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Abstract

We construct the€P" model on fuzzy sphere. The Bogomolny bound is saturated by (anti-)self-
dual solitons and the general solutions of BPS equation are constructed. The dimension of moduli
space describing the BPS solution on fuzzy sphere is exactly the same as that of the commutative
sphere or the (noncommutative) plane. We show that in the soliton backgrounds, the number of zero
modes of Dirac operator on fuzzy sphere, Atiyah—Singer index, is exactly given by the topological
charge of the background solitoris2002 Elsevier Science B.V. All rights reserved.

PACS 04.60.Kz; 12.10.-g

1. Introduction

A noncommutative space is obtained by quantizing a given space with its symplectic
structure, treating it as a phase space. Also field theories can be formulated on a
noncommutative space. Noncommutative field theory means that fields are defined as
functions over noncommutative spaces. At the algebraic level, the fields become operators
acting on a Hilbert space as a representation space of the noncommutative space. Since
the noncommutative space resembles a quantized phase space, the idea of localization
in ordinary field theory is lost. The notion of a point is replaced by that of a state in
representation space.
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Quantum field theory on a noncommutative space has been proved to be useful in
understanding various physical phenomena, like as various limits of M(atrix) theory
compactification [1,2], low energy effective field theory of D-branes with constant Neveu—
SchwarzB-field background [3,4], and quantum Hall effect [5]. Although noncommutative
field theories are nonlocal, they appear to be highly constrained deformation of local field
theory. Thus it may help understanding nonlocality at short distances in quantum gravity.

The fuzzy sphere is constructed by introducing a cut-off param®tdor angular
momentum of the spherical harmoni¢g,,; | < N} [6]. Thus the number of independent
functions istV:o(Zl + 1) = (N + 1)2. In order for this set of functions to form a closed
algebra, the functions are replaced®@®y+ 1) x (N + 1) hermitian matrices and then the
algebra on the fuzzy sphere is closed [7]. Consequently, the algebra on the fuzzy sphere
becomes noncommutative. The commutative sphere is recoverad-ferco. One of the
attractive features of the fuzzy sphere is that it is covariant with resp&®) like the
commutative sphere.

Recently, it has been shown that the fuzzy sphere is a natural candidate for the quantum
geometry due to stringy effects in the AdS/CFT duality [8] and that the field theories on
fuzzy sphere appear naturally from D-brane world-volume theory [9,10] and matrix theory
with some backgrounds [11]. Interestingly, it was argued based d8Lif® WZW model
that the RR charges of spherical D2-branes are only defined modulo some integer [10],
which areU(1) charges defined on D2-brane world-volume (fuzzy sphere). This was
confirmed using K-theory calculation in [12]. Many efforts to construct field theories on
the fuzzy sphere were also pursued in [13-15].

In this paper we construct t&P" model on fuzzy sphere. In Section 2, the fuzzy sphere
is constructed by using the noncommutative version of Hopf fibratio® — S?, which
is essentially based on the Holstein—Primakoff realizatio®éf2) algebra [16]. Based
on this realization, the derivative operators on fuzzy sphere are defined. In Section 3, the
CP" model on fuzzy sphere is constructed. Our present constructiR’'bmodel closely
follows that of Berg and Luscher [17], in fact, the noncommutative generalization of them.

It is shown in Section 4 that the Bogomolny bound is saturated by (anti-)self-dual solitons
and the general solutions of BPS equation are constructed. The dimension of moduli space
describing the BPS solution on fuzzy sphere is exactly the same as that of the commutative
sphere [17] or the (noncommutative) plane [18]. In Section 5 we show that in the soliton
backgrounds, the Atiyah—Singer index, that is the number of zero modes of Dirac operator
on fuzzy sphere, is exactly given by the topological charge of the background solitons.
In Section 6 we address a topological issue on the BPS solitons on fuzzy sphere and
some other issues related to our work. In Appendix A, we explain the fuzzy spherical
harmonicsy;,,, the Clebsch—-Gordan decomposition of tensor products, and the Casimir
operator ofSU(2).

