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Bound state of the quantum dot formed at intersection of L- or T-shaped
guantum wire in inhomogeneous magnetic field

Yuh-Kae Lin, Yueh-Nan Chen, and Der-San Chuu®
Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu, 30050 Taiwan

(Received 30 May 2001; accepted for publication 30 November 2001

A quantum dot(QD) can be formed at the intersection of the symmetric or asymmietsicaped

(LQW) or T-shaped quantum wir@ QW). The bound state energies in such QD systems surrounded
by inhomogeneous magnetic fields are found to depend strongly on the asymmetric parameter
=W, /W4, i.e., the ratio of the arm widths and magnetic field applied on the wire arms. Two effects
of the magnetic field on the bound state energy of the electron can be obtained. One is the depletion
effect which purges the electron out of the QD system. The other is to create an effective potential
due to the quantized Landau levels of the magnetic field. Depletion effect is found to be more
prominent in weak field region. Our results show the bound state energy of the electron in such QD
system depends quadraticallinearly) on the magnetic field in the wedktrong field region. It is

also found that the bound state energy of the electron depends on the magnetic field strength only
and not on its direction. A simple model is proposed to explain the behavior of the magnetic
dependence of the bound state energy of the electron both in weak and strong magnetic field regions.
The contour plots of the relative probability of the bound state in LQW or TQW in magnetic field
are also presented. @002 American Institute of Physic§DOI: 10.1063/1.1446233

