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Abstract

In this paper, a recurrent neural network (RNN) based prosodic modeling method for Mandarin speech-to-text

conversion is proposed. The prosodic modeling is performed in the post-processing stage of acoustic decoding and aims

at detecting word-boundary cues to assist in linguistic decoding. It employs a simple three-layer RNN to learn the

relationship between input prosodic features, extracted from the input utterance with syllable boundaries pre-determined

by the preceding acoustic decoder, and output word-boundary information of the associated text. After the RNN

prosodic model is properly trained, it can be used to generate word-boundary cues to help the linguistic decoder solving

the problem of word-boundary ambiguity. Two schemes of using these word-boundary cues are proposed. Scheme 1

modifies the baseline scheme of the conventional linguistic decoding search by directly taking the RNN outputs as

additional scores and adding them to all word-sequence hypotheses to assist in selecting the best recognized word se-

quence. Scheme 2 is an extended version of Scheme 1 by further using the RNN outputs to drive a finite state machine

(FSM) for setting path constraints to restrict the linguistic decoding search. Character accuracy rates of 73.6%, 74.6%

and 74.7% were obtained for the systems using the baseline scheme, Schemes 1 and 2, respectively. Besides, a gain of 17%

reduction in the computational complexity of the linguistic decoding search was also obtained for Scheme 2. So the

proposed prosodic modeling method is promising for Mandarin speech recognition. � 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Prosody is an inherent supra-segmental feature
of human’s speech. It carries stress, intonation

pattern, and timing structure of continuous speech
which, in turn, decide naturalness of the speech
(Wightman and Ostendorf, 1994). In the past,
prosodic information was rarely used in speech
recognition. But it became an interesting research
issue in recent years. A general statement of the
function of prosodic modeling for speech recog-
nition is to explore the prosodic phrasing of the
testing utterance for providing useful information
to help linguistic decoding in the next stage. The
main concern of the prosodic phrasing issue is to
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build a model describing the relationship between
input prosodic features extracted from the testing
utterance and output linguistic features of the as-
sociated text. Two primary approaches of prosodic
modeling are based on the boundary-label-
ing scheme with or without using phonological
knowledge. Most methods in the approach using
phonological knowledge employ statistical models,
such as decision-tree and hidden Markov model
(HMM), to detect prosodic phrase boundaries,
word prominence, or word accent type (Bou-
Ghazale and Hansen, 1998; Wightman and
Ostendorf, 1994; Iwano and Hirose, 1998, 1999).
These detected cues are used to help resolving
syntactic boundary ambiguity (Niemann et al.,
1997; Price et al., 1991), reordering N-best acous-
tically decoded word sequences (Hunt, 1994;
Kompe et al., 1995), or improving mora recognition
for Japanese speech (Iwano and Hirose, 1999).
The statistical model used in the approach can be
trained using a large speech database with major
and minor breaks of the prosodic phrase structure
and/or prominence levels of words being given via
properly labeling. A well-known prosody labeling
system is the Tones and Break Indices (TOBI)
system (Grice et al., 1996; Silverman et al., 1992)
which labels prosodic phrase boundaries using a
seven-level scale. Two main problems of the ap-
proach can be found. One is that the prosodic la-
beling of training utterances must be done by
linguistic experts. This is a cumbersome work.
Besides, the consistency in labeling is difficult to
maintain over the whole database. The other is
that it needs to further explore the relationship
between labels of prosodic phrase boundary and
the syntactic structure of the associated text
for properly using the detected prosodic phras-
ing information in linguistic decoding. The other
approach which does not use phonological
knowledge directly uses syntactic features of the
associated text as the output targets for modeling
the prosodic features of the input utterance (Bat-
liner et al., 1996; Kompe et al., 1997; Price et al.,
1991; Hirose and Iwano, 1997, 1998). One problem
of the approach is that the syntactic phrase
structure is not completely matched with the pro-
sodic phrase structure. Most prosodic phrases
contain one to several syntactic phrases. In some

cases, a long syntactic phrase can split into several
prosodic phrases. This mismatch may degrade the
accuracy of the prosodic modeling and hence de-
creases its usability in linguistic decoding. A hy-
brid approach which takes the prosodic tendency
and syntactic compatibility into consideration was
also studied recently (Batliner et al., 1996; Kompe
et al., 1997). A new prosody-labeling scheme
which includes perceptual-prosodic boundaries
and syntactic boundaries was developed in such a
hybrid approach.
Prosodic modeling is even more important for

Mandarin speech recognition as compared with
that for other word-based languages such as
English. This is because Chinese is a character-
based language. A Chinese text is composed of
clauses and sentences which are ended with punc-
tuation marks (PMs) such as comma and period.
A clause or sentence is formed by concatenating
words which consist of one to several characters.
Although word is the smallest meaningful unit in
syntax, character is the basic pronunciation unit.
Each character is pronounced as a syllable with
which a tone associates. Due to the fact that
there are no special marks used to delimit word
boundaries, inter-word syllable boundaries are, in
general, not specially emphasized in pronouncing
a Chinese text. This makes the determination of
word boundary be a problem to be solved in
Mandarin speech-to-text conversion. Convention-
ally, the problem is solved in linguistic decoding
using the acoustic decoding results and some sta-
tistical language models such as word-class bigram
model. But, due to the fact that human beings rely
mainly on prosodic information in their word
perception, a proper prosodic modeling can surely
provide useful cues to assist in solving the prob-
lem. In some cases, cues provided by a prosodic
model are more efficient than a statistical language
model. This is demonstrated by the following ex-
ample in which S1 and S2 show two output can-
didate sentences of a linguistic decoding with and
without the help of prosodic information for the
same acoustically decoded syllable sequence:
S1. (Chu-Yung Kuan
is a military strategic frontier pass.)
S2. (Chu-Yung Kuan
soldier’s home military strategic frontier pass.)
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Here, the vertical bars in S1 indicate the word
boundary cues suggested by a prosodic model (to
be discussed in Section 2). The sentence S2, which is
an incorrect result, is generated by a conventio-
nal linguistic decoder based on a language model
involving word unigram and word-class bigram
probabilities. The sentence S1, which is a correct
one, is obtained by our proposed method which
incorporates an RNN prosodic model with the
above conventional linguistic decoder. In the past,
the studies of prosodic modeling for Mandarin
speech recognition were few (Bai et al., 1997; Hsieh
et al., 1996; Lyu et al., 1995). In the Golden
Mandarin dictation machine (Lyu et al., 1995), the
concept of breath group was used to make the rec-
ognition operate on a prosodic-segment-by-pro-
sodic-segment mode. Bai et al. (1997) used pitch and
energy features to detect possible syllable and word
boundaries for pruning unnecessary path searches in
keyword recognition. Hsieh et al. (1996) used energy
and pitch information to detect syllable boundaries
and used syllable-lengthening factor to detect phrase
boundaries for reducing the computational com-
plexity of recognition search. Although the recog-
nition speeds improved significantly in those studies,
slight losses on the recognition rates were paid.
In this paper, a new RNN-based prosodic

