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Bound state of the quantum dot formed at intersection of L- or T-shaped
quantum wire in inhomogeneous magnetic field

Yuh-Kae Lin, Yueh-Nan Chen, and Der-San Chuua)

Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu, 30050 Taiwan

~Received 30 May 2001; accepted for publication 30 November 2001!

A quantum dot~QD! can be formed at the intersection of the symmetric or asymmetricL-shaped
~LQW! or T-shaped quantum wire~TQW!. The bound state energies in such QD systems surrounded
by inhomogeneous magnetic fields are found to depend strongly on the asymmetric parametera
5W2 /W1 , i.e., the ratio of the arm widths and magnetic field applied on the wire arms. Two effects
of the magnetic field on the bound state energy of the electron can be obtained. One is the depletion
effect which purges the electron out of the QD system. The other is to create an effective potential
due to the quantized Landau levels of the magnetic field. Depletion effect is found to be more
prominent in weak field region. Our results show the bound state energy of the electron in such QD
system depends quadratically~linearly! on the magnetic field in the weak~strong! field region. It is
also found that the bound state energy of the electron depends on the magnetic field strength only
and not on its direction. A simple model is proposed to explain the behavior of the magnetic
dependence of the bound state energy of the electron both in weak and strong magnetic field regions.
The contour plots of the relative probability of the bound state in LQW or TQW in magnetic field
are also presented. ©2002 American Institute of Physics.@DOI: 10.1063/1.1446233#
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I. INTRODUCTION

The mesoscopic structures of semiconductors have
tracted intensive studies because they exhibit physical p
nomena and concepts that are important in future appl
tions of electronic devices. By mesoscopic structure,
mean the dimension of the system is less than or compar
to the phase-breaking length of the conduction electrons
much larger than the microscopic objects. Recently, qu
one-dimensional structures, such as quantum wires at
much attention due to the enhanced confinement of the
duced dimension and the possibility of tailoring the ele
tronic and optical properties in applications.1–18 The physics
describing the phenomena of quantum interference dev
has to be explored before the development of technolo
Among the structures considered, the quantum dot~QD! is
one of the simpler mesoscopic systems in which the esse
physics can be studied in great details. A QD can be defi
by additional lateral confinements19,20 or by applying certain
magnetic fields.21,22The QD can also be formed at the inte
section of the arms of aL-shaped~LQW! or a T-shaped
~TQW! quantum wire when additional magnetic fields a
applied on the arms. These QDs are quite different from
traditional quantum dots, since there remain openings in s
QDs. Electrons in such QD systems are classically
bounded. However, recent experimental photoluminesce
spectroscopy analyses4–6 have manifested that there a
bound states in such QDs. The existence of bound state
such QDs essentially shows the confinement effect of
mesoscopic geometry in quantum mechanical region. In

a!Author to whom correspondence should be addressed; electronic
dschuu@cc.nctu.edu.tw
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dition, the stationary states of a charged particle~e.g., elec-
tron! in such QDs are affected by the applications of t
inhomogeneous magnetic fields.

The exploration of the properties of bound states is a
to understand some recent optical and electrical experim
on T-shaped quantum wires and quantum dots.5–7,15,18–20The
magnetophotoluminescence ofT-shaped wires were mea
sured recently.9 The energy shiftDE of photoluminescence
peaks with magnetic fieldB applied perpendicular to the wir
axis and parallel to the stem wire was measured. In th
experiments, the information of exciton binding energy c
be provided from the photoluminescence spectroscopy. H
ever, it is unable to identify exactly the exciton binding e
ergies unless we have the knowledge of the confinement
ergy of either an electron or a hole in quantum wires
quantum dots. Because they cannot be extracted dire
from magneto-optical data due to the nonlinearity of the s
tems. In a theoretical calculation of magnetoexcitons
T-shaped wires,23 the observed field dependence of the ex
ton states for weak confinement was reproduced, howe
the diamagnetic shifts calculated from perturbation theory
fail to describe the experimental results.