I. INTRODUCTION dition, the stationary states of a charged partielg., elec-
tron) in such QDs are affected by the applications of the
The mesoscopic structures of semiconductors have atnhomogeneous magnetic fields.
tracted intensive studies because they exhibit physical phe- The exploration of the properties of bound states is a key
nomena and concepts that are important in future applicato understand some recent optical and electrical experiments
tions of electronic devices. By mesoscopic structure, wepnT-shaped quantum wires and quantum dofs:>'8-2The
mean the dimension of the system is less than or comparabiaagnetophotoluminescence @tshaped wires were mea-
to the phase-breaking length of the conduction electrons angured recently. The energy shifAE of photoluminescence
much larger than the microscopic objects. Recently, quasipeaks with magnetic fielB applied perpendicular to the wire
one-dimensional structures, such as quantum wires attragkis and parallel to the stem wire was measured. In these
much attention due to the enhanced confinement of the rezxperiments, the information of exciton binding energy can
duced dimension and the possibility of tailoring the elec-be provided from the photoluminescence spectroscopy. How-
tronic and optical properties in applicatiohs® The physics  ever, it is unable to identify exactly the exciton binding en-
describing the phenomena of quantum interference devicasrgies unless we have the knowledge of the confinement en-
has to be explored before the development of technologyergy of either an electron or a hole in quantum wires or
Among the structures considered, the quantum(@) is  quantum dots. Because they cannot be extracted directly
one of the simpler mesoscopic systems in which the essentiglom magneto-optical data due to the nonlinearity of the sys-
physics can be studied in great details. A QD can be definegéms. In a theoretical calculation of magnetoexcitons in
by additional lateral confinements®or by applying certain  T-shaped wire&? the observed field dependence of the exci-
magnetic field$>?*The QD can also be formed at the inter- ton states for weak confinement was reproduced, however,
section of the arms of &-shaped(LQW) or a T-shaped the diamagnetic shifts calculated from perturbation theory is
(TQW) guantum wire when additional magnetic fields arefail to describe the experimental results.
applied on the arms. These QDs are quite different from the  In typical semiconductors, the effective masses of holes
traditional quantum dots, since there remain openings in suclrre generally anisotropic in two dimensions. Through proper
QDs. Electrons in such QD systems are classically unvariable transformation, the problem of anisotropic effective
bounded. However, recent experimental photoluminescena@ass can be transformed formally into a problem with asym-
spectroscopy analysk® have manifested that there are metric geometric structure but with isotropic effective mass.
bound states in such QDs. The existence of bound states Mowever, the anisotropic effect is an intrinsic property which
such QDs essentially shows the confinement effect of thean be resulted only from the lattice composition, while the
mesoscopic geometry in quantum mechanical region. In adasymmetric effect is an extrinsic one due to the fabrication of
the crystal. And this extrinsic asymmetry is often able to
3Author to whom correspondence should be addressed; electronic maiProvide a larger preferable variation range of bound state
dschuu@cc.nctu.edu.tw energies whilst the intrinsic anisotropy could not. Therefore,
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through understanding the asymmetric effect, it might be- (a)
come easier to correctly tailor the devices at our desire. E
In this work, we study the effects of the asymmetric m g
geometry and the surrounding inhomogeneous magnetic 8
fields on the electronic bound state in QDs formed in a two-
dimensional L-shaped andT-shaped quantum wires. A
T-shaped quantum wire can be obtained by first growing a (W,/2,W,12) (W/2,W,/2)
GaAs/ALGa, _,As superlattice on g001) substrate, after
cleavage, a GaAs quantum wire is grown over the exposed I 2
. . I B v x
(110 surface, resulting in &-shaped region where the elec- w, ! ©,0)
tron or hole can be confined on a scale of 5-10 nm. The | i
bound state energy of a charged partitdeg., electropin (-W2/2,-W,/2; W2, W 12)
such a quantum dot will be affected by the asymmetric ge-
ometry of the system and the applied inhomogeneous mag-
netic fields. Intuitively, when the confinement along one arm
of the quantum wire is increased, either by decreasing the ®)
B
arm width or by allowing the magnetic fields surrounded the
QD to change, confinement along the orthogonal arm will I W,W,)
decrease, because squeezing the electron or hole in one arm }
will result in pushing the electron or hole out of the quantum w, I
wire through the other arm. These phenomena are not only {
interesting in physics but also have no classical correspon- (0,6) W,,0) x
dence. This squeezing effect has not been studied thoroughly.
Furthermore T-shaped semiconductor quantum wires couldF!G- 1. The illustrations of the geometries of QDgan TQW and(b) LQW
be exploited as three-terminal quantum interference deviceé‘,’smm&
thus the study on the-shaped ofT-shaped quantum wire is
also important in_practical appligations. Our mode_l will b_e shown in Fig. 1a). For simplicity, the boundaries are as-
presented briefly in the next section. Results and discussiongmed to be a hard-wall confinement potential, leading to the
will be given in the final section. formation of a magnetically confined cavity in which the
confinement of electron is enhanced. The case of LQW
Il. FORMULATION [shown in Fig. 1b)] can be regarded as a transformation of
We consider QDs formed in a two-dimensional TQW or TQW in which the arm 2 is cutoff and only three subregions
LQW. In our treatment the thickness in thelirection of our ~ are left. The transverse potential inside the TQW or LQW is
system is assumed to be very small while compared to thassumed to be zero. For further studies, the magnetic fields
other two directions. Therefore, it could be practically con-are assumed to be uniform in each individual subregion and
sidered as a two-dimensional system. The confinement exs zero in the intersection regiofregion V). Within the
isted in thez direction makes the separation of the subleveldramework of effective mass approximation, the Sclimger
in z-direction of our system to be very large while comparedequation of an electron in TQW systeithe system of LQW
to those sublevels in the andy directions of our system. IS just the special situation of TQWunder an inhomoge-
The TQW and LQW are consisted of a horizontal arm and @1€ous magnetic field can be expressed as:
vertical arm, lying on theX-Y plane. The TQW can be _ 2
oo . e . . (P—dA(X,y))
divided into four uniform subregions: a horizontal arm with a - =
width of W, (region ) to which a magnetic fieldB, is ap- 2m
plied perpendicularly, another horizontal wire with a width wherem* andq are the effective mass and the charge of the
of W; (region 1) to which a magnetic field, is applied particle, V. (X,y) is the confinement potential, amqmis the
perpendicularly, a vertical arm with a width @, to which  momentumA(x,y) is the vector potential associated with the
a magnetic fieldB; is also applied perpendicularly and an magnetic fields. To solve the equation, the Landau gauge is
intersection region with an area @, X W, (region IV), as  chosen for the vector potential in different subregions as

B o

W]

]
=

+VC(X1y) \P(XaY):E\P(X:Y)a (1)

[0B1(x+0.5W5)]=(—B4y,0)+VB(x+0.5V,)y, in region I;
[0B5(x—0.5W,)]=(—Byy,0)+ VB,(x—0.5W,)y, in region lII;
[ —B3(y—0.5W;),0]=(0,B3x) —VB3x(y—0.5W,), in region lll;

(0,0, in region IV.

