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A Robust Word Boundary Detection Algorithm for
Variable Noise-Level Environment in Cars

Chin-Teng Lin Senior Member, IEEEJiann-Yow Lin, and Gin-Der Wu

Abstract—This paper discusses the problem of automatic word the beginning and ending boundaries. In cars, the problem
boundary detection in the presence of variable-level background s further complicated by nonstationary backgrounds where
noise in cars. Commonly used robust word boundary detection there may exist concurrent noises due to movements, engine
algorithms always assume that the background noise level is fixed . . '
and sets fixed thresholds to find the boundary of word signal. In "Unning, speed change, braking, slams, etc. These background
fact, the background noise level in cars varies in the procedure Noises can be broadly classified into three classes: impulse
of recording due to speed change and moving environment, noise, fixed-level noise, and variable-level noise. Decreasing
a][‘% some thr§5h0|d5 |Sh01f|d tr’]e tuneﬁ according to thehva”ation the distance between the mouth and microphone is one way
of background noise level. This is the major reason that most L ; :
robust word boundary detection algorithms cannot work well of mlnlleln_g the eﬁec_:ts of such tran5|ent background n0|s§.
in the condition of variable background noise level. To solve However, this method is not user-friendly. In order to solve this
this problem, we propose aminimum mel-scale frequency band problem, many researchers proposed robust word boundary
(MiMSB) parameter which can estimate the varying background detection algorithms in the presence of noise. However, they
noise level in cars by adaptively choosing one band with minimum {5.1,5ed only on the impulse noise and fixed-level background

energy from the mel-scale frequency bank. With the MiMSB . Th Lo f thi is to devel bust
parameter, some preset thresholds used to find the boundary of noise. The main aim ot this paper IS 1o develop a new robus

word signal are no longer fixed in all the recording intervals. These Word boundary detection algorithm to attack the problem of
thresholds will be tuned according to the MiMSB parameter. variable-level background noise in cars.

We also propose anenhanced time—frequencyETF) parameter Among the three classes of background noises, the impulse
by extending the time—frequency (TF) parameter proposed by e can be solved by the parameter of time duration. The

Junqua et al. from single band to multiband spectrum analysis, . . .
where the frequency bands help to make the distinction between Problem of fixed-level background noise was first attacked by

speech signal and noise. The ETF parameter can extract useful commonly used robust word boundary detection algorithms
frequency information by choosing some bands of the mel-scale [1]-[5]. These algorithms usually use energy (in time domain),
freq?e”ﬁy bank. Based on :)hetM'lMS_'?ha”? ETF dpabramzters, zero crossing rate, and time duration to find the boundary
we finally propose a new robust algorithm for word boundary : - ;
detection in variable noise-level environment. The new algorithm between the word signal and background nqlse. However, it has
has been tested over a variety of noise conditions in cars and hask?e_en found that. the energy and zero-crossing rate are not suf-
been found to perform well not only under variable background ficient to get reliable word boundaries in noisy environments,
noise level condition, but also under fixed background noise level even if more complex decision strategies are used [6]. Cur-
condition. The new robust algorithm using the MiMSB and ETF yantly several other parameters were proposed such as linear

arameters achieved higher recognition rate than the TF-based - .. . L
Pobust algorithm, whichghas beeng shown to outperform several prediction coefficient (LPC), linear prediction error energy [7],

commonly used algorithms, by about 5% in variable background [8] and pitch information [9]. Although the LPCs are quite
noise level condition. It also reduced the recognition error rate successful in modeling vowels [10], they are not particularly

due to endpoint detection to 25%, compared to an average of 34% gyjtable for nasal sounds, fricatives, etc. The reliability of the
obtained with the TF-based robust algorithm. LPC parameter depends on the noise environment. The pitch
Index Terms—Mel-scale frequency, multiband, spectrum anal- information can help to detect the word boundary, but it is not

ysis, time-frequency, word boundary detection. easy to extract the pitch period correctly in a noisy environment.
Four-endpoint detection algorithms were compared in [6]:
I. INTRODUCTION an energy-based algorithm with automatic threshold adjustment