2. Fuzzy spherefrom Hopf fibration

The algebra of the fuzzy sphere [6] is generatedrpysatisfying the commutation
relations

[faafb]ziaeabc;c (a5bvc=15 27 3) (2'1)
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as well as the following condition foy;:
Fafa = R?. (2.2)

The noncommutative coordinates of (2.1) can be represented by the generators of the
(N + 1)-dimensional irreducible representationShf(2)

fa = aLu ’ (2.3)
where
[Zav Zb] = ieubczc'- (24)

Since the second Casimir 88 (2) in the (N + 1)-dimensional irreducible representation
is given byN (N + 2)/4, thuse and R are related by the following relation

N(N +2
RR=g2 YV T2 (2.5)
4
In thea — O limit, 7, describe commutative sphere:
r1 = R sind cosy, r2 = Rsiné sing, r3= RCOS4. (2.6)

Since $? is not parallelizable unlikes® ~ SU(2), the module of derivations 082
is not free [6]. If we enlarge the coordinate space fréfto S® by the addition of a
U (1) gauge degree of freedom, we can have a free module of the derivations (acting
on S$%). This is a well-known construction, called the Hopf fibrationS3f IndeedS? can
be regarded as a principal fiber bundle with base si&cand aU (1) structure group.
Equivalently,

FP~U@)/UQ), (2.7)

whereU (1) is the subgroup oBU(2). A complex scalar field 082 can then be identified
with a smooth section of this bundle.

The Hopf fibrationz : S® — S? can be generalized to the noncommutative sp@te
satisfying the relations

laq,apl = [ag, a;] =0, [aa, a;] =8 (2,B,=12) (2.8)
as follows

~ 1, (a

Lu—ééau‘i:v §_<a2>7 (29)

whereo, are the Pauli matrices argds anSU(2) spinor with the normalizatioa™s = N.
(Based on this Hopf fibration, topologically nontrivial field configurations on fuzzy sphere
were discussed in [14,15].) It is straightforward to checkZgts of (2.9) to satisfy the
SU(2) algebra (2.4). Now th8U (2) generators are given i coordinates as

1 ] 1

Zl = = (ala;r + aIaz), Zz = (ala; — aIaz), Zs = =

2 2 (aIal - agaz),

(2.10)

i
2
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which is, in fact, the Schwinger realization &J(2) algebra. The associated ladder
operators are defined as

Z+ = Zl + izz = aIaz, L_= Zl - izz = ala;r (2.12)
and their communication relations are

[L4.L-]=2Ls, [Ls,L+]==%L.. (2.12)
Note that theSU (2) generators in (2.9) are invariant under the transformation

A TR A A (2.13)

showing that the fiber i&/(1).
The (N + 1)-dimensional irreducible representation®(2), denoted agty, can be
given by the following orthonormal basis

t\n, T\N-n
N N>_ (ay)"(ay) 0)12 (n=0,1,...,N), (2.14)

=30 5)=
where |j,m) (j € Z/2) is a spherical harmonics ari@)12 is the vacuum defined by
a1|0)12 = az|0)12 = 0. Let Ay be operator algebra acting on tl¥ + 1)-dimensional
Hilbert spaceH y, which can be identified with the algebra Mait(+ 1) of the complex
(N + 1) x (N + 1) matrices. Then the integration over the fuzzy sphere is given by the
trace overHy and defined by

N

TrO = (n|O|n), (2.15)

N—l—ln=0

whereO € Ay.
Let us consider a scalar fietdl on the noncommutative€? defined by (2.8) (or oi$®
after the restrictiog ¢ = N) of the form [14]

i T
P = Z Dpimoninady -y 2aytay’. (2.16)

The above scalar fiel@ can be classified according to tlig1) gauge transformation
(2.13) and the set of fieldg with definiteU (1) chargek will be denoted a®y:

Dy — e Y, (2.17)

wherek =m1+mo —n1 —no € Z. Indeed the fieldp is a section of thé/ (1) bundle over
S? with a definite value along the fiber and the numbkiabels the equivalence classes
(homotopy classes) @b in (2.16) according to the Hopf fibration (2.7). In Section 4, we
will show that this number is related to the topological charg€®f solitons,| Q| = k.

