000

2 172.89 2.1104 1.6275 0.5959 1.3381 0.5959 0.0463 0.0000

3 561.30 5.3479 1.3820 0.2016 10.0957 0.2016 0.0155 0.0000

4 1744.94 1.5876 0.6230 0.0357 5.4091 0.0356 0.0029 0.0000

5 291.21 7.6566 0.2085 0.0258 1.0968 0.0258 0.0019 0.0000

6 378.05 11.7907 0.5622 0.1748 2.0514 0.1748 0.0043 0.0000

7 418.05 0.5930 3.4220 2.2302 6.6906 0.5930 0.0307 0.0000

8 450.84 4.2506 9.3362 7.3633 14.3612 4.2506 0.0907 0.0000

9 510.84 14.4429 0.3953 0.0690 2.0304 0.0690 0.0010 0.0000
10 75.21 0.8682 4.0666 2.7269 7.8399 0.8682 0.0176 0.0000
11 121.23 5.4776 11.3779 9.1443 0.4576 0.4576 0.0100 0.0000
12 173.82 6.0923 0.3529 0.0529 1.7656 0.0529 0.0005 0.0000
Overall 4961.01 4.8847 2.0181 1.2601 5.6409 0.5418 0.0171 0.0000

*Normalized total cost ( = total cost/c,) has been round off to two decimal places for comparison reason.

Table 3
Optimal replenishment times comparison for problem
1 (EPS = 5E-6)
Order no.  Donaldson [1] Proposed
(analytical
solution) Replenishment  Error of
times convergence
1 0.0000000 0.0000000 0.0000000
2 0.2300529 0.2300526 0.0000003
3 0.3984633 0.3984629 0.0000004
4 0.5412797 0.5412793 0.0000004
5 0.6690224 0.6690220 0.0000003
6 0.7864581 0.7864579 0.0000003
7 0.8962326 0.8962325 0.0000001
Cost® 62.6302052 62.6302052 0.0000000

*Normalized total cost ( = total cost/c,).

equation model are listed in the error of conver-
gence column. The error comes from the criterion
that t;’s convergence EPS does not equal 0, not
from an approximation assumption. Clearly, the
solution accuracy of the two-equation model
approaches the accuracy of the analytical solution,
unlike the solutions provided using the approxima-

tion approaches [3-16]. Obviously, when it is diffi-
cult or impossible to obtain the analytical solution,
the solution obtained may be accurate enough to
stand for the analytical solution under an appropri-
ate requirement for accuracy. This accounts for
why the two-equation model solution can be called
an exact solution.

Table 5 lists the computation sequence, total
number of computations for the first procedure and
optimal number of replenishments for the set of
sample problems given in Table 1.

According to this table, the total number of com-
putations for the first procedure needed by the
approach proposed herein is markedly reduced
when applying the EOQ-based estimator in the
second procedure. The second procedure has
a good starting number of replenishments, thereby
allowing us to avoid much unnecessary computa-
tion. For example, as found in the second sample
problem in Table 1, the EOQ-based estimator pro-
vides a starting number of replenishments
[n*] = 20; the sequence of computation is 20-21-
19, and the optimal number of replenishments
no =20 is obtained after three computations
for the first procedure. In fact, the 12 sample
problems all require only three computations for
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Optimal replenishment times comparison for problem 1 (EPS = 5E-14)

Order no. Donaldson [1] Proposed
(analytical solution)
Replenishment times Error of convergence
1 0.000000000000000 0.000000000000000 0.000000000000000
2 0.230052877859349 0.230052877859346 0.000000000000003
3 0.398463272879829 0.398463272879826 0.000000000000003
4 0.541279682057064 0.541279682057061 0.000000000000003
5 0.669022372803606 0.669022372803602 0.000000000000004
6 0.786458118055185 0.786458118055183 0.000000000000002
7 0.896232649405742 0.896232649405740 0.000000000000002
Cost? 62.630205178277500 62.630205178277500 0.000000000000000
*Normalized total cost ( = total cost/c,).
Table 5 Table 6