In typical semiconductors, the effective masses of ho
are generally anisotropic in two dimensions. Through pro
variable transformation, the problem of anisotropic effect
mass can be transformed formally into a problem with asy
metric geometric structure but with isotropic effective ma
However, the anisotropic effect is an intrinsic property whi
can be resulted only from the lattice composition, while t
asymmetric effect is an extrinsic one due to the fabrication
the crystal. And this extrinsic asymmetry is often able
provide a larger preferable variation range of bound st
energies whilst the intrinsic anisotropy could not. Therefo
il:
4 © 2002 American Institute of Physics
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 [This a
through understanding the asymmetric effect, it might
come easier to correctly tailor the devices at our desire.

In this work, we study the effects of the asymmet
geometry and the surrounding inhomogeneous magn
fields on the electronic bound state in QDs formed in a tw
dimensional L-shaped andT-shaped quantum wires. A
T-shaped quantum wire can be obtained by first growin
GaAs/AlxGa12xAs superlattice on a~001! substrate, after
cleavage, a GaAs quantum wire is grown over the expo
~110! surface, resulting in aT-shaped region where the ele
tron or hole can be confined on a scale of 5–10 nm. T
bound state energy of a charged particle~e.g., electron! in
such a quantum dot will be affected by the asymmetric
ometry of the system and the applied inhomogeneous m
netic fields. Intuitively, when the confinement along one a
of the quantum wire is increased, either by decreasing
arm width or by allowing the magnetic fields surrounded
QD to change, confinement along the orthogonal arm w
decrease, because squeezing the electron or hole in one
will result in pushing the electron or hole out of the quantu
wire through the other arm. These phenomena are not
interesting in physics but also have no classical corresp
dence. This squeezing effect has not been studied thorou
Furthermore,T-shaped semiconductor quantum wires co
be exploited as three-terminal quantum interference devi
thus the study on theL-shaped orT-shaped quantum wire i
also important in practical applications. Our model will b
presented briefly in the next section. Results and discuss
will be given in the final section.

II. FORMULATION

We consider QDs formed in a two-dimensional TQW
LQW. In our treatment the thickness in thez direction of our
system is assumed to be very small while compared to
other two directions. Therefore, it could be practically co
sidered as a two-dimensional system. The confinement
isted in thez direction makes the separation of the sublev
in z-direction of our system to be very large while compar
to those sublevels in thex and y directions of our system
The TQW and LQW are consisted of a horizontal arm an
vertical arm, lying on theX–Y plane. The TQW can be
divided into four uniform subregions: a horizontal arm with
width of W1 ~region I! to which a magnetic fieldB1 is ap-
plied perpendicularly, another horizontal wire with a wid
of W1 ~region II! to which a magnetic fieldB2 is applied
perpendicularly, a vertical arm with a width ofW2 to which
a magnetic fieldB3 is also applied perpendicularly and a
intersection region with an area ofW13W2 ~region IV!, as
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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shown in Fig. 1~a!. For simplicity, the boundaries are a
sumed to be a hard-wall confinement potential, leading to
formation of a magnetically confined cavity in which th
confinement of electron is enhanced. The case of LQ
@shown in Fig. 1~b!# can be regarded as a transformation
TQW in which the arm 2 is cutoff and only three subregio
are left. The transverse potential inside the TQW or LQW
assumed to be zero. For further studies, the magnetic fi
are assumed to be uniform in each individual subregion
is zero in the intersection region~region IV!. Within the
framework of effective mass approximation, the Schro¨dinger
equation of an electron in TQW system~the system of LQW
is just the special situation of TQW! under an inhomoge-
neous magnetic field can be expressed as:

F2
~p2qA~x,y!!2

2m*
1Vc~x,y!GC~x,y!5EC~x,y!, ~1!

wherem* andq are the effective mass and the charge of
particle, Vc(x,y) is the confinement potential, andp is the
momentum,A„x,y… is the vector potential associated with th
magnetic fields. To solve the equation, the Landau gaug
chosen for the vector potential in different subregions as

FIG. 1. The illustrations of the geometries of QDs in~a! TQW and~b! LQW
systems.
A„x,y…55
@0,B1~x10.5W2!#5~2B1y,0!1¹B1~x10.5W2!y, in region I;

@0,B2~x20.5W2!#5~2B2y,0!1¹B2~x20.5W2!y, in region II;

@2B3~y20.5W1!,0#5~0,B3x!2¹B3x~y20.5W1!, in region III;

~0,0!, in region IV.