If we define an operator denoted Eg for later use

Il{\g =—-N+ (aIal —i—agaz), (2.18)

1 In the commutative limit, Tr over matrices is mapped to the integration over functions—asjﬁ%.
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we see thatby in (2.17) is an eigenfunction of this operator, namely
[1’{\3, (Dk] =koy. (2.19)

By the analogy from [17],[?3 may be identified with a derivation along the fiber, i.e.,

a Killing vector alongU (1) c SU(2). For this reason we need another two derivations
(tangent toS? ¢ SU(2)) to form a closeddU(2) algebra. There is a unique (up to sign)
choice on the generators, which is essentially based on the Holstein—Primakoff realization
of U (2) algebra [16] for two atomic spins, and they are given by

A+=a —aq.ai1+a — a,ap, A,= s .
Ki=al\JN—alar+a} N —d] K=kl 2.20

where

Ki=Ki+iK>. (2.21)
It is straightforward to check th8UJ(2) algebra

[Ka, Kb] = i€apcKe, (2.22)
or

[K+, K_]=2Ks,  [Ks Ki]==+Kx. (2.23)

Then the derivatives of an operatOrare defined by the adjoint action ff,:2
Va0 =i[K,, O] (2.24)

Thus the generatod?a are the derivations acting on the Hopf bundle (2.7).

As pointed out in [14] (also in [17]), for the description of topologically nontrivial
field configurations (withk £ 0), the field @ in (2.16) needs to be a mapping from
Hy to Hy whereM — N # 0. For &, in (2.17), M — N = k. However, note that,
although I?i:cbk — @p41 and @ i Hy — Hyk, the relevant quantities such as the
action and topological charge densities are the operations keeping the representation space:
Hy — Hn, so the trace (2.15) of these densities is well-defined.

3. CP" model on fuzzy sphere

The CP" model manifold is defined by a(z + 1)-dimensional complex vectep =
(¢1, P2, ..., du+1) Of unit length with the equivalence relation under the overall phase
rotation @ ~ ¢?® [20-22]. This complex projective space of real dimensionsi
equivalent of the coset spatgn + 1)/ U (1) x U(n).

2 Since the coordinates of fuzzy sphere &) are Lie algebra elements, the derivatives on the fuzzy sphere
(or U (2) manifold) can be defined as usual as an endomorphism or an adjoint operation of Lie algebra like as
(2.24) [19]. Then the Leibnitz rule should be obvious in this def|n|tﬁg|((91(92) = (% 01)02 + Ol(% 09).

3 The reasonL,’s are not chosen as the derivations is that, for the fibration (:LZ); are not proper
derivative to expose topologically nontrivial field configurations sifige @) — Dp. In this sensek,'s are
more appropriate for our problem since they allow us to directly separaté thesymmetry (2.13) fron8U (2).
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For the purpose of manifest§U (2) invariant action, we will not impose the condition
(2.19) for a moment. Later we will describe how to naturally project the theory onto the
fuzzy sphere by the restriction (2.19) which specifies the homotopy clagsroferms of
U (D) fiber.

Since the derivation of the field variabie(7,) is given by the adjoint action ofu as
in (2.24), the natural action for theéP" model turns out to be

S=Tt[(V.®) (V®) + (¢'V,0)(0'V,9)], (3.1)
with the constraint
ot =1. (3.2)

Precisely speaking, the normalization in (3.2) means &P is an identity operator
acting on the representation spd¢g . This theory has a global (n 4+ 1) symmetry and a
local U (1) symmetry

D(F) —> @(PgF), gF) eU(Q, (3-3)

which removes the degrees of freedom for an ovdvall) phase of®. The U (1) gauge
transformation acts on the right-hand side, which leaves the constraint (3.2) invariant.
This ordering of the gauge transformation is the key point which makes the whole theory
work [18].

The above action with the constraint (3.2) can be rewritten as

S =Tt[(D.®)" (D.®) + 1(0Td — 1)], (3.4)
with
D,®=V,0 —i®A,, (3.5)

whereA, (r) is theU (1) gauge field without kinetic term arm{r) is a Lagrange multlpller
to incorporate the constraint (3.2). As there are no derivativess,pbne can solve thd,
equation to get

A, =—id'V, . (3.6)

Thus® D, = 0. Note thatDz® = 0 if we require the condition (2.19).
This action is invariant under the local gauge transformation defined by (3.3) and

Ay — g'Aug —ig™Vag. 3.7)

Since the field strength of the gauge fleclq is defined as the curvature tensor of the
covariant derivativeD by [Du, Db]cb — —i®F, b — eabcD @, then one can find

Fab = VaA}, — V};Aa + i[Aa, Ab] + GabcAc

—i[(D.®) "Dy — (Dy®) "D, o). (3.8)
In order to solve the constraint (3.2), it is convenient to parameterize the field as follows
1
=W —, (3.9)

wiw
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where W is an (n + 1)-dimensional vector. We also introduce an-+ 1)-dimensional
projection operator
t 1 ot
P=1-00'=1-W—-W',
wiw
whose kernel is a one-dimensional space generateldl lwector. In terms of these field
variables, the action (3.4) becomes