A(x,y)= (2
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The origin of the coordinate system is chosen at the center of [ g2 2 (u eB, \? ] |
the intersection region. It can be noted that this form of dy2+k (km_ TY) +Ve(y) [ Prp(y)=0 7
gauge guarantees the continuity of the vector potential at :
each interface. in region |,
The wave function of the bound statef an electron for - 2 ;
the different four regions can be expressed as follows: 2 i eB I
g P : a2 T k= 5oy ] HVey) | @n(y)=0 ®)
‘I’L:efi(xm'g’wz)yewﬁ Z (€ knOHOSM2P () in region 11, and
) . ) [ d2 e 2 ]
in region I; W+|<2— km+TB3x +V(X) | Pm(x)=0 9
. ol i i
Y=g (x0N)yeB, /h ; tmne'km”(xo'wz)‘b'rL(Y)} in region 1ll. Wherek= \[(2m* E/%?), andV, is the confine-
- ment potential. From the earlier equations, one can see that
in region II; 3 the magnetic fields are introduced into the relevant Schro

dinger equations as an additional effective potential. It is
obvious that each term in Eg®l) satisfies automatically the
Schralinger equation. Therefore, Eq9), (8), and(9) have

to be solved independently. We expand the transverse wave
functions @, i=11IL1Il in terms of the sets of complete
and basis at zero field as

) A
\I,Lllzelx(yfo.wvl)eBg/h 2 Smnelkm(yfo.ENvl)(I)lrlnl(X)
m

in region llI;

I 5. £ o5 ; ; :

q"nlw(y)=2§:1'1jfj(y), in region lI;

X sink! (x+0.5W,)]+ci,0; ink?(y+0.5W
sink; (x 2)]+C¢jngj(x)sinki (y 2)} M) =3, " g (x), in region i 10

(4)

in the region IV, wheref;(y) andg;(x) represent the trans-
verse wave functions of electron in mogat zero field in
horizontal and vertical arms, respectively, and can be for-
mally expressed as

The expansion involves an infinite number of terms. How-
ever, in reality, this sum must be truncated at certain large
number to achieve a desired accuracy. We are in the situation
to find simultaneously the values of the wave vectelrs

k!, andk!! for a given energy satisfying Eqs(7), (8), and

2 [jw (9), respectively. Unfortunately, this is not straightforward
fiy)= VVTf'”(VTﬂ)’ —0.5W;=<y<0.5W;, (5  since the equations are not eigen equation& jnwherei
=111l for a given E becauseE is not linear ink'. This
2 jm difficulty can be resolved by converting Edg), (8), and(9)
gj(x)= \/W sin —x) —0.5W,<x=<0.5\V,, (6)

W, into eigen equations ik' by the following transformation:
and the nominal wave numbers akg=[k?— (jm/W;)]"? 7(Y) =KL (y), (11)
and k"—[k2 (jm/W,)1Y2  respectively. And ki, i "
=1,1I, III - are the nominal longitudinal wave vectors of the Im(Y)=Km®Pm(¥), (12)
mth mode in regions I, 11, or Ill, respectively. They are either

III I 11
real for escaping states or pure imaginary for bound states. m(¥) =k P (y). (13
@jn s bjn, Cjny Fmns Smn, @ndty, are the expansion coeffi- Equations(7) and(8) can now be recast formally as
cients in their own regions. In Ed3), we expanded our
wave function in terms of a set of oscillating functions. The 0 1 [ - [ - }
I

oscillating (exponential functions are used as the expansion| 52 2m*Eg ( y )2 2y? rz(y)) \P%*E(y))
-\l T y 7y
[ lg.

basis. The reason that we include more than one term in th pJF T2
wave function is due to the requirement of the convergenc (14)
of the complicated situations induced by asymmetry and

magnetic field. Therefore, the final wave function contains dn regioni, i =1,1l. By substitutingx for y, and—B; for B;,
linear combination of the oscillatingexponential functions  we have matrix equation in region Ill. With the help of the
and behaves like a sharper decaying function than the purearlier expanded basis and the transformation for a given
exponential function in regions I, Il, and IIl. By this way, the energyEF, we obtain a set of eigen-wave numbetén},
subscriptn can be cast aside because we are only concerneld!! mbs and{k'”}, all the expansion coefficients in Ed8) and
with certain bound state. After we substitute E.into the  (4), and the eigen-wave functior{@:n(y)}, {CI):,ln(X)}, and
Schralinger equation, the transverse wave functibp, of {CD'rﬂ(x)}. By requiring the wave function and their normal
the mth mode is found to satisfy the following individual derivatives to retain continuity at each interface, and per-
one-dimensional Schdinger equations of an electron with forming tedious numerical processes, the eigen enErgyd

the bound state enerdy=%2k?/2m* and chargey=—e: eigen wave function? are then obtained.
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FIG. 2. The convergence tests of the number of modes for LQW system for Nurmber of Modes Nurber of Modes
different a. (@) @=1.00, (b) «=1.005,(c) «=1.01, (d) «=1.05, and(e)