Computation sequence and optimal number of replenishments
for the problems given in Table 1

No. Computation Total number of no
sequence computations
1 7-8-6 3 7
2 20-21-19 3 20
3 5-6-7 3 6
4 12-13-11 3 12
5 4-5-6 3 5
6 3-4-5 3 4
7 3-4-5 3 4
8 3-4-2 3 3
9 2-3-4 3 3
10 2-3-4 3 3
11 3-4-5 3 4
12 5-6-7 3 6

the first procedure, which is the ideal situation.
This observation implies that the EOQ-estimator
is fairly accurate for the optimal number of
replenishments.

The next sample problem is a linear decreasing
demand case used by Phelps [7] and Hariga
[17]. Until now, Donaldson’s analytical approach
[1] and Henery’s iterative approach [2] had not
been applied to such a demand pattern. Table
6 summarizes the results using the approaches pre-
sented by Phelps [7], Hariga [17], and the pro-
posed model.

The results for the 13th sample problem

Order no. Model

Phelps [7] Hariga [17] Proposed

Replenishment times

1 0.000 0.000 0.000
2 2.390 2.174 2.173

Normalized total 711937610 708.811915 708.811835

cost®

*Normalized total cost are calculated by using the replenish-
ment times listed in the table, the replenishment times and total
cost have been round off to three and six decimal places respec-
tively for comparison reason (the convergent criterion of Hariga
is 1E-6).

Thirteenth sample problem. « =100, b = — 10,
¢y =30,¢c, =02, H=4.78.

The replenishment times and total cost of the
Hariga [17] and the proposed model are almost
identical, but the total cost obtained by the two-
equation model is the lowest in Table 6. It is
obvious that the two-equation model can be ap-
plied to both increasing and decreasing demand
patterns using the same Eq. (16), but Hariga’s ap-
proach [17] needs two different recursive formulas
to treat increasing and decreasing demand patterns.



W.-Y. Lo et al. | Int. J. Production Economics 76 (2002) 111-120 119

6. Conclusions

This study proposes a “two-equation model” to
solve the classical no-shortage inventory replenish-
ment policy for linear increasing and decreasing
demand. The problem is governed by the first and
second equations of the two-equation model. This
study demonstrates that the first equation of the
two-equation model is a simultaneous non-linear
equations system of replenishment times, and can
be solved by a general numerical method for solv-
ing simultaneous non-linear equations system. This
study also provides a generalized matrix-based sol-
ver for the first equation. Additionally, this study
demonstrates that an EOQ-based estimator is fair-
ly accurate for the optimal number of replenish-
ments. The correctness and accuracy of the two-
equation model are verified using 13 comparative
examples.

Comparing the two-equation model with other
optimal solution approaches, we summarize the
advantages of two-equation model as follows:

(1) Deriving a recursive formula for solving t; is
not necessary: this feature reveals that the
two-equation model is easy to apply.

(2) The type of demand rate function f(t) is not
important for the two-equation model. For
a more complex demand rate function f(¢), the
significant work for the two-equation model is
to compute B; = — [i*'f(u)du/(t;+, —t;) in
Eq. (15).

(3) We can use the general numerical method used
to solve non linear equations system to solve
Eq. (11), or use the general numerical method
used to solve the linear equations system to
solve the linearized Eq. (14). Therefore,
a special numerical method is not necessary for
the two-equation model.

(4) Since the boundary conditions t, =0 and
t, = H are imposed in the solving procedure,
therefore the solution obtained by the two-
equation model is the exact optimal.

Obviously, the two-equation model provides
a novel means of investigating the lowest total cost
replenishment policy and also production policy.
The two-equation model focuses on fundamental
methodology research into inventory replenish-

ment policy. Its concept is intuitive and its algo-
rithm is very simple. The two-equation model
could potentially apply to more complex replenish-
ment policy problems such as problems that take
deterioration, allowable shortage, etc., into consid-
eration. Our laboratory is currently studying how
to apply the approach to such complicated replen-
ishment and production policies.
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