~2!
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The origin of the coordinate system is chosen at the cente
the intersection region. It can be noted that this form
gauge guarantees the continuity of the vector potentia
each interface.

The wave function of the bound staten of an electron for
the different four regions can be expressed as follows:

Cn
I 5e2 i ~x10.5W2!yeB1 /\F(

m
r mne

ikm
I

~x10.5W2!Fm
I ~y!G

in region I;

Cn
II5e2 i ~x20.5W2!yeB2 /\F(

m
tmne

ikmn
I

~x20.5W2!Fm
II ~y!G

in region II; ~3!

Cn
III 5eix~y20.5W1!eB3 /\F(

m
smne

ikm
II

~y20.5W1!Fm
III ~x!G

in region III;

and

Cn
IV5(

j
$ f j~y!@ajn sinkj8~x20.5W2!1bjn

3sinkj8~x10.5W2!#1cjngj~x!sinkj9~y10.5W2!%

~4!

in the region IV, wheref j (y) andgj (x) represent the trans
verse wave functions of electron in modej at zero field in
horizontal and vertical arms, respectively, and can be
mally expressed as

f j~y!5A 2

W1
sinS j p

W1
yD , 20.5W1<y<0.5W1 , ~5!

gj~x!5A 2

W2
sinS j p

W2
xD . 20.5W2<x<0.5W2 , ~6!

and the nominal wave numbers arekj85@k22( j p/W1)#1/2

and kj95@k22( j p/W2)#1/2, respectively. And km
i , i

5I,II,III, ¯ are the nominal longitudinal wave vectors of th
mth mode in regions I, II, or III, respectively. They are eith
real for escaping states or pure imaginary for bound sta
ajn , bjn , cjn , r mn , smn , and tmn are the expansion coeffi
cients in their own regions. In Eq.~3!, we expanded our
wave function in terms of a set of oscillating functions. T
oscillating~exponential! functions are used as the expansi
basis. The reason that we include more than one term in
wave function is due to the requirement of the converge
of the complicated situations induced by asymmetry a
magnetic field. Therefore, the final wave function contain
linear combination of the oscillating~exponential! functions
and behaves like a sharper decaying function than the
exponential function in regions I, II, and III. By this way, th
subscriptn can be cast aside because we are only conce
with certain bound state. After we substitute Eqs.~3! into the
Schrödinger equation, the transverse wave functionFm of
the mth mode is found to satisfy the following individua
one-dimensional Schro¨dinger equations of an electron wit
the bound state energyE5\2k2/2m* and chargeq52e:
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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F d2

dy2 1k22S km
I 2

eB1

\
yD 2

1Vc~y!GFm
I ~y!50 ~7!

in region I,

F d2

dy2 1k22S km
II 2

eB2

\
yD 2

1Vc~y!GFm
II ~y!50 ~8!

in region II, and

F d2

dx2 1k22S km
III 1

eB3

\
xD 2

1Vc~x!GFm
III ~x!50 ~9!

in region III. Wherek5A(2m* E/\2), andVc is the confine-
ment potential. From the earlier equations, one can see
the magnetic fields are introduced into the relevant Sch¨-
dinger equations as an additional effective potential. It
obvious that each term in Eqs.~4! satisfies automatically the
Schrödinger equation. Therefore, Eqs.~7!, ~8!, and~9! have
to be solved independently. We expand the transverse w
functions Fm

i , i 5I,II,III in terms of the sets of complete
basis at zero field as

Fm
I ~y!5S jjm j

I f j~y!, in region I;

Fm
II ~y!5S jjm j

II f j~y!, in region II;

Fm
III ~x!5S jjm j

III gj~x!, in region III. ~10!

The expansion involves an infinite number of terms. Ho
ever, in reality, this sum must be truncated at certain la
number to achieve a desired accuracy. We are in the situa
to find simultaneously the values of the wave vectorskm

I ,
km

II , andkm
III for a given energyE satisfying Eqs.~7!, ~8!, and

~9!, respectively. Unfortunately, this is not straightforwa
since the equations are not eigen equations inki , where i
5I,II,III for a given E becauseE is not linear inki . This
difficulty can be resolved by converting Eqs.~7!, ~8!, and~9!
into eigen equations inki by the following transformation:

hm
I ~y!5km

I Fm
I ~y!, ~11!

hm
II ~y!5km

II Fm
II ~y!, ~12!

hm
III ~y!5km

IIIFm
III ~y!. ~13!