. : FIG. 3. The convergence tests of the number of modes for T-shaped QW
a=1.14. Even for larger=1.14, our calculation converges rapidly.

system for(a) solid down-triangle forx=1.00, solid circle fora=1.01, and
solid up-triangle fora=1.05, (b) open up-triangle fora=1.10, (c) open
square fora=1.33. Even for larger=1.33, our calculation converges rap-
IIl. RESULTS AND DISCUSSIONS idly.

A. The convergence of numerical calculations

By using the mode matching technique, we are able t@wase with large value of though we just included same
obtain the bound state energy of an electron in the quantumumber of modes in each region. Our results agree well with
dot formed at the intersection of the arms of a L-shaped or @revious worksg*=27
T-shaped quantum wire when magnetic fields are applied on
the arms. In order to make the numerical computation be- . i
come feasible, the numbers of modes in the wiger arms arg' The bound states in QDs at zero field
properly considered while the ratios of arm widths is nearly =~ Figure 4 presents the variation of the calculated bound
zero or extremely large. Moreover, different number ofstate energies of an electron in a LQW as a function of arm
modes for each arm is also carefully considered. To makeatio «. For clarity, the bound state energy of the electron is
sure whether our numerical calculation is reliable or not, theexpressed in terms of the dimensionless quardiye/E,
tendency of convergence for different number of modes inthroughout this article, wher&, = (%2m2/2m*W3) is the
cluded in our calculation is presented in Fig. 2 for an LQWfirst subband level in arm {egion 1. One can note from the
with some typicala values. Figure @) presents the result figure that the bound state energy of the electron becomes
for the symmetric case, i.eq=1 or W,=W;. And Figs. smaller as the arm ratia@ becomes larger. Fo=1 (i.e.,

2(b), 2(c), 2(d), and Ze) are the obtained results for cases of W;=W,), i.e., a symmetric L-shaped quantum wire, we have
a=1.005,=1.05,a=1.10, ande=1.14, respectively. The r,=t,, at zero magnetic field, the bound state energy of the
tendency of convergence for different number of modes in€lectron is obtained as 0.92964. For asymmetric geom-
cluded in our calculation for TQW system is shown in Fig. 3. etries, the calculated bound state eneeggoes down and

As shown in Fig. 8a), three cases are presented: solid down-behaves like the curve of f as the asymmetric parameter
triangle represents the result obtained by usitgl (i.e., «aisincreased larger than 1.14. A deviation from the curve of
W,=W,), solid circle presents the result far=1.01, and  1/a? is observed in the region af<1.14 as can be seen in
solid up-triangle fora=1.05. Fig. 3b) and (c) present the the inset of Fig. 4. The result can be ascribed to the fact that
results obtained for=1.10 anda=1.33, respectively. It is the bound state energy of the electron matches the subband
noticeable that our calculations converge rapidly even in thenergy of arm 2 due to the lateral confinement of region II.
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FIG. 4. The bound state energyvs the asymmetric ratiee=W, /W, at
zero magnetic field strength. Open circle is our result. The dotted line is th
curve of 1k as a guide to eye&, = (42w2)/(2m* W?) is the first threshold
energy of arm 1the region }.

FIG. 6. The bound state energyof a TQW plotted in unit ofE; as a
function ofa. The bound state energy of the electron approaches to unity for
<1 and can be approximately expressed by the cured for a=1.33

Since in this circumstance, d?(7/W,)? is just equal to

2 . - . .
(m/W5)*, which is the first subband level of the vertical oqe ofy=1, the contour of the probability density distribu-
wire. As the widthW, becomes larger and larger, this energyiion reflects a mirror symmetry due to its symmetric geom-
level becomes lower and lower, and gradually coincides Witrletry as can be seen from Figiah The electron piles up at

the bound state energy level of the electron. Thus the eIecthe corner region as the localized state is formed. In these

t_lfﬁn IS unsble tg bet bo(;thl)det(rj] n }he COKE: rgg'otr;] aréY ;n,grecases, the probability density distribution decays exponen-
IS can be understood by the ciue exnibited in the distri u7[iaIIy in the arm regions, such that the electron is unable to

tion of the probability density of the electrons. The probabll-go far away from the comer. One can also note from Fig. 5,