modeling method for Mandarin speech recogni-
tion is proposed. It is performed in the post-pro-
cessing stage of acoustic decoding and aims at
detecting word-boundary cues of the input utter-
ance to help the following linguistic decoder solv-
ing the problem of word-boundary ambiguity. It
uses an RNN to detect the word-boundary infor-
mation from the input prosodic features extracted
from the testing utterance with syllable boundaries
pre-determined by the preceding acoustic decoder.
The detected word-boundary information is then
used in linguistic decoding to assist in determining
the best word (or character) sequence.
Two distinct properties of the proposed method

can be found as compared with previous studies
(Batliner et al., 1996; Grice et al., 1996; Kompe
et al., 1997; Silverman et al., 1992). One is that it
adopts word boundary information as the output
targets to be modeled instead of the conventional
multi-level prosodic marks, such as the TOBI sys-
tem (Grice et al., 1996; Silverman et al., 1992), or

the prosodic-syntactic features (Batliner et al.,
1996; Kompe et al., 1997). This leads to the fol-
lowing three advantages although the performance
of word boundary detection may be degraded for
some cases when two or more words are combined
into a word chunk and pronounced within a pro-
sodic phrase. First, it uses an RNN to automati-
cally learn to do prosodic phrasing of Mandarin
utterance and implicitly stores the mapping within
the internal RNN representation. No explicit pro-
sodic labeling of the speech signals is needed. Sec-
ond, it is easy to incorporate the prosodic model
into the linguistic decoder by a soft-decision
scheme which directly takes the RNN outputs as
additional scores, or by a partial-soft-and-partial-
hard-decision scheme which uses the RNN outputs
to drive an FSM for setting path constraints to
restrict the linguistic decoding search (to be dis-
cussed in Section 3). Both of them can cope with
the performance degradation on word boundary
detection caused by pronouncing a word chunk
within a prosodic phrase. Third, it is relatively easy
to prepare a large training database without the
help of linguistic experts. Only a simple word tok-
enization system is needed to analyze the texts as-
sociated with the training utterances for finding the
output targets to be modeled. Neither complicated
syntactic analyses nor cumbersome prosodic-mark
labeling are needed. Another property of the pro-
posed method lies in its use of neural network
technology to solve the prosodic phrasing problem.
The organization of the paper is stated as fol-

lows. Section 2 presents the proposed prosodic
modeling method. Section 3 describes the func-
tional blocks of the Mandarin speech-to-text
conversion system. The way of incorporating the
prosodic model into linguistic decoding is dis-
cussed in detail. Effectiveness of the prosodic
modeling method and its usefulness in helping
linguistic decoding were evaluated by simulation
experiments and are discussed in Section 4. Some
conclusions are given in Section 5.

2. The proposed prosodic modeling method

Before discussing the proposed prosodic model-
ing method, we briefly introduce the characteristics
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of Mandarin Chinese. Mandarin Chinese is a
tonal and syllabic language. There exist more than
80,000 words, each composed of one to several
characters. There are more than 10,000 commonly
used characters, each pronounced as a mono-syl-
lable with one of five tones. The total number
of phonologically allowed mono-syllables is only
1345. All mono-syllables have a very regular, hi-
erarchical phonetic structure as shown in Fig. 1
(Cheng, 1973). A mono-syllable is composed of a
base-syllable and a tone. There are in total 411
base-syllables. A base-syllable can be further de-
composed into two parts: an optional initial (onset
(Yin, 1989)) and a final (rime (Yin, 1989)). The
initial part contains a single consonant if it exists.
The final part consists of an optional medial (semi-
vowel (Wu, 1998)), a vowel nucleus, and an optional
nasal ending (coda (Yin, 1989)). These 411 base-
syllables are formed by all legal combinations of 21
initials and 39 finals. These 39 finals are, in turn,
formed by the combinations of 3 medials, 9 vowel
nuclei and 5 nasal endings. There are only five lexical
tones, namely, Tone 1 (or high-level tone), Tone 2
(or high-rising tone), Tone 3 (or low-dipping tone),
Tone 4 (or high-falling tone), and Tone 5 (or neu-
tral tone). Conventionally, a complete continuous
Mandarin speech recognition system is generally
composed of two components: acoustic decoding
for mono-syllable identification and linguistic de-
coding for word (or character) string recognition.
Owing to the regular hierarchical phonetic structure
of mono-syllables, acoustic decoding is tradition-
ally further decomposed into two sub-components:
base-syllable recognition and tone recognition. In
this study, we add a new RNN-based prosodic
model to the conventional continuous Mandarin
speech recognition system via inserting it in between
acoustic decoding and linguistic decoding.

Fig. 2 shows a block diagram of the proposed
RNN-based prosodic modeling method. It oper-
ates in two phases: a training phase and a testing
phase. In the training phase, each training utter-
ance is first processed in acoustic decoding to
obtain the best syllable-boundary segmentation
matching with the associated text. Some prosodic
features are then extracted based on the best syl-
lable-boundary segmentation. Meanwhile, the text
associated with the input utterance is tokenized
using a statistical model-based method to extract
some word-boundary information. An RNN pro-
sodic model is then trained to learn the relation-
ship between the input prosodic features of the
training utterance and the output word-boundary
information of the associated text. In the testing
phase, the input utterance is first processed in
acoustic decoding to generate a top-N base-sylla-
ble lattice (to be discussed in detail in Section 3).
Some prosodic features are then extracted based
on the syllable-boundary segmentation of the top-
1 base-syllable sequence. The well-trained RNN
prosodic model is then employed to generate out-
put word-boundary cues for the base-syllable lat-
tice by using these input prosodic features. An
FSM is then used to discriminate reliable outputs
of word-boundary cues from unreliable ones.
These detected word-boundary cues are lastly used
to help linguistic decoding in the next stage. Fig. 3
shows the architecture of the simple RNN. It is a
three-layer network with all outputs of the hidden
layer being fed back to the input layer as addi-
tional inputs (Elman, 1990). An RNN of this type
has been shown in some previous studies (Chen
et al., 1998; Elman, 1990; Robinson, 1994) to
possess a good ability of learning the complex re-
lationship of the input feature vector sequence
and the output targets via implicitly storing the