Equations~7! and ~8! can now be recast formally as

F 0 1

]2

]y2 1
2m* EF

\2 2S y

l Bi
D 2 2y2

l Bi

G FCm
i ~y!

h i~y! G5km
i FCm

i ~y!

h i~y! G
~14!

in region i, i 5I,II. By substitutingx for y, and2B3 for Bi ,
we have matrix equation in region III. With the help of th
earlier expanded basis and the transformation for a gi
energyEF , we obtain a set of eigen-wave numbers$km

I %,
$km

II %, and$km
III %, all the expansion coefficients in Eqs.~3! and

~4!, and the eigen-wave functions$Fm
I (y)%, $Fm

II (x)%, and
$Fm

III (x)%. By requiring the wave function and their norm
derivatives to retain continuity at each interface, and p
forming tedious numerical processes, the eigen energyE and
eigen wave functionC are then obtained.
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III. RESULTS AND DISCUSSIONS

A. The convergence of numerical calculations

By using the mode matching technique, we are able
obtain the bound state energy of an electron in the quan
dot formed at the intersection of the arms of a L-shaped
T-shaped quantum wire when magnetic fields are applied
the arms. In order to make the numerical computation
come feasible, the numbers of modes in the wider arms
properly considered while the ratios of arm widths is nea
zero or extremely large. Moreover, different number
modes for each arm is also carefully considered. To m
sure whether our numerical calculation is reliable or not,
tendency of convergence for different number of modes
cluded in our calculation is presented in Fig. 2 for an LQ
with some typicala values. Figure 2~a! presents the resul
for the symmetric case, i.e.,a51 or W25W1 . And Figs.
2~b!, 2~c!, 2~d!, and 2~e! are the obtained results for cases
a51.005,a51.05,a51.10, anda51.14, respectively. The
tendency of convergence for different number of modes
cluded in our calculation for TQW system is shown in Fig.
As shown in Fig. 3~a!, three cases are presented: solid dow
triangle represents the result obtained by usinga51 ~i.e.,
W25W1!, solid circle presents the result fora51.01, and
solid up-triangle fora51.05. Fig. 3~b! and ~c! present the
results obtained fora51.10 anda51.33, respectively. It is
noticeable that our calculations converge rapidly even in

FIG. 2. The convergence tests of the number of modes for LQW system
different a. ~a! a51.00, ~b! a51.005, ~c! a51.01, ~d! a51.05, and~e!
a51.14. Even for largea51.14, our calculation converges rapidly.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

140.113.38.11 On: Thu, 0
o
m
a
n
-
re
y
f
e
e
-

f

-
.
-

e

case with large value ofa though we just included sam
number of modes in each region. Our results agree well w
previous works.24–27

B. The bound states in QDs at zero field

Figure 4 presents the variation of the calculated bou
state energies of an electron in a LQW as a function of a
ratio a. For clarity, the bound state energy of the electron
expressed in terms of the dimensionless quantitye5E/E1

throughout this article, whereE15(\2p2/2m* W1
2) is the

first subband level in arm 1~region 1!. One can note from the
figure that the bound state energy of the electron beco
smaller as the arm ratioa becomes larger. Fora51 ~i.e.,
W15W2!, i.e., a symmetric L-shaped quantum wire, we ha
r m5tm at zero magnetic field, the bound state energy of
electron is obtained as 0.92964E1 . For asymmetric geom-
etries, the calculated bound state energye goes down and
behaves like the curve of 1/a2 as the asymmetric paramete
a is increased larger than 1.14. A deviation from the curve
1/a2 is observed in the region ofa<1.14 as can be seen i
the inset of Fig. 4. The result can be ascribed to the fact
the bound state energy of the electron matches the sub
energy of arm 2 due to the lateral confinement of region