:ﬁrg;?nsnyu OfO\G/}(IaerC:IIO?eSrnl”nns the LQW can be evaluated byas the structure asymmetry of the LQW becomes prominent,
9 up e.g., asa increases from 1.005 ifb) to 1.05 in(c) and
N finally 1.10 in(d), the probability density distribution gradu-
p(x,y)= 21 [P a(x,y)]?. (19 ally extends to the wider arm region. As the asymmetry be-
" comes more obviously, the peak of the electron probability
Figure 5 shows the contour plots of the probability den-density distribution transmits eventually out of the corner
sity distribution of the bound states for sevesialalues in an region pro\/iding the electronic energy is |arge|’ than the bot-
asymmetric LQW system. The distributions are normalizedtom of the subband of the wider arm. However, if the energy
to their own maxima for simplicity, and the most inner con- of the electron state is less than or just equal to the subband
tour curve possesses the highest probability density. In thgottom, the electron is still bounded inside the corner and
does not move to the right or to the left. Therefore, this state
cannot transmit in the arm and does not contribute to the
conductance. Hence, it consequently results in valleys or
dips near the transmission threshotds.
Now let us consider the case of a TQW. For a TQW, if
we change the ratie=W, /W, , we do not change its image
symmetry. Thus, it can be expected that at least one bound

>3 05 0 05 °1-05 0 05 state can exist in TQW no matter how large the width of the
(0) a=1.05 (d) 0=1.10 transverse arm is. Figure 6 shows the bound state energy of
3— the electron in a TQW as a function af One can see from
A\ the figure that bound state energy approaches unity as the
21 hk idth of the vertical arm becomes very small, and behaves
11 B like a curve of 1&4“ while the valuex becomes larger. This is
i j similar to the case of a LQW. The reason of this result can be
o G understood intuitively that the wave function of the electron

'0'51 05 0 05 _1.05005 is purged out of the vertical arm when it becomes very nar-

fG. 5 Th bability density distribut f electron in LOW for dif row and thus the wave function is almost squeezed inside the
.o € probabpility aensi Istriputions ot electron In or airrer- H H . :

ent asymmetric parameter. (@) a—1, (b) a—1.005,(¢) a= 101, (d) a Iong|_tud|nal arm, therefore, the energy _of this state is _close to
=1.05, and(e) a=1.1. All distributions are normalized to its maximum th_e first threShqld energEl of the horizontal arm with a
value for simplicity. width of W, . This bound state of the electron exists as long
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FIG. 7. The contour plots of the relative probability of the bound state of anFIG. 9. The bound state energys the field strengtffi. (a) For both arms
electron in an asymmetric TQW. being acted by the magnetic fields in LQW systdh). For only one arm
being acted by the magnetic fields. The dimensionless field strefnigth
normalized byE; .
as the vertical arm is infinite long, and is expected to disap-
pear owing to the effect of leakage if the arms is finite in
length. Comparing with Egs(7) and (8), we have the same Schro
Actually, the bound state energies of electrons of thedinger equations if we change the varialylénto y. The
QDs are slightly higher than a? for large o, and also anisotropic factora=(mj/m})*? is large as 1.348 for a
slightly lower than 1 for smalke. The bound state of the typical GaAs system if we adapt the valuesi,yiig
electron thus always exists no matter how large the atgy ~ =0.69m; and mhh[001]=0.38no.5 This value gives rise to
except for one of the arms has finite length. One can observiée result that the hole is extremely anisotropic distributed in
this result from the contour plots of the probabilities depictedTQW structure. However, it should be still bounded as we
in Fig. 7 fore=1 and Fig. 8 fora<1. already mentioned.
It often involves anisotropic factors in semiconductor

systems. The anisotropic Hamiltonian for an anisotropiccl Effects of magnetic fields on the electronic bound
heavy hole at zero field is given by state in a QD

K2 92 R 2
— |+ V(X,y). (16

For simplicity and clarity, the QDs are considered to be
* 2 + * 2
2my Jx= - 2my dy

formed on symmetric two-dimensional LQW and TQW sys-
tems, that is only the case W,=W, . The calculated bound
state energies of the electrons in the QD formed in LQWSs
9?92 - under the magnetic fields are plotted as functions of the field
72| TVY). (17) strengthf =A w./E;, as depicted in Fig.(®) for case of both
arms and in Fig. @) for case of only one arm in the LQW
system subjected to magnetic field, whesg is cyclotron
(a) a=1/1.01 (b) a=1/1.05 frequency of the electron. One can observe that the bound
state always exists when the magnetic field is applied to both
arms. The energy level of the electron in this case is mono-
tonically increased while the magnetic field is increased. In
the contrast, curvé) shows the energy of the bound state of
the electron is pushed up by the applied magnetic field, and
then it goes up tde;. Thus, the electron can escape via the
field free arm.