Fig. 1. The phonological hierarchy of Mandarin syllables. Here, the number within a parenthesis indicates the total number of the

specified unit in Mandarin Chinese.
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contextual information of the input sequence in its
hidden layer. So it is suitable for the problem of
realizing a complex mapping between the input
prosodic features and the output linguistic fea-
tures. The RNN can be trained by the back
propagation through time (BPTT) algorithm
(Haykin, 1994).
Inputs of the RNN prosodic model include

some acoustic features extracted from several syl-
lable segments, of the top-1 base-syllable sequence,
surrounding the current syllable segment. Features
used in this study are selected based on their close

relation with the prosody of speech signal. It is
known that pitch, energy and timing information
are prosody-related features and, hence, widely
used in some previously prosodic-modeling studies
(Campbell, 1993; Hirose and Iwano, 1997, 1998;
Kompe et al., 1995; Wightman and Ostendorf,
1994). Since prosody is a supra-segmental feature
of speech signal, prosody-related features to be
considered must be for speech segments much
larger than frame. In this study, we choose syllable
segment as the basic unit to extract features for
prosodic modeling because syllable is the basic
pronunciation unit. For each syllable segment
of the top-1 base-syllable sequence, two prosodic
feature sets are extracted. One contains some local
features of the current syllable segment, while the
other contains some contextual features extracted
from the syllable segment and its two nearest
neighbors. Fig. 4 shows a schematic diagram of the
feature extraction. Local features in the first set
include: (1) the mean Mt and slope St of the pitch
contour of the current syllable segment, (2) the
log-energy mean Et and the normalized log-energy
mean NEt of the final part of the syllable segment
and (3) the normalized duration NDt of the syllable
segment. Here t is the index of the syllable segment
and the two normalization operations are per-
formed with respect to the final type F ðtÞ of the tth

Fig. 2. A block diagram of the RNN-based prosody modeling method.

Fig. 3. The structure of the prosodic-modeling RNN.
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syllable segment. The normalization operation is
discussed as follows. Let the mean and standard
deviation of the log-energies of finals with type
F ðtÞ be lE

F ðtÞ and rE
F ðtÞ, respectively. Then NEt is

obtained by first subtracting lE
F ðtÞ from the log-

energy mean Et and then being divided by rE
F ðtÞ.

The same normalization process is performed on
the duration of the syllable segment to calculate
NDt. We note that these two normalization oper-
ations are to compensate the high variabilities of
final on both log-energy level and syllable dura-
tion. The reasons of using these local features in
the prosodic modeling study are briefly discussed
as follows. Pitch mean and log-energy mean of
syllable segment are useful in discriminating dif-
ferent states of a prosodic phrase because both the
pitch level and the log-energy level in the begin-
ning part of a prosodic phrase are usually much
higher than those in the ending part. Duration of
syllable segment is useful in identifying the ending
point of a prosodic phrase because the lengthening
effect always occurs at the last syllable of a pro-
sodic phrase.

The second set contains contextual features
extracted from the current syllable segment and its
two nearest neighbors. They include: (1) two flags
indicating whether the current syllable segment is,
respectively, the beginning and ending syllable
segments, FB and FE, of a sentence, (2) two values
showing the durations, dpp and dsp, of the non-
pitch segments between the current pitch contour
and its two nearest neighbors, (3) two normalized
inter-syllable pause durations, Ndps and Ndss, be-
sides the current syllable, (4) two pitch mean
differences, Mt �Mt�1 and Mt �Mtþ1, and (5) two
log-energy mean differences, Et � Et�1 and Et �
Etþ1, between the current syllable and its two
nearest neighbors. Here the two normalized val-
ues, Ndps and Ndss, are performed with respect to
the initial types, IðtÞ and Iðt � 1Þ, of the current
and succeeding syllables, respectively. Specifically,
let the mean and standard deviation of the pause
durations preceding initials of type IðtÞ be lpd

IðtÞ and
rpd
IðtÞ. Then, Ndps is obtained by subtracting lpd

IðtÞ
from the pause duration dps preceding the syllable
segment and then being divided by rpd

IðtÞ. The same

Fig. 4. A schematic diagram showing the extraction of the input prosodic features for the RNN-based prosodic modeling.
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normalization process is applied to the pause du-
ration dss following the syllable segment to obtain
Ndss. These two normalization operations are used
to compensate the affection of the succeeding ini-
tial on pause duration. It is noted that the pitch
mean and log-energy mean are set to zero for a
missing preceding or succeeding syllable segment.
Besides, dpp and dsp are set to zero for the first and
last syllable segments of a sentence, respectively.
The reasons of using these features in the prosodic
modeling study are discussed as follows. The first
two parameters in (1) are to set the boundary
conditions. The use of inter-syllable pause dura-
tion is to consider its relatively large value for both
major and minor breaks. The uses of pitch mean
difference and energy mean difference are to con-
sider the relatively large jumps of the pitch level
and the energy level at prosodic phrase bound-
aries. Notice that similar features have been used
in some previous studies. For instances, funda-
mental frequency mean difference of mora was
used in the detection of the accent type of prosodic
word (Iwano and Hirose, 1998, 1999; Iwano,
1999). There are in total 15 prosodic features ex-

tracted for each syllable segment. The number of
input features for each syllable segment with its
two nearest neighbors therefore equals to 105. The
issue of the suitable amount of input features for
this problem can be raised for discussion. How-
ever, based on the dimensionality reduction func-
tion of multi-layer neural network (Morgan and
Scofield, 1991), the extracted features in the hidden
layer of a multi-layer neural network correspond
to a low-dimensional projection from the input
feature space to the input pattern space. Non-
essential information for output classification can
be removed automatically.
The evolution of the calculation of prosodic

features in a sample utterance is shown in Fig. 5.
The waveform and the segmentation information
are shown in the upper part of this figure. The
utterance contains 11 syllables. The solid lines,
dashed lines and dotted lines represent the starting
points of syllables, the junctions of initial and final
and the ending points of syllables, respectively.
The middle part of this figure shows the F 0 con-
tour of the utterance. The star symbols represent
the F 0 means of these 11 syllables. The energy

Fig. 5. The waveform, segmentation information, F 0 contour and energy contour of the sample utterance ‘‘/ch2/ /yeh4/ /lan2/ /chiu2/ /
dui4/ /yuan2/ /shen1/ /tsai2/ /hsiang1/ /dang1/ /kao1/’’ (The professional basketball players are very tall.).
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contour of the utterance is shown in the lower part
of this figure. The star symbols represent the en-
ergy means of these 11 syllables. All the prosodic
features can be calculated based on the segmen-
tation information, the F 0 mean and the energy
mean shown in this figure. It can be seen from this
figure that the features of F 0 mean and energy
mean can represent well the global variations of
utterance. Moreover, in order to considering the
affection from a wider context in the prosodic
modeling, the prosodic feature sets of the current
syllable segment and its six nearest neighbors are
assembled and taken as the inputs of the RNN
prosodic model. In the feature-assembling process,
two things need to be specially taken care. One is
the elimination of some duplicate contextual pro-
sodic features collected across several neighboring
syllable segments. This can increase the efficiency
of the prosodic modeling. The other is the setting
of boundary conditions for some syllable segments
in the beginning and ending parts of every utter-
ance. A simple scheme to set all non-existing
prosodic features to zero is adopted in this study.
Investigating the responses of the RNN prosodic
model to the boundary conditions confirmed the
suitability of the simple boundary-condition-set-
ting scheme.
The outputs of the prosodic-modeling RNN