(3.10)

1 -~ -
S:Tr(WTW VuWTPVaW). (3.11)

Then, one can check that the above action has a local scaling symiietsyW A(7), as
on the (non)commutative plane [18]. In addition, there is a still I6tdl) gauge symmetry
W — Weld(),

From the field equation fo®

D,D,® — ®). =0, (3.12)
we can deduce

»=o'D,D,® =—(D, ) D, (3.13)
and the field equation becomes

DyDy® + @(D,®) Dy =0. (3.14)
4. BPS solitons

As in the (non)commutative case, th@P" model on the fuzzy sphere has the
Bogomolny bound. Let’s consider the inequality

%Tr{(ﬁiqﬁ +ie;;D;®) (Did +ien D)} +Tr{(D30) (Ds®)} >0,  (4.1)
wherei, j = 1, 2. Expanding this inequality we obtain

S=Tr{(Di®)"(D;®) + (Ds®) " (Ds®)} > Fie;; Tr{ (D) (D;0) | =+ 0, (4.2)
where thel (1) gauge invariant “topological charge” is

0 =—ie;; Te{(D;®)"(D; @)} = Tr Fia. (4.3)

The Bogomolny bound of the (Euclidean) action is saturated by the configuration which
satisfies the (anti-)self-dual equations

/D\,'Q):i:ieij/D\j(DZO or 55;@:0, (4.4)
and

D3® =0. (4.5)
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The gauge covariant condition (4.5) is equivalent to (2.19). Since thedialdrresponds
to a section of the bundle (2.7), (4.5) is a natural requirement. In this way we can naturally
project the theory onto the fuzzy sphere by specifying the topological sectoatihough
the field® is defined orS® rather thars?.
In terms of W variables in (3.9), the (anti-)self-dual equation reduces to

-1/2

Dio=P(Vaw)(Wiw) “ =0, (4.6)

and the topological charge can be rewritten as

1 1 ~ . ~
=ZTr V.wiPv_w-—vV_wiprv.w)l. 4.7
0 5 {WTW( + + )} 4.7)

Eq. (4.6) is equivalent t¥. W = We(#) for an arbitrary complex function(r). To find
the (anti-)self-dual configurations, the scale and the gauge symmetries can be used to put
¢(r) =0, ending with a pure “(anti-)holomorphic equation”

ViW =i[Ky, W] =0. (4.8)

Using the definitions oK+ operators in (2.20), one can easily find the general BPS
solutions satisfying (4.5) and (4.8)%s

k -1

wE=Y"ch(a) (@) | [TV = n—afar)(V =k +n - alay), (4.9)
=0 n=0
k -1
W, = cu [TV =n—ajar)(V = k+n —ajaz) (@) @2)* ™, (4.10)
=0 n=0

wherek < N. These solutions are eigenstates(?@fwith the eigenvaluetk and possess
2k(n+ 1) + 2n real parameter&ﬁ to specify the BPS solutions.

Let us take the commutative limit, — 0 (or N — o0), wherea; anda become usual
complex variables it€2. And introduce the stereographic projection of the (commutative)
sphere to the complex plane given by

r1+ir aI _ ry—ir ai
Z=R =R, Z=R =R—, (4.11)
R —r3 a;r R —r3 as

where the relations (2.3) and (2.10) are used. Then the solutions (4.9) and (4.10) can be
rearranged into the standard form [21] in the commutative limit up to a scale factor which
can be scaled away using the scale symmétry-¢ W A):

k k
W =a, H(Z —aly), Wi =a2, H(Z —aly). (4.12)
=1 =1

4 The following formula may be useful to find explicit solutionsf(aTa) = f(aTa + Da, an(aTa) =
f(aTa — 1)chr for operatorsz andat satisfying (2.8) and a nonsingular functig’mafa).
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Thus it is clear that the paramete@ in (4.9) can be interpreted as the modulikoBPS
solitons on the fuzzy sphere and the dimension of moduli spakesalitons is exactly the
same as that of the commutative sphere or the (noncommutative) plane.

The vacuum moduli space has parameters foCP" space but, in commutative and
large radius limit, they have infinite inertia due to the volume factor. For fuzzy sphere,
since the volume is finite and there are only finite number of states, it is interesting to study
the moduli space dynamics of solitons, including these vacuum moduli.