or

FIG. 3. The convergence tests of the number of modes for T-shaped
system for~a! solid down-triangle fora51.00, solid circle fora51.01, and
solid up-triangle fora51.05, ~b! open up-triangle fora51.10, ~c! open
square fora51.33. Even for largea51.33, our calculation converges rap
idly.
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Since in this circumstance, 1/a2(p/W1)2 is just equal to
(p/W2)2, which is the first subband level of the vertic
wire. As the widthW2 becomes larger and larger, this ener
level becomes lower and lower, and gradually coincides w
the bound state energy level of the electron. Thus the e
tron is unable to be bounded in the corner region any m
This can be understood by the clue exhibited in the distri
tion of the probability density of the electrons. The probab
ity density of electrons in the LQW can be evaluated
summing up over all terms

r~x,y!5 (
n51

N

uCn~x,y!u2. ~15!

Figure 5 shows the contour plots of the probability de
sity distribution of the bound states for severala values in an
asymmetric LQW system. The distributions are normaliz
to their own maxima for simplicity, and the most inner co
tour curve possesses the highest probability density. In

FIG. 4. The bound state energye vs the asymmetric ratioa5W2 /W1 at
zero magnetic field strength. Open circle is our result. The dotted line is
curve of 1/a as a guide to eyes.E15(\2p2)/(2m* W1

2) is the first threshold
energy of arm 1~the region I!.

FIG. 5. The probability density distributions of electron in LQW for diffe
ent asymmetric parametera. ~a! a51, ~b! a51.005, ~c! a51.01, ~d! a
51.05, and~e! a51.1. All distributions are normalized to its maximum
value for simplicity.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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case ofa51, the contour of the probability density distribu
tion reflects a mirror symmetry due to its symmetric geo
etry as can be seen from Fig. 5~a!. The electron piles up a
the corner region as the localized state is formed. In th
cases, the probability density distribution decays expon
tially in the arm regions, such that the electron is unable
go far away from the corner. One can also note from Fig
as the structure asymmetry of the LQW becomes promin
e.g., asa increases from 1.005 in~b! to 1.05 in ~c! and
finally 1.10 in ~d!, the probability density distribution gradu
ally extends to the wider arm region. As the asymmetry
comes more obviously, the peak of the electron probabi
density distribution transmits eventually out of the corn
region providing the electronic energy is larger than the b
tom of the subband of the wider arm. However, if the ene
of the electron state is less than or just equal to the subb
bottom, the electron is still bounded inside the corner a
does not move to the right or to the left. Therefore, this st
cannot transmit in the arm and does not contribute to
conductance. Hence, it consequently results in valleys
dips near the transmission thresholds.17

Now let us consider the case of a TQW. For a TQW,
we change the ratioa5W2 /W1 , we do not change its imag
symmetry. Thus, it can be expected that at least one bo
state can exist in TQW no matter how large the width of t
transverse arm is. Figure 6 shows the bound state energ
the electron in a TQW as a function ofa. One can see from
the figure that bound state energy approaches unity as
width of the vertical arm becomes very small, and beha
like a curve of 1/a2 while the valuea becomes larger. This is
similar to the case of a LQW. The reason of this result can
understood intuitively that the wave function of the electr
is purged out of the vertical arm when it becomes very n
row and thus the wave function is almost squeezed inside
longitudinal arm, therefore, the energy of this state is close
the first threshold energyE1 of the horizontal arm with a
width of W1 . This bound state of the electron exists as lo

e
FIG. 6. The bound state energye of a TQW plotted in unit ofE1 as a
function ofa. The bound state energy of the electron approaches to unity
a!1 and can be approximately expressed by the curve 1/a2 for a>1.33
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 [This a
as the vertical arm is infinite long, and is expected to dis
pear owing to the effect of leakage if the arms is finite
length.

Actually, the bound state energies of electrons of
QDs are slightly higher than 1/a2 for large a, and also
slightly lower than 1 for smalla. The bound state of the
electron thus always exists no matter how large the ratioa is,
except for one of the arms has finite length. One can obs
this result from the contour plots of the probabilities depic
in Fig. 7 for a>1 and Fig. 8 fora,1.

It often involves anisotropic factors in semiconduct
systems. The anisotropic Hamiltonian for an anisotro
heavy hole at zero field is given by

Ĥ52F \2

2mx*
]2

]x2 1
\2

2my*
]2

]y2G1V~x,y!. ~16!