include four linguistic features. These four flags
indicating whether the current syllable is a mono-
syllabic word or is the beginning syllable, the in-
termediate syllable, or the ending syllable of a
polysyllabic word. These four output features are
denoted as MW (a mono-syllabic word), BPW (the
beginning syllable of a polysyllabic word), IPW
(an intermediate syllable of a polysyllabic word)
and EPW (the ending syllable of a polysyllabic
word), respectively. To prepare output targets for
training the RNN, texts associated with all train-
ing utterances are tokenized into word sequences
in advance by an automatic statistical model-based
algorithm with a long-word-first criterion (Su,
1994). The algorithm was tested to achieve a word
tokenization accuracy rate around 97% (Su, 1994).
Here, a lexicon containing 111,243 words is used
in the tokenizing process. Besides, several simple
word-merging rules are used to improve the word
tokenization. They are bracketing rules which

construct some types of compound words, missing
in the current lexicon, including character-dupli-
cated compound words (e.g., (happy)),
determiner-measure compound words (e.g.,
(one type)), short verb–preposition compound
words (e.g., (sit at)), noun-localizer compound
words (e.g., (inside forest)), short adverb–
verb compound words (e.g., (can predict)),
negation-verb compound words (e.g., (not
keep time)), short adjective–noun compound
words (e.g., (small stone)), etc. Some toke-
nization errors are corrected manually. All output
targets to train the RNN are extracted from these
tokenized word sequences. It is worth noting that,
owing to the following two reasons, we do not use
high-level syntactical features, such as syntactic
phrase boundaries, in this study. One is that it is
generally not easy to do syntactic analysis for
unlimited texts of natural Chinese language. The
other is that the syntactic structure of a Chinese
text is not isomorphic to the prosodic phrase
structure of the corresponding Mandarin speech.
To check the classification ability of the RNN,

the four flags showing the location of the current
syllable in a word are considered. This flag set is
referred to as Word-tag. An FSM is used to ex-
amine whether the responses of the RNN are good
enough to make reliable classifications for this flag
set. The purpose of the FSM is to provide a par-
tial-hard-and-partial-soft classification scheme for
safely invoking the classification results into the
speech recognition process. We can therefore take
the advantage of pre-classifying the input speech
signal to design a sophisticated search procedure
for the recognition process when the pre-classifi-
cation is reliable and to simultaneously avoid un-
amendable speech recognition errors caused by
pre-classification errors. The topology of the
Word-tag FSM is shown in Fig. 6. The symbols
‘‘M’’, ‘‘B’’, ‘‘I’’, ‘‘E’’ and ‘‘U’’ shown in the Word-
tag FSM denote ‘‘MW’’, ‘‘BPW’’, ‘‘IPW’’, ‘‘EPW’’
and uncertain states, respectively. The operation
of the FSM is stated as follows. When one RNN
output is higher than the other three outputs by a
threshold Thd and is also higher than a high
threshold Thh, it moves to the associated stable
state if it is a legal one; otherwise it moves to an
uncertain (U) state. These two thresholds are de-
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termined empirically by considering the tradeoff
between the classification accuracy rate and the
number of undetermined responses.

3. The mandarin speech-to-text conversion system

invoking with the RNN prosodic model

A complete block diagram of the proposed
speech-to-text system invoking with the RNN
prosodic model is shown in Fig. 7. The input
speech is first preprocessed to extract some
acoustic features for base-syllable recognition.
Recognition features extracted include 12 Mel-
frequency cepstral coefficients (MFCCs), 12 delta
MFCCs, and a delta log-energy. Then, HMM-

based base-syllable recognition is done to generate
a top-N base-syllable lattice. The HMM recognizer
uses 100 three-state right-final-dependent (RFD)
initial models and 39 five-state context-indepen-
dent (CI) final models to form 411 eight-state base-
syllable models and is trained using the maximal
likelihood criterion. For silence, a single-state
model is used. The observation features in each
HMM state is modeled by a mixture Gaussian
distribution. The number of mixture components
in each state of these models is variable with a
range from 1 to 20. The number of mixture com-
ponents used in each HMM state depends on the
number of training data. The top-N base-syllable
lattice is generated by the Viterbi-parallel-back-
trace method (Huang and Wang, 1994). The
method consists of two steps: a forward one-stage
Viterbi search and a parallel-backtracking (PB)
procedure. In the first step, the top-1 base-syllable
string matching with the input utterance is ob-
tained by a one-stage Viterbi search. The corre-
sponding base-syllable boundaries are detected by
decoding the top-1 base-syllable string through a
simple backtracking procedure. Then, in the sec-
ond step, the PB procedure is applied to expand
the top-1 base-syllable string to the top-N base-
syllable lattice. The PB procedure keeps all
base-syllable boundaries and expands all top-1
base-syllables in parallel to produce the base-syl-
lable candidates of the top-N base-syllable lattice.
For each top-1 base-syllable, it first sets a search
range by letting the end boundary be fixed to the
ending point of the top-1 base-syllable segment
and relaxing the beginning boundary to a small
range of the beginning point of the top-1 base-
syllable. It then matches the speech segment in
the search range with HMM models of all base-
syllables other than the top-1 base-syllable to find
the remaining top-N base-syllable candidates by
time-reversed Viterbi searches.
With all base-syllable boundaries pre-deter-

mined by the HMM base-syllable recognizer, tone
recognition and prosodic modeling are then per-
formed. Since the tonality has lexical meaning as
discussed in Section 2, tone recognition is impor-
tant in Mandarin speech recognition. An RNN
tone recognizer (Wang and Chen, 1994) is used in
this study. It also employs an RNN with the same

Fig. 6. The topologies of the Word-tag FSM.