Now let us calculate the topological char@edefined by (4.7) for the BPS solutions
(4.9). For the configurations satisfying (4.8), we first note that Eq. (4.7) can be rewritten as

1 [~/ 1 - 1 P
T t
Os= ETr{m(w/”}[/ W V_W> W (Vov_ —V—V+)W} (4.13)

for the soliton (4.9) satisfyin&JrW =0, and

Qas= %Tr{_e_ (LW Wwiv, w) b W9 §ﬁ+)w} (4.18)

for the antisoliton (4.10) satisfyin§,W = 0. On the fuzzy sphere, the traces of total
derivative in (4.13) and (4.14) are always zero becdtgeis of finite dimension, while,

on the (noncommutative) plane, the topological charge is coming from them [18]. On the
other hand, the second terms in (4.13) and (4.14) on the fuzzy sphere be@ivig

which gives the topological charge, while, on the (noncommutative) plane, they vanish.
Thus we have shown that the topological charge (4.13) or (4.14) is an integer number
given by an eigenvalue dfs;

Os=k, Qas= —k. (4.15)

In Section 6 we will speculate on a topological issue related to the chargeBPS
solitons on fuzzy sphere [23].

5. Atiyah—-Singer index on fuzzy sphere

In this section we will calculate the zero modes of Dirac operator on fuzzy sphere under
the BPS background defined by (4.4) and (4.5). We will show that the Atiyah—Singer index,
that is the number of the zero modes of Dirac operator, is exactly given by the topological
charge| Q|. Thus this result presumably implies that the Atiyah—Singer index theorem is
still valid on fuzzy sphere. (For discussions about the Atiyah—Singer index on commutative
sphere in the case of gauge theory, see [24].)

We will take a spinor field? (7) as follows

WF) =t Fb+ ¥ @b (5.1

wherew = (#) are bosonic fields defined on the fuzzy sphere anid are Grassmannian
operators satisfying the following anticommutation relations

b,by={p"b" =0, [bb")} =1 (5.2)
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As shown in [14] and [15], using these anticommuting operatoand ™, the Clifford
algebra appropriate for the fuzzy sphere can be constructed:

Iy =bibe}, T_=b"{p" e}, F3=b{b", e} = bT{b, e}, (5.3)

where the Gamma matricd3;, I3 act on a Grassmannian operatoe b or bT, e.g.,
I'y ¢ =b{b, ¢}, etc. Thenitis easy to check the Clifford algebra

r’=o0, r2=1, (5.4)
and
F+1—L+1—LF+=1, FiF3+F3F:|:=O, F+F7—F7F+=F3. (55)

Thanks to the last relation in (5.5), we can regdtgdas the chirality operator on the
fuzzy sphere. S& ™ and¥ ~ in (5.1) are the components with the chiralil and—1,
respectively.

Now we will consider massless fermions interacting with@¥ fields satisfying (4.4)
and (4.5). The fermiong are vectors irC"*1 like @ constrained by [21]

o'W =0 =0, (5.6)

where¥ = 3w = (w)Th — (w+)ThT. For the purpose of manifestU(2) invariant
action as in Section 3, we will first consider the Dirac actionS3n(constructed by the
noncommutativec? generated by (2.8) with the constraiitt = N) and later project the
theory onto fuzzy sphere. The covariant derivative about a sgincoupled to the gauge
field A, given by (3.6) is defined as follows

DY =TD,w =TI (V¥ —iWA,). (5.7)
The relevant Dirac action for our problem turns out t8 be
Sp =Tr[WiDW +310™W + Ues], (5.8)

where and are Lagrange multipliers to incorporate the constraints (5.6). The above
Dirac action has a globdl (n + 1) symmetry and a locdl (1) symmetry

U (r) — P (r)g(r), (5.9)

together with the transformation (3.3).
From the equation of motion fab,

iDY + &) =0, (5.10)
we can deduce
r=—i® Dy, (5.11)

5 Here we are implicitly assuming the trace over the fermionic Fock space generaﬂedirhj/bT, {|v),
v=0,1}.
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and the resulting Dirac equation becomes
(1-2oND¥ =0 or PDY =0, (5.12)

whereP is the projection operator defined by (3.10).
The constraints in (5.6) can be solved by introducing a spin6t) = n*(#)b +
n~(#)bT, of the form

¥ =Py, (5.13)

where the spinon is an unconstrained vector &', In terms ofy variables, the action
(5.8) can be rewritten as

Sp =Trt{7a PiD(Pn)}. (5.14)
The equation of motion in terms g@fbecomes
PD(Pn) =0. (5.15)