For the symmetric TQW, there are two main configura-
tions of the applications of magnetic fields. The case of sym-
metrically applying magnetic fields to the system includes
three types which are shown in Fig. 10. In Fig. 10, cu@e
displays the confinement energy versus the field strength
when all arms are acted by the same magnetic fieldurve
(b) displays the energy versus the field strength when the two
horizontal arms are acted by the same magnetic field, and

FIG. 8. The contour plots of the relative probability of the electron bound CUIve (C) di_splays that only the Vertical arm is acted by the_
state in an asymmetric TQW. magnetic field. The same quadratic dependence of magnetic

A=—

Lety=(m}/m})"%, then Eq.(16) can be rewritten as
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magnetic field. The dimensionless field strenfith normalized byE; . E,.

0.75

n
s

FIG. 12. The bound state energyf T-shaped QW as a function of the field

field of the bound state energy of the electron is revealed
again for the weak field strength, and the linear dependendhe case of the magnetic fields applying to regidarlregion
appears in the strong field region as the case of LQW. Foll) and region Il of the TQW system, and curi® of Fig.
these symmetric configurations of magnetic field, the bound 2 presents that of the magnetic field applying to regicor |
state always exists. It is found that the more arms are actegion Il) only. These curves consist of the former result that
by the magnetic field, the higher energy of the bound state afhe more regions are acted by magnetic fields, the higher
the electron is obtained due to the stronger depletion effecenergy of the bound state of the electron are obtained. And
The guadratic dependence region is wider if the depletiorirom Fig. 13a), it can be observed that the energy of the
effect is smaller, as shown in curvé, (b), and(c) of Fig. bound state approaché&s for a higher magnetic strength.
10. Obviously, the bound state level of the electron in a TQWThis is a similar consequence of the conclusion obtained in
system locates deeper than that in a LQW, that is, the TQWhe LQW system. The behavior is also found from cufe
system has a weaker confinement potential than the LQWSf Fig. 12, however, its value approaches the energy of the
system. This causes a deviation of bound energies abo@D in a symmetric LQW system. Both curvés and(b) of
0.1, . We also calculated several relative probability con-Fig. 12 show quadratic feature for weaker magnetic field
tours of the bound state of the electron under the magneticegions due to the depletion effect of magnetic field. Com-
fields as displayed in Fig. 11. pare curvesa) and(b) of Fig. 12, one can notice that a wider
For the case of inhomogeneous magnetic field applyingjuadratic region directly reflects the weaker depletion effect
on the TQW, the energy levels of electron are shown inof the magnetic fields.
curves(a) and (b) of Fig. 12. Curve(a) of Fig. 12 presents The external perpendicular magnetic fields introduce a
depleting effect on electrons and add an extra potential sur-
rounding the QD. From Eq<€7), (8), and(9), one can ob-
serve that the effective potentials introduced by the magnetic
fields arek dependent. For the bound state, these effective
potentials are complex due to the pure imaginiy There-
fore, one cannot easily figure out the effective potentials.
One can expect intuitively that the magnetic field adds
the lowest Landau levet w /2=%feB/2m* directly to the
quantum dot systertin the corner regionan extra potential.
Such levels are added into the wire regions surrounding the
QD. However, the field plays another role due to the essen-

0.5{i 0.5}:

tial physics of the magnetism. Qualitatively, one can under-
0 ) 0 : stand the effect induced by the magnetic field on the bound
_05L 1 _g5L i state of the electron by considering an one-dimensional shal-
-1 0 1 -1 0 1 low quantum well with finite height),. In the limit of shal-
FIG. 11. The contour plots of the relative probability of the electron boundIOW well, there is only one bound state exists in the well. Its

state in TQW under the magnetic field. level energy is given bfEq=U,— (m*W?/242)U3 28 which
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