Fig. 7. A functional block diagram of the proposed Mandarin

speech-to-text conversion system.
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structure shown in Fig. 3 to discriminate the five
lexical tones using recognition features extracted
from the speech part surrounding the current syl-
lable. The feature extraction is discussed as fol-
lows. Given with all base-syllable boundaries, two
sets of local features and contextual features are
extracted for every syllable. The local features are
extracted from the current syllable segment and
include: (1) four orthogonal transformed coeffi-
cients (Chen et al., 1998) representing the mean
and the shape of the pitch contour, (2) the log-
energy mean, (3) the duration of the syllabic pitch
contour, (4) the syllable initial type, (5) the syllable
medial type, (6) the syllable final type and (7) the
syllable nasal-ending type. The contextual features
include: (1) eight orthogonal transformed coeffi-
cients representing the pitch contours of the two
nearest neighboring syllables, (2) FB and FE, (3) dpp
and dsp and (4) Ndps and Ndss. There are in total 53
features used in the tone recognition. Note that
some features are simultaneously used for RNN
prosodic model and RNN tone recognizer. By
using the above tonal features, the RNN tone
recognizer generates the best M tone candidates
for each base-syllable segment.
Then the outputs of the base-syllable recog-

nizer, the tone recognizer, and the prosodic models
are all fed into the linguistic decoder to generate
the recognized word (character) string. The lin-
guistic decoder first combines the top-N base-
syllable lattice generated by the base-syllable
recognizer, with the best M tone candidates gen-
erated by the tone recognizer, to form an M � N
tonal-syllable lattice. It then performs a decoding
search on the syllable lattice to find the best word
string. The decoding search employs a Viterbi
search algorithm invoking with a word-construc-
tion process and a statistical language model. The
word-construction process uses a lexicon contain-
ing 111,243 entries. Each entry consists of one to
five syllables. A backward lexical tree is built from
the lexicon for word construction. Each node of

the lexical tree represents a tonal syllable. The
node number in each layer of the lexical tree is
listed in Table 1. Fig. 8 shows a small portion of
the lexical tree. Here nodes circled with solid and
dashed lines represent leaf and intermediate nodes,
respectively. There may exist a list of homonym
words on a leaf node. The detailed information
registered in each node includes the address of next
node in the same layer, the address of child node in
the succeeding layer, the tonal-syllable code, a flag
showing whether the current syllable is the begin-
ning syllable of a word, the word unigram prob-
ability, and a list of all homonym words. The
statistical language model used in the linguistic
decoding search accommodates both word-uni-
gram and word-class-bigram probabilities. Word
classes used in the calculation of word-class-
bigram probabilities are generated by a simple
word classification scheme which considers a spe-
cial property of Chinese language. The property
says that many polysyllabic words sharing the
same beginning or ending character have the same

Table 1

The node number distribution of the lexical tree

Layer no. First layer Second layer Third layer Fourth layer Fifth layer Total

Node number 1217 69811 37169 14238 808 123243

Fig. 8. A small part of the backward lexical tree.
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function in syntax or semantics (Yang et al., 1994).
For examples, (train), (car), (bi-
cycle), etc., all end with the character ‘‘ ’’ which is
a generic name of vehicle; (vice chairman),

(vice president), (vice principal), etc.,
all begin with the character ‘‘ ’’. Two sets of word
classes are generated to comply with the special
property. One is formed by clustering all words
with the same beginning base-syllable into a class.
It is referred to as CR. The other is formed by
clustering all words with the same ending base-
syllable into a class and is referred to as CL. Both
CR and CL contain 411 word classes. Each word-
class-bigram probability, therefore, represents the
frequency of a word-class-pair with the left and
right word classes belonging to CL and CR, re-
spectively. A well-tagged corpus which contains
about three million words (Chinese Knowledge
Information Processing Group, 1995) is used to
train the statistical language model. Although the
number of all possible combinations of right and
left word classes is 411� 411, there exist only
73761 combinations in the corpus. All missing
word-class-bigram probabilities are simply as-
signed a low probability value.
Invoking with the word-construction process

and the statistical language model, the Viterbi
search calculates discriminant scores for all word
sequence hypotheses and finds the best word se-
quence with maximal discriminant score as the
recognized result. Three searching schemes are
used in this study. They include the conventional
(baseline) scheme and two schemes assisted with
the proposed RNN prosodic model. In the base-
line scheme without invoking the prosodic model,
the Viterbi search starts a searching process at
each syllable segment of the syllable lattice. The
searching process continues backward along
the syllable lattice and ends at the location of the
fourth syllable segment ahead because the maxi-
mum word length is five for the lexicon used in the
study. In the backward searching process, all
possible words with lengths from one to five syl-
lables are constructed using the backward lexical
tree. The score of each word-sequence candidate
W is formed by combining the likelihood scores
of all constituent base-syllables provided by the
HMM base-syllable recognizer, the scores of all

constituent tones provided by the RNN tone rec-
ognizer, the unigram probabilities of all constitu-
ent words, and the bigram probabilities of all
constituent word-class-pairs, i.e.,

LðW Þ ¼
XK
k¼1

wHMM lnðpHMMðbkÞÞ

þ
XK
k¼1

wtone lnðoðtkÞÞ þ
XL

l¼1
wUG lnðpUGðwlÞÞ

þ
XL

l¼2
wBG lnðpBGðCRðwlÞjCLðwl � 1ÞÞÞ;

ð1Þ

where W ¼ fw1w2; . . . ;wLg ¼ fs1s2; . . . ; sKg con-
sists of Lwords or equivalentlyK syllables, wl is the
lth word, sk ¼ ðbk; tkÞ is the kth syllable formed by
base-syllable bk and tone tk; oðtkÞ is the score of tone
tk, pHMMðbkÞ is the likelihood score of base-syllable
bk, pUGðwlÞ is the unigram probability of word wl,
pBGðCRðwlÞjCLðwl�1ÞÞ is the word-class-bigram
probability of the word-pair (wl�1, wl), and
wHMM;wtone;wUG and wBG denote the weights for
the four different scores. A discriminating optimi-
zation experiment (Chiang et al., 1996) has been
conducted in finding the suitable weights to inte-
grate the four different scores. Two schemes of in-
corporating the RNN prosodic model into the
linguistic decoding are proposed. Scheme 1 modi-
fies the baseline scheme by directly taking the
outputs of the prosodic-modeling RNN as addi-
tional scores and changing the recognition score by

L0ðW Þ ¼ LðW Þ þ
XK
k¼1

wPMlPMðskÞ; ð2Þ

where

lPMðskÞ ¼
lnðoMWðkÞÞ if sk is a mono-syllabic word;
lnðoBPWðkÞÞ if sk is the beginning syllable of

a polysyllabic word;
lnðoIPWðkÞÞ if sk is an intermediate syllable

of a polysyllabic word;
lnðoEPWðkÞÞ if sk is the ending syllable of

a polysyllabic word;

8>>>>>>>><
>>>>>>>>:

ð3Þ
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oMWðkÞ; oBPWðkÞ; oIPWðkÞ and oEPWðkÞ are, respec-
tively, the MW, BPW, IPW and EPW outputs of
the prosodic modeling RNN at syllable sk and wPM
denotes the corresponding weight for this score.
The suitable weights of wHMM;wtone;wUG;wBG and
wPM are obtained via using a joint optimization
experiment (Chiang et al., 1996). Scheme 2 is an
extended version of Scheme 1. In addition to using
the new recognition score defined in Eq. (2),
Scheme 2 also uses the word-boundary informa-
tion provided by the Word-tag FSM to set path
constraints to further restrict the Viterbi search.
Different constraints are set for the five states of M
(MW), B (BPW), I (IPW), E (EPW) and U (un-
certain). Generally, more restrictive searches are
used for the three decisive states of M, B and E
while full searches are used for I and U states.
Specifically, when a syllable segment of the input
syllable lattice is classified as an M state, a B state,
or an E state, we restrict it to be a mono-syllabic
word, the beginning syllable of a polysyllabic
word, or the ending syllable of a polysyllabic word
in the Viterbi search. Otherwise, for an I state or
a U state, we do not set any restrictions to the
searching process. In realization, Scheme 2 modi-
fies the Viterbi search of the baseline scheme by
letting a backward searching process be activated
only when the current syllable segment is at M, E,
I or U state and stopped at a syllable segment with

B or M state or before a syllable segment with M
or E state. It is noted here that I state is treated
in the same way as U state because many MWs,
BPWs and EPWs are erroneously classified as
IPWs (to be discussed in detail in Section 4). Fig. 9
compares the backward searching processes of the
baseline scheme and Scheme 2 for a simplified top-
2 syllable lattice labeled with the outputs of the
Word-tag FSM. In the figure, all partial paths
need to be considered for constructing candidate
words via accessing the word-lexical tree are dis-
played. It can be found from Fig. 9 that Scheme 2
has much less partial paths to be considered than
the baseline scheme. So Scheme 2 is more efficient
in computational complexity.

4. Experimental results

Effectiveness of the proposed prosodic mod-
eling method was examined by simulation ex-
periments on a speaker-dependent, continuous
Mandarin speech recognition task using a large
single-speaker database. The database contained
452 sentential utterances and 200 paragraphic
utterances. Texts of these 452 sentential utterances
were well-designed, phonetically balanced short
sentences with lengths less than 18 characters.
Texts of these 200 paragraphic utterances were

Fig. 9. The comparison of the backward searching processes of the baseline scheme and Scheme 2 for a simplified top-2 syllable lattice

labeled with the outputs of the Word-tag FSM. Here, all partial paths need to be considered for constructing candidate words via

accessing the word-lexical tree are shown.
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news selected from a large news corpus to cover
a variety of subjects including business (12.5%),
medicine (12.0%), social event (12.0%), sports
(10.5%), literature (9.0%), computers (8.0%), food
and nutrition (8.0%), etc. All utterances were
generated by a male speaker. They were all spoken
naturally at a speed of 3.5–4.5 syllables per second.
The database was divided into two parts. The one
containing 491 utterances (or 28060 syllables) was
used for training and the other containing 161
utterances (or 7034 syllables) was used for testing.

4.1. Results of the prosodic modeling

To test the proposed prosodic modeling
method, we first trained the HMM base-syllable
recognizer and used it to segment all speech
utterances into syllable sequences. Pitch is then
detected by the simplified inverse filter tracking
(SIFT) algorithm (Markel and Gray, 1976). The
SIFT algorithm first uses an LP filter to reduce
the bandwidth of the input signal to 0–1 kHz. The
LP-filtered signal is then down-sampled. Then,
a fourth-order inverse filter designed using the
autocorrelation method for linear prediction
analysis is applied to flatten the signal spectrum.
Pitch period is then detected from the inverse-fil-
tered signal by the autocorrelation method. A
second-order interpolation is then applied to in-
crease the resolution of the detected pitch period.
Besides, a simple error correction is applied to
eliminate some errors with abrupt pitch jumps.
Lastly, all remaining errors are manually cor-
rected. It is noted that the manual correction effort
is much less than the manual prosodic-labeling
effort because the former task is much easier. After
we detected pitch, features for RNN-based pro-
sodic modeling were then extracted from all seg-
mented training utterances. Meanwhile, texts of all
training utterances are tokenized into word se-
quences. Word-boundary features for RNN out-
put targets were then extracted. The details of
these feature extraction processes have been de-
scribed in Section 2. The RNN prosodic model
was then trained by the BPTT algorithm. The
number of nodes in the hidden layer of the RNN is
determined empirically and set to be 30 in this
study.

Table 2 shows the classification results of the
RNN-based prosodic modeling for the output set
of Word-tag without invoking the FSM. Accuracy
rate of 71.9% was achieved for Word-tag set.
Then, the performance of the RNN-based pro-
sodic modeling invoking with Word-tag FSM was
examined. The Word-tag FSM used thresholds of
Thh ¼ 0:6 and Thd ¼ 0:3. In this FSM, an uncer-
tain state was added for the cases when the RNN
did not respond well for making reliable classifi-
cations. Experimental results are shown in Table 3.
Accuracy rate increased to 87.6% with 32.3%
outputs staying in uncertain states for Word-tag
set. Table 4 shows the classification performances
of Word-tag FSM for two sets of thresholds. It can
be found from the table that the classification ac-
curacy rate increased with a paid of putting more
syllables into U state as a more restrictive thresh-
old setting was used. Fig. 10 shows a typical
example of the Word-tag responses of the pro-
sodic-modeling RNN and the corresponding FSM
to an input sentential utterance. It can be found
from the figure that the FSM functioned well to
reliably determine all B states and some I and
E states. Lastly, it is noted that, although the
above prosodic modeling test was conducted in a

Table 2

The confusion matrix of Word-tag classification for the RNN

prosodic model. The overall classification rate is 71.9%

Result

Desired BPW IPW EPW MW

BPW 1861 317 110 52

IPW 288 1106 341 11

EPW 135 369 1774 62

MW 160 28 107 313

Table 3

The confusion matrix of Word-tag classification for the RNN

prosodic model invoking with an FSM using

Thh ¼ 0:6; Thd ¼ 0:3. The classification rate is 87.6%

Result

Desired BPW IPW EPW MW Uncertain

BPW 1547 147 27 14 605

IPW 141 720 118 1 766

EPW 56 163 1420 37 664

MW 97 7 67 198 239
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speaker-dependent mode, it can be adapted to a
speaker-independent mode via properly normaliz-
ing the input pitch and energy features by the pitch
level and loudness of each individual speaker. This
is worth further studying in the future.

4.2. An error analysis of the prosodic modeling

In this study, the linguistic features, used as
output targets to train the RNN prosodic model,
are primarily extracted based on the word toke-
nization results obtained by a simple statistical
model-based method. But, owing to the out-

of-vocabulary (OOV) problem, the tokenization
cannot be very accurate. Besides, the prosodic
phrasing of an utterance can be influenced by
many factors other than the linguistic features of
the associated text, such as word emphasis, the
need for breathing, speaking rate and emotional
status, etc. Those mismatches are harmful to the
accuracy of the RNN prosodic modeling. A detail
error analysis is therefore needed in order to
compensate those effects for making the classifi-
cation results more useful in linguistic decoding. In
the following, the classification errors shown in
Table 3 for Word-tag set were investigated.