It is obvious that this action has thé(1) gauge symmetry as well as an additional
symmetry given by the shift of fermions,

n—>n+Wx, (5.16)

wherey = xTh + x~b' is an arbitrary spinor. This shift symmetry is a fermionic partner
of the scale symmetry in the bosonic action (3.11).
The fields¥* can be expanded on the noncommuta@¥esimilarly to (2.16) [14]

+ _ + tm1 tmo n1 np
v _Zwmlmznlnzal ap dy dp - (5.17)

The chiral fieldsw* can also be classified according to thigl) gauge transforma-
tion (2.13) and the set of the fields with definitg1) chargek will be denoted asllki.
Then the chiral fieldtli!/kjE transform under th& (1) gauge transformation (2.13) as

wE > wEe kY, (5.18)
Now we will take gauge covariant projection onto the fuzzy sphere:

D3, =0, (5.19)
which is equivalent to

[K3, W] = k. (5.20)

In the projected subspace (5.19), the action is invariant with respect to the chiral
transformation [15]

U (F) = "3y (7), Ui (F) = Wi (F)el@!3 (5.21)

which is the result of the second Clifford algebrain (5.5).

We will solve the equation of motion (5.15) fom;, obeying ﬁgnk = 0 under
the soliton background (4.9) satisfyir@+W = 0. (The analysis with the antisoliton
background (4.10)?_W = 0) will be similar to the soliton case.) Eq. (5.15) under this
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background has the following component form

~ ~ 1
+1_ ,,+ T —
P([K+, T]k ] T]k AR |:K+, W]) = O, (522)
. I PO R N

wherePW =0 and[K_, W1] = 0 are used.
It is easy to see that the solution of the positive chiraliyfyup to the shift symmetry
(5.16) is given by

+ +, 1t 1 1
= (a,dd) ——, (5.24)
k k ( 1 2) Wiw

wherez," is a positive chirality spinor satisfying, ;"1 =0 and[K3, £, 1= k¢,':

-1
§k+ :gg(al)l(a;)k_ll H(N —n —aIal)(N —k+n —agaz), 1=0,..., k.
n=0

(5.25)
And it is also easy to check that the solution fgr with the negative chirality is given by
e =W¢ . (5.26)

whereg,~ is an arbitrary negative chirality spinor satisfyi[ﬁg, ¢, 1=k¢, . However, the
solution (5.26) can be gauged away using the shift symmetry (5.16) o= Py, =0,

so there are no zero modes (up to the gauge and the shift symmetry) for negative chirality
spinors under the soliton background.

Thanks to the finite volume of fuzzy sphere, the normalizability of zero modes (5.25) is
automatically guaranteed. Note that- 1 zero modes in (5.25) are not independent each
other. The number of independent zero modes is,s®tk + 1. The reason is following.

If we take a linear combination of these zero modesﬁbrto be proportional tdv (there

is only one such combination since we should take= ¢ x," for all 1), it is a trivial
solution since¥,” = Pn;" = PWx," /~WTW = 0. We have shown in Section 4 that this
integer number is exactly the topological charge of background solitons. Thus we arrived
at the Atiyah—Singer index theorem on fuzzy sphere.

For a spin complex, the Atiyah—Singer index theorem [25] states that

IndexD = dimkerD — dimkerD' =n, —n_, (5.27)

whereD is the Dirac operator for the spin complex and is the number of normalizable
zero modes of the Dirac operator of chiralityl. For a monopole bundl®(S?, U (1))
which corresponds to our case (2.7), the expression (5.27) reads

1
n+—n,=—/F€Z, (5.28)
2
*?

where F = dA is the field strength of a (monopole) gauge field and the integer
guantization is coming from the homotopy (U (1)) = Z [25]. In this paper, we proved
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the noncommutative version of (5.28):
ny =TrFio= 0, (5.29)
wheren_ = 0 for the soliton background and th&1) field strengthflz is given by (3.8).

6. Discussion

In this paper we showed that th@P” model on fuzzy sphere enjoys all attractive
properties in commutative space. The BPS equations support (anti-)self-dual soliton
solutions and the dimension of moduli space of BPS solitons is exactly the same as the
commutative case. Moreover, the number of normalizable zero modes in the presence of
the soliton backgrounds is exactly given by the topological charge of the solitons, thus the
Atiyah—Singer index theorem remains valid even for fuzzy sphere. This seems to be in
contrast to the recent results in [26] claiming that &hl) monopole charge is not integer
for the fuzzy sphere at finite cut-off. A further investigation on the difference between
their case and ours should be interesting.