Let ỹ5(my* /mx* )1/2y, then Eq.~16! can be rewritten as

Ĥ52
\2

2mx*
F ]2

]x2 1
]2

] ỹ2G1V~x,ỹ!. ~17!

FIG. 7. The contour plots of the relative probability of the bound state o
electron in an asymmetric TQW.

FIG. 8. The contour plots of the relative probability of the electron bou
state in an asymmetric TQW.
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Comparing with Eqs.~7! and ~8!, we have the same Schro¨-
dinger equations if we change the variabley into ỹ. The
anisotropic factora5(my* /mx* )1/2 is large as 1.348 for a
typical GaAs system if we adapt the values:mhh@110#

50.69m0 and mhh@001#50.38m0 .5 This value gives rise to
the result that the hole is extremely anisotropic distributed
TQW structure. However, it should be still bounded as
already mentioned.

C. Effects of magnetic fields on the electronic bound
state in a QD

For simplicity and clarity, the QDs are considered to
formed on symmetric two-dimensional LQW and TQW sy
tems, that is only the case ofW25W1 . The calculated bound
state energies of the electrons in the QD formed in LQ
under the magnetic fields are plotted as functions of the fi
strengthf 5\vc /E1 , as depicted in Fig. 9~a! for case of both
arms and in Fig. 9~b! for case of only one arm in the LQW
system subjected to magnetic field, wherevc is cyclotron
frequency of the electron. One can observe that the bo
state always exists when the magnetic field is applied to b
arms. The energy level of the electron in this case is mo
tonically increased while the magnetic field is increased.
the contrast, curve~b! shows the energy of the bound state
the electron is pushed up by the applied magnetic field,
then it goes up toE1 . Thus, the electron can escape via t
field free arm.

For the symmetric TQW, there are two main configur
tions of the applications of magnetic fields. The case of sy
metrically applying magnetic fields to the system includ
three types which are shown in Fig. 10. In Fig. 10, curve~a!
displays the confinement energy versus the field stren
when all arms are acted by the same magnetic fieldB, curve
~b! displays the energy versus the field strength when the
horizontal arms are acted by the same magnetic field,
curve ~c! displays that only the vertical arm is acted by t
magnetic field. The same quadratic dependence of magn

nFIG. 9. The bound state energye vs the field strengthf. ~a! For both arms
being acted by the magnetic fields in LQW system.~b! For only one arm
being acted by the magnetic fields. The dimensionless field strengthf is
normalized byE1 .
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

1 May 2014 06:25:15



le
n
F
n

ct
e
ec
tio

W
Q
Q
bo
n
e

in
i

at
her
nd

he
.
in

the

eld
m-
r
ect

a
sur-

etic
tive

.
ds

the
en-
er-
und
hal-

Its

d
ld

n

d

3060 J. Appl. Phys., Vol. 91, No. 5, 1 March 2002 Lin, Chen, and Chuu

 [This a
field of the bound state energy of the electron is revea
again for the weak field strength, and the linear depende
appears in the strong field region as the case of LQW.
these symmetric configurations of magnetic field, the bou
state always exists. It is found that the more arms are a
by the magnetic field, the higher energy of the bound stat
the electron is obtained due to the stronger depletion eff
The quadratic dependence region is wider if the deple
effect is smaller, as shown in curves~a!, ~b!, and~c! of Fig.
10. Obviously, the bound state level of the electron in a TQ
system locates deeper than that in a LQW, that is, the T
system has a weaker confinement potential than the L
system. This causes a deviation of bound energies a
0.12E1 . We also calculated several relative probability co
tours of the bound state of the electron under the magn
fields as displayed in Fig. 11.

For the case of inhomogeneous magnetic field apply
on the TQW, the energy levels of electron are shown
curves~a! and ~b! of Fig. 12. Curve~a! of Fig. 12 presents

FIG. 10. The bound state energye of T-shaped QW as a function of the fiel
strengthf. Curve ~a! for all arms being acted by magnetic fields. The fie
strengthf is normalized byE1 . Curve ~b! for the horizontal arms being
acted by magnetic fields, and curve~c! for only vertical arm being acted by
magnetic field. The dimensionless field strengthf is normalized byE1 .