Table 4

Performance comparison of Word-tag classifications for the RNN prosodic model without FSM and with FSM using two different sets

of thresholds

Word-tag No threshold Thh ¼ 0:6; Thd ¼ 0:3 Thh ¼ 0:8; Thd ¼ 0:6

BPW 76.1% 84.0% 91.2%

IPW 60.8% 69.4% 78.2%

EPW 76.8% 87.0% 94.8%

MW 71.5% 79.2% 87.6%

Fig. 10. An example of the Word-tag responses and the corresponding FSM outputs for a sentential utterance.
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MW errors. From Table 3, an MW was easy to be
misclassified as a BPW or an EPW. This was be-
cause it was combined with the following or pre-
ceding words to form a compound word. About
70% errors of misclassifying MWs as BPWs oc-
curred when these MWs were short adverb, prep-
osition, conjunction or transitive verb (see example
sentences M-a and M-b, where the processing
Chinese character and the corresponding word in
English translation are marked with an underline).
This also easily occurred when MWs were special
function words, such as ‘‘ ’’ (is), ‘‘ ’’ (has) and
‘‘ ’’ (of) (see M-c and M-d). For the case of mis-
classifying MWs as EPWs, we found that 17%,
17%, 30% and 10% of MWs were, respectively,
preposition, auxiliary, pronoun and verb words
(see M-e and M-f). This also easily occurred when
MWs were ‘‘ ’’ and ‘‘ ’’. For some cases, an MW
was combined simultaneously with the following
and preceding words to form a word chunk when
it was a preposition or conjunction (see M-g).
M-a: (Dirty things are all wiped
off.);
M-b: (Just like work-
ing in a dark room.);
M-c: (It ought to be no
change at all.);
M-d:
(The chord organ match is an annual interna-
tional music contest.);
M-e: (Driving to west Texas.);
M-f: (Dirty air makes me
feel dizzy.);
M-g: (Talking about physical
agility and arm strength.).

BPW errors. Most classification errors of BPWs
occurred when they were combined with the pre-
ceding words and misclassified as IPWs. This was
especially easy to occur when both the current and
preceding words were all short (see example sen-
tences B-a and B-b). For the cases of misclassifing
BPWs as EPWs, we found that 42% of them were
syllables with Tone 2 or Tone 3 which were pro-
nounced lightly (see B-c and B-d). The processing
Chinese characters and the corresponding words
in English translation are marked with an under-
line in the following examples. It is noted that,
owing to the difficulties in finding the one-to-one

correspondence between the Chinese character and
English word, we choose the suitable English word
by checking whether it contains the meaning of the
underlined Chinese character.
B-a: (The students line
up to welcome the triumphant players.);
B-b: (The climate in Taiwan is
humid.);
B-c: (The chief of the
labor administration section of the social de-
partment.);
B-d: (The final of national con-
test.).

IPW errors. Most IPW errors occurred when long
words were prosodically broken into pairs of short
words and misclassified as BPWs and EPWs (see
I-a and I-b). Some other errors were owing to
the concatenations with low-energy syllables with
Tone 2 or Tone 3 (see I-c and I-d). Some inter-
esting cases occurred when unfamiliar words, such
as long translated names of foreigners and infre-
quently used characters, were pronounced. The
speaker seemed to hesitate to utter such characters
so as to insert breaks around them (see I-e and I-f).
I-a: (The company of flow-
er production and distribution in Taipei city.);
I-b: (The sightseeing
leisure area and lakeside vacation area.);
I-c: (The association of mo-
tor sports in Mainland.);
I-d: (Sixteen million US dol-
lars.);
I-e: (He looks around
fearfully.);
I-f: (The works of
Euripides will be performed on the stage.).

EPW errors. Most errors were owing to the con-
nections with short succeeding words to become
IPWs (see E-a and E-b). Besides, over 95% errors
of misclassifying EPWs as MWs occurred at the
ending syllables of compound words formed by
combining words with special function words like
‘‘ ’’ (of), ‘‘ ’’ (a unit) and ‘‘ ’’ (at) (see E-c and E-
d). Some other errors resulted from the interfer-
ences by the preceding low-energy syllables with
Tone 2 or Tone 3 (see E-e and E-f).
E-a: (The degree of senior high
school and above.);
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E-b: (To manage a used motor-
cycle shop.);
E-c: (The future job opportu-
nity.);
E-d: (The
Chinese folk fair is held regularly during the
Lantern Festivals.);
E-e: (Cannot contend
with big and tall players.);
E-f: (The man married with an el-
der woman.).

Generally speaking, most word boundary detec-
tion errors are due to the tendency of grouping
function words and some MWs with adjacent
words. This phenomenon was found by Campbell
(1993) in a study of detecting prosodic boundaries
in British English. It showed that a function word
or an MW can be merged either with the preceding
word in accordance with rhythmic principles, or
with the following word in accordance with syn-
tactic principles to form a word chunk to be pro-
nounced within a prosodic phrase. Aside from the
same phenomenon, we also found in the current
study that the merging process may also occur at
both sides simultaneously for Mandarin speech in
case that the two adjacent words are all short.
Some other word boundary detection errors are
owing to the false alarms occurred at the neigh-
borhoods of characters with Tone 2 or Tone 3.
This mainly results from the ambiguity in distin-
guishing an abrupt F 0 jump owing to the F 0 re-
setting occurred at a prosodic boundary or to the
characteristics of these two lexical tones.

4.3. Results of the speech-to-text conversion

The same database used in the prosodic mod-
eling was used in this study to test the speech-to-

text conversion system invoking with the proposed
RNN prosodic model. A sub-syllable-based HMM
recognizer was constructed from the training set
by the maximum likelihood training algorithm.
Each testing utterance was first preprocessed by
the HMM base-syllable recognizer to generate a
top-N base-syllable lattice. The top-1 base-syllable
recognition rate was 81.4% with substitution, in-
sertion and deletion error rates being, respectively,
16.5%, 1.1% and 1.0%. The base-syllable inclusion
rate was 96.5% for the top-10 base-syllable lattice.
Then, both features for prosodic modeling and for
tone recognition were extracted based on the given
syllable-boundary segmentation of the top-1 base-
syllable recognition. The top-2 tone inclusion rate
for the case of using hand-corrected pitch contours
was 98.0%. After performing prosodic modeling
and tone recognition, we combined their results
with the base-syllable recognition results in the
linguistic decoder to generate the best recognized
character (word) string.
The two schemes, Schemes 1 and 2, of invoking

the RNN prosodic model into the linguistic de-
coding were then examined. Experimental results
are displayed in Table 5. The character accuracy
rate was calculated according to the following
formula:

character accuracy rate

¼ 1� insertionþ deletionþ substitution
total character number

: ð4Þ

The search complexity counted the number of ac-
cesses to the lexical tree for constructing candidate
words to be disambiguated in the linguistic de-
coding search. It can be found from Table 5 that
the character accuracy rate achieved by the base-
line scheme without invoking the prosodic model
was 73.6%. Detailed analyses revealed that the