On fuzzy sphere, only finite number of states can be defined [6]. For example, for the
fuzzy sphere with a cut off spiv, only N + 1 states are distinguishable. So it seems
to be reasonable that one cannot put too many solitons on fuzzy sphere. Moreover the
generatorsz’?ﬂE in the Holstein—Primakoff realization contain the square-root factors such

as \/N - aIal and \/N - agaz. Thus in order to preserve the theory to be unitary, we

should have an upper bound on the occupation numbersaicq.,,a;raz < N. Then this

also put an upper bound on the topological char@é = k since it is related to the

K3 eigenvalue of a BPS solutio®,. As this speculation implies, more careful study is
certainly required to understand the topological nature of fuzzy sphere. The topological
properties of fuzzy sphere have been studied in [23] based on the boson realization of
U (2) algebra, Schwinger vs. Holstein—Primakoff.

The outstanding properties of (supersymmet@Ef model with quarks are asymptotic
freedom, confinement of quarks, and spontaneous chiral symmetry breaking, which
are very similar to QCR [21,22]. Since theCP" model can be An expanded, all
these properties can be explored based on the éxpansion. A natural way to
couple quarks taCP" fields is to introduce the supersymmet@®” model. TheCP"!
model on noncommutative spaces presented here and in [18] can be generalized to the
supersymmetric model. It is interesting to study low-energy dynamics of quarks in the
context of supersymmetriP” model on noncommutative spaces (plane and sphere) since
it is more similar to QCL2 due to the non-Abelian nature from noncommutative space. As
indicated in Section 5, axial anomaly and relatéd) 4 problem can also be studied along
this line.

The (noncommutative}JP" model can be understood as a formal limit of (noncommu-
tative) Maxwell-Higgs theory,

1 ~ -~ -~ t,~ 1 2
S=Tr[@ Fup F? + (D, @) (Ducb)+§x(chq§ ~1) }
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namely,. — oo andg? — oo. Thus this theory defined on fuzzy sphere may also enjoy the
same properties as tigP” model even though the dynamics of gauge fields is considered.
This model, more generally, Maxwell-Chern—Simons—Higgs theory on fuzzy sphere, can
be of interest itself since it is related to the world-volume theory of the spherical D2-brane
formed by the bound state &f DO-branes [9].

It would be desirable to extend the analysis in this paper to four-dimensional case,
especially instantons on fuzz§*. On the noncommutativR?, it was shown that the
noncommutative instantons are well defined where small instanton singularities are
resolved [27] and the topological charge of instantons is always an integer [28]. On
fuzzy S*, the topological properties of instanton solutions may appear with more elegant
structures.
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Appendix A. Fuzzy spherical harmonics

First we will briefly review quantum mechanics on the addition of angular momentum in
order to fix the notations and to illustrate how to generalize it to fuzzy spherical harmonics.
We find the most useful reference on this is [29].

The space Fui$?) of functions onS? is spanned by spherical harmonics € Fun(S?),
whereJ runs through all integer spins. A product of any two spherical harmonics is again a
function onS? and hence it can be written as a linear combination of spherical harmonics,

21 + D2/ +1
ity = Z/( 47[(2)124-1) enClin A

with C/ Jf denoting the Clebsch—-Gordan coefficientssof2). The explicit form of

structure constants ¢ = C{J K is given by [29]

{0 ifI+J+K=2g+1,
CIJK =\ (=1)¢ K 2K+1g! 1(2g—2D)(2g—2))!(2g—2K)111/2 . _
Tl gD 15 T+ K =2,

(A.2)

whereg is a positive integer.
The spherical harmonicg’ form multiplets with respect to theu(2) action on
Fun(S?). More generally, the dlrect product of two irreducible tensM$ and ;) may
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be decomposed into irreducible tensors. The coefficients of this decomposition are just the
Clebsch—Gordan coefficients:

MING = clIFIMeNIE. (A.3)
K,n

The inverse relation is

IMNI =) ClIEMIN;. (A4)
I,m

The fuzzy sphere is constructed replacing the algebra of functid® pRun(S?), by
the noncommutative algebra taken in an irreducible representatiid @). This is full
matrix algebra MatV + 1) which is generated by the fuzzy spherical harmoﬁ{}swith
—J<m<J,J=0,1,...,N, a complete basis of the space Nt+ 1). The explicit
form of ?,i in (N + 1)-dimensional representation is given by [29]