FIG. 11. The contour plots of the relative probability of the electron bou
state in TQW under the magnetic field.
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the case of the magnetic fields applying to region I~or region
II ! and region III of the TQW system, and curve~b! of Fig.
12 presents that of the magnetic field applying to region I~or
region II! only. These curves consist of the former result th
the more regions are acted by magnetic fields, the hig
energy of the bound state of the electron are obtained. A
from Fig. 12~a!, it can be observed that the energy of t
bound state approachesE1 for a higher magnetic strength
This is a similar consequence of the conclusion obtained
the LQW system. The behavior is also found from curve~b!
of Fig. 12, however, its value approaches the energy of
QD in a symmetric LQW system. Both curves~a! and~b! of
Fig. 12 show quadratic feature for weaker magnetic fi
regions due to the depletion effect of magnetic field. Co
pare curves~a! and~b! of Fig. 12, one can notice that a wide
quadratic region directly reflects the weaker depletion eff
of the magnetic fields.

The external perpendicular magnetic fields introduce
depleting effect on electrons and add an extra potential
rounding the QD. From Eqs.~7!, ~8!, and ~9!, one can ob-
serve that the effective potentials introduced by the magn
fields arek dependent. For the bound state, these effec
potentials are complex due to the pure imaginary$k%. There-
fore, one cannot easily figure out the effective potentials

One can expect intuitively that the magnetic field ad
the lowest Landau level\vc/25\eB/2m* directly to the
quantum dot system~in the corner region! an extra potential.
Such levels are added into the wire regions surrounding
QD. However, the field plays another role due to the ess
tial physics of the magnetism. Qualitatively, one can und
stand the effect induced by the magnetic field on the bo
state of the electron by considering an one-dimensional s
low quantum well with finite heightU0 . In the limit of shal-
low well, there is only one bound state exists in the well.
level energy is given byE05U02(m* W2/2\2)U0

2,28 which
d

FIG. 12. The bound state energye of T-shaped QW as a function of the fiel
strengthf. Curve~a! for the region I~or region II! and region III being acted
by the same magnetic field. Curve~b! for only region I~or region II! being
acted by magnetic field. The dimensionless field strengthf is normalized by
E1 .
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is near the top of the well. Let us consider that if the pote
tial height is changed toU011/2\vc due to the application
of the external magnetic field, then how does the bound s
energy of the electron change? This is not quite intuitive
figure out. First, it is easy to see that the variation of the s
level depends linearly on the potential height, i.e.,

]E0

]U0
512

m* W2

\2 U0 . ~18!

To take into account the depletion effect of the magne
field, which effectively suppress the envelop of the elect
wave, the variation of the state level is assumed as

]E0

]W
52

m* W

\2 U0
2. ~19!

Obviously, once we need to take the well shrunk into
count, the quadratic form of the dependence of magn
field has to be considered also. This remarkable sim
model manifests the essential important effect of geome
scale in quantum behavior, and also manifests one of
essential properties of magnetism at the same time. Howe
in the strong magnetic field strength region, the shrinking
the geometric scale is no longer prominent, because the e
tron wave function is squeezed to a certain local area. A
there is fewer probability left in the arms, therefore there
less influence of the magnetic field on the electron. Thus,
energy of bound state of the electron depends simply on
added effective potential, such that it seems likely to dep
linearly on the magnetic field in the high field strength r
gion.

IV. SUMMARY

The asymmetry parameter, which is defined asa
5W2 /W1 , plays an important role in the formation of a QD
The asymmetry parameter strongly affects the bound sta
an electron in a QD. When the asymmetry parametera in-
creases, the bound state energy of the electron is lowe
expected. On the other hand, when the applied magnetic
increases, the bound state level of the electron is pus
higher and higher and the electron begins to be unbound
there is an arm with finite length which offers a passway
electron to leak out. Generally, the bound state level of
electron in the QD formed in a TQW system is lower th
that in LQW system. This fact reflects the weaker confin
ment of the geometry. It is found that the magnetic field a
affects the bound state, even though the spin of the elec
is not taken into account. Parabolic dependence of the bo
state energy of the electron in weak field region on the fi
strength is understood as a result of the depletion effec
the contrast, linear dependence in high field region is fou
to be resulted from the additional effective potential due
the magnetic field.
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