Table 5

The performance comparison for speech-to-text conversion using three different linguistic decoding schemes

Method Use of Word-tag RNN

outputs

Word-tag FSM Character accuracy Complexity reduction

Baseline X X 73.6% X

Scheme 1 Yes X 74.6% X

Scheme 2-1 Yes Thh ¼ 0:6;Thd ¼ 0:3 73.9% 30.5%

Scheme 2-2 Yes Thh ¼ 0:8;Thd ¼ 0:6 74.7% 17%
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substitution, insertion and deletion error rates
were 24.8%, 0.5% and 1.1%, respectively. The
character accuracy rate was improved from 73.6%
to 74.6% as we invoked the RNN prosodic model
in the linguistic decoding by Scheme 1. The im-
provement resulted from the decrease of the sub-
stitution error rate by about 1% with almost no
change for both the insertion and deletion error
rates. Accuracy rates of 73.9% and 74.7% with
30.5% and 17% of search complexity reductions
were achieved for the two cases of Scheme 2. This
shows that the threshold setting in Word-tag FSM
of Scheme 2 can make a tradeoff between the im-
provement on recognition performance and the
reduction in computational complexity. If we
compare these experimental results with those
obtained in two related studies of using prosodic
information to assist in speech recognition (Hsieh
et al., 1996; Kompe et al., 1997), the proposed
method is better because it improves not only
the computational complexity but also the rec-
ognition performance. On the contrary, both
previous methods improved the computational
complexities in paid of minor losses on the rec-
ognition performance. If we compare the pro-
posed method with another method of using
prosodic modeling to improve mora recognition
for Japanese speech (Iwano and Hirose, 1999), it is
slightly inefficient on performance improvement.
Based on above discussions, we can conclude that
the proposed method of using prosodic informa-
tion in Mandarin speech recognition is a promis-
ing one.

4.4. An error analysis of the speech-to-text conver-
sion

For better understanding the effect of the RNN-
based prosodic modeling on the linguistic decod-
ing, we made a detailed error analysis for Scheme
2-2. Table 6 lists six main types of recognition
errors. The first three error types, E1–E3, resulted
from three types of acoustic processing errors in-
cluding: (1) base-syllable recognition error –
correct base-syllable is not included in top-10
base-syllable candidates; (2) tone recognition
error – correct tone is not included in top-2 tone
candidates; and (3) syllable-boundary segmenta-

tion error – owing to insertion and deletion errors
in the top-1 base-syllable recognition. The HMM
base-syllable recognizer was responsible for E1-
and E3-type errors. Improving the performance of
the HMM base-syllable recognizer is surely very
helpful to correct them. The E2-type errors were
caused by the RNN tone recognizer and may be
corrected by including more tone candidates. But
this will increase the computational complexity of
the linguistic decoding. The two types of errors, E4
and E5, were owing to the incompleteness of word-
merging rules applied to construct compound
words. The use of a more sophisticated word-
construction algorithm is surely helpful to correct
them. The error type of E6 is due to the out-of-
vocabulary problem. Increase the size of the lexi-
con may be useful to improve it. Since correct
words could not be constructed to form a correct
word sequence hypothesis when errors of these six
types occurred, the word-boundary information
provided by the RNN prosodic model is vain for
correcting those errors in the linguistic decoding. If
we do not count those uncorrectable errors, the
improvement on the character accuracy rate by the
proposed method is significant.
Lastly, many errors were owing to homonymic

ambiguity. In Mandarin speech-to-text conver-
sion, homonymic ambiguity is a serious problem
for recognizing mono-syllabic words because each
syllable maps, in average, to over 10 characters. A
more sophisticated language model is helpful to
solve the problem. If we neglect all homonym er-
rors, the character accuracy rate increases to
82.5%.

Table 6

An error analysis of the linguistic decoding

Error types Percentage

E1: Base-syllable missing in the base-

syllable lattice

11.1%

E2: Tone recognition error 21.6%

E3: Speech segmentation error 9.3%

E4: Compound word error owing to no

morphological rules applied

7.0%

E5: Quantity word error owing to no

morphological rules applied

4.8%

E6: OOV of the lexicon 8.0%

E7: Others 38.2%
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5. Conclusions

A new RNN-based prosodic modeling method
for Mandarin speech recognition has been dis-
cussed in this paper. It uses an RNN to detect
word-boundary information from the input pro-
sodic features with base-syllable boundary being
pre-determined by an HMM-based acoustic de-
coder. Two schemes of using the word boundary
information to assist the linguistic decoder in
solving word-boundary ambiguity as well as
pruning unlikely paths were proposed. Experi-
mental results on a speaker-dependent speech-to-
text conversion test have confirmed that the RNN
prosodic model is effective on detecting useful
word boundary information from the input testing
utterance for assisting in the linguistic decoding.
Accuracy rate of 71.9% has been obtained for
Word-tag detection. The character accuracy rate
of speech-to-text conversion has increased from
73.6% to 74.7% with an additional gain of 17%
reduction in the computational complexity of the
linguistic decoding search. So it is a promising
prosodic modeling method for Mandarin speech
recognition.
Some further studies to improve the proposed

RNN-based prosodic modeling method are
worthwhile doing in the future. One is to improve
the efficiency of the RNN prosodic model by
compensating the effects of other affecting factors,
such as tone and phonemic constituents of sylla-
ble, on the input prosodic features. Specifically,
both the pitch and energy levels of a syllable are
seriously affected by its tone. The energy level of a
syllable is also seriously affected by its final type. If
we can isolate those affecting factors from the
prosodic modeling, we may achieve a better pro-
sodic phrasing result. Another worthwhile study is
to improve the effectiveness of the RNN prosodic
model by providing more accurate prosodic
phrasing information of training utterances for
help preparing output targets. There are many
cases that two or more words are combined to-
gether to form a word chunk and pronounced
within a prosodic phrase in Mandarin speech.
Experimental results have confirmed that this ef-
fect resulted in degradation on the performance of
word boundary detection. If we can extend the

current study to additionally include the word-
chunk boundary information to help setting out-
put targets, we may obtain a more precise RNN
prosodic model. The other worthy further study is
to find new ways of incorporating the RNN pro-
sodic model into the speech recognition. In the
current study, the RNN prosodic model is com-
bined with the linguistic decoder to provide addi-
tional scores for discriminating word boundary
from non-word-boundary (Scheme 1) and to ad-
ditionally set path constraints for restricting the
linguistic decoding search (Scheme 2). Other ways
of using prosodic modeling information in either
linguistic decoding or acoustic decoding is worth
further exploring.
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