~ [2J +1
J NJN
[Ym]x’x = N+1 Csms’ ’ (AS)

wheres, s’ = —-N/2,...,0,...,N/2. The operator?,ﬁ transform undesu(2) according
to the representation”’, so they are irreducible tensors of rahkThus an arbitrary matrix
A € Mat(N + 1) may be written in the form

N J
A=Y 3" AsmY,). (A.6)

J=0m=—J

where the expansion coefficiems,,, are given by

Ay =Tr(Y)VA). (A7)
The derivative ofA e Mat(N + 1) is defined by the adjoint action of € Su(2)
N J
VaA=i[Sa. A]l=i Y > Au[Sa. ¥, (A.8)
J=0m=—-J

The commutators in (A.8) can be calculated by the following commutation relations [29]

< v/ J1J vJ <._Q
(S Yl =vVIU+DCt s Yme, (n==%,0, So=S3). (A.9)
The Laplacian on the fuzzy sphere is given by

N J N J
VaVaA==3" 3" Asu[Sa. [Sa. V)11==D" D T+ DAY, (A10)
J=0m=—J J=0m=—J

The product of any two such matrices can be expressed as a linear combination of
matricesty X [29],

N
VY=Y (MK @RI+ @i+ 1) {

K=0

(A.11)

n o

IJKvK
}Clmn Y,

N~
N|=Z ~
= X
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where {j j j} denotes the recoupling coefficients/(8ymbols) ofsu(2). The inverse
relation is

- I J K —
YK = Z (—)NHH @I+ 127 +1) { N N N } cHEyly!. (A.12)
11Jm 2 2 2

More generally, the product modulé/ ® vV’ can be expanded into the irreducible
moduleVX:

N
viev/=v~. (A.13)
K=0

Note that theSU(2) operatorg? in (2.18) and (2.20) are a sum of two spin operaﬁrs
andss:

K=251+5, (A.14)
where
[S1a. S1] = i€ape e [S2a. S2] = i €ave Szc. [S1a. S2] = 0. (A.15)

The (N + 1)-dimensional unitary representations@fandi?} in the Holstein—Primakoff
realization [16], denoted a’s(]lv and HIZ\,, respectively, can be given by the following
orthonormal basis

N N n
Hy=1Im1=|5.n—=) =(a])"l0n, n=0,1,..., N,
2 2/,
N N m
H2 ={|m)2=‘5,m—5> = (a3)"10)2, m =0, 1,...,N}, (A.16)
2

where|l, m)1 2 is a spherical harmonics for each spin operator g@d> is the vacuum
defined bya1|0)1 = a2|0)2 = 0. Then the basis (2.14) is a tensor produc’t@{f andH,z\,
and can be expanded in the basis of total spin operator, that is,

N
Hy @ M2 = HHY (A.17)
J=0
and
@HW:“J,O), J=0,1,...,N}, (A.18)

J

where the spherical harmonigsg 0) is an irreducible basis of the total spin opera’Kbr

K2J,00=J(J +1)|J,0),  Ka3|J,0)=0. (A.19)

The second condition in (A.19) is coming from the usual rule of the addition of angular
momentumyn = m1 + m2, which is zero for the basis (2.14), wh£@|N/2,m1)1 =

m1|N /2, m1)1, So3|N /2, ma)s = ma|N /2, ma)2, andK3|J, m) = m|J, m). Thus the states

in (A.18) can serve agN + 1)-dimensional basis of.
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LetY), Ys , andYX be the fuzzy spherical harmonics 8, S2, andK , respectively.
They are complete and irreducible basis of the spacd& Mat1) whose matrix elements
can be represented in the corresponding bk(%js HIZ\, andH) and are given by (A.5).
Furthermore they satisfy the Clebsch—Gordan decomposition (A.11) and (A.12). Thus,
using these relations, the Casimir operatod?ofas in (A.10) can be calculated based on
these basis:

[Ka: [Kas V5]
= K(K + 17K

:Z(—)N+’+J\/<21+1>(2J+1){fv 1 f}cz’n{f
yoN oy

1Lm 2 2
x (10 + D+ I + D) P4 73, +2[Su, 74]1[52. 4,]). (A.20)

where[S1, Y3, 1 =[Sz, Y/,] = 0 are used. The commutators in (A.20) can be calculated by
using (A.9).
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