, [4], [5], use of pitch information [9], a noise adaptive algorithm,
HE WIDESPREAD use of mobile telephones has mand a voiced activation algorithm. These four algorithms are
tivated the development of robust speech recognitiQfongly dependent on the noise condition. The reliability of
systems in cargl[l]. A major .source ,Of errors in automatj[ﬁe parameters used by the four algorithms also depends on the
speech recognition systems is the inaccurate detection n%fise condition. In the connection, Juncetzal. [6] proposed
the time—frequency (TF) parameter. They used the frequency
energy in the fixed frequency band 250-3500 Hz to enhance
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noise classification, a refinement procedure, and some preselre obvious than the TF parameter that uses single frequency
thresholds. Although this algorithm outperforms several corband.
monly used algorithms for word boundary detection in the pres-Based on the MiIMSB and ETF parameters, we propose a
ence of noise, it could work well only for the impulse noise antbbust word boundary detection algorithm for variable back-
fixed-level background noise. For the condition of variable-levground noise level. If the background noise level changes grad-
background noise in cars, this algorithm usually results in inagally in the recording interval, the proposed robust algorithm
curate detection of the beginning or ending boundaries in thél automatically tune its thresholds to find the word boundary.
recording interval. There was little research about specific algbhe new proposed algorithm has been tested over a variety of
rithm for processing the variable-level background noise in carmise conditions in cars and has been found to perform well
The existing robust algorithms usually set thresholds from timet only in variable background noise level environment but
first few frames of the recording interval. Then the algorithmalso in fixed background noise level environment. To simulate
used these preset thresholds to determine the word boundarthefvarying noise-level conditions, a normal way is to use the
speech signal. These thresholds are fixed in all the recordicgntinuous increasing/decreasing changing noises, which cover
interval. the whole spectrum of varying noise levels under considera-
In cars, the background noise level varies in the recording itien. The increasing/decreasing changing noises can also mimic
terval due to the dynamically moving environment. It is not redhe accelerating/decelerating behaviors of cars in the real en-
sonable to make all preset thresholds fixed in all the recordiMgjonment. In our experiments, we take four typical types of
intervals. If the variation of background noise level is largéoise for speech contamination. They are vehicle noise, cockpit
these fixed preset thresholds will result in incorrect locatiomoise, multitalker babble noise, and white noise. These noisy
of word boundaries. In order to avoid this problem, we neegignals are added to the recorded speech signals with different
to have a parameter which can efficiently reflect the variatigsignal-to-noise-ratios (SNRs) including 5 dB, 10 dB, 15 dB,
of background noise level. Then we can use this parameter2@®dB, andoc dB. The experimental results show that the new
tune the preset thresholds. Based on this concept, this paper figbust algorithm with the MiMSB and ETF parameters achieved
proposes a minimum mel-scale frequency band (MiMSB) paigher recognition rate than the TF-based robust algorithm in
rameter. The MiMSB parameter comes from the mel-scale fié], which has been shown to outperform several commonly
quency bank (20 bands). The 20 frequency bands are spacedi##f algorithms, by about 5% in variable background noise level
a nonlinear frequency scale (mel scale). The MiMSB pararfiondition. It also reduced the recognition error rate due to end-
eter corresponds to the band with the lowest frequency energ9int detection to 25%, compared to an average of 34% obtained
and can efficiently extract the information of background noig&ith the TF-based robust algorithm.
level. With the MiMSB parameter, some preset thresholds usedT his paper is organized as follows. The minimum mel-scale
to find the boundary of word signal are no longer fixed in all thEequency band (MiMSB) parameter which can estimate the
recording intervals. They are tuned from time to time accordingriation of background noise level is derived in Section II. In
to the MiMSB parameter. Section 1, we derive the ETF parameter which helps us to
In addition to being tuned for variable noise level, the thresiiake the distinction between speech signal and noise. Based on
olds in the word boundary detection algorithm are also expecté§ MiIMSB and ETF parameters, a new robust word boundary
to be tuned reliably according to variable types of backgrouﬁ@teC“?” algo'rlthm for variable background noise level is pro-
noises. In the TF parameter proposed by Jureju. [6], the posed in Section IV. The performanpe evaluation and compar-
frequency information is extracted on a single frequency bafkPnS Of the proposed robust algorithm are performed exten-
(250-3500 Hz). Since the frequency energy (i.e., magnituo%gew also in Se(?tlon IV._ Finally, the conclusions of our work
of the spectrum) of different types of noises focus on differe{® SUmmarized in Section V.
frequency bands, more accurate frequency information can be )
obtained by considering multiband analysis of noisy speech sig- IIl. MIMSB Parameter
nals. With this motivation, we propose a new robust param-This section derives a parameter which can estimate the vari-
eter, callecenhanced time—frequen(yTF) parameter, for word ation of background noise level reliably. When the background
boundary detection in noisy environment. Like the TF paramoise adds to the speech signal, we cannot clearly get the back-
eter, the ETF parameter represents both the time and frequegiyund noise level in the presence of word signal. In this section,
features of noisy speech signals. The ETF parameter is to @e propose the MiMSB parameter to estimate the background
tend the TF parameter from single-band to multiband spectruraise level in the segment of word signal. The MiMSB param-
analysis, so it inherits the ability of the TF parameter for dester is obtained by adaptively choosing one band with minimum
tecting the impulse noise. Besides, the undesired impulse ndisguency energy from the mel-scale frequency bank. A proce-
can be further smoothed by the three-point median filter usgdre to calculate the MiMSB parameter is proposed as follows.
in our algorithm. A procedure is proposed such that the ETF
parameter can extract more informative frequency energy thn Auditory-Based Mel-Scale Filter Bank
the single-band approach to compensate the time-energy inforLoosely speaking, it has been found that the perception of
mation by adaptively choosing some frequency bands. The Edfparticular frequency by the auditory system is influenced
parameter is the result obtained after smoothing the sum of thethe energy in a critical band of frequencies aroynd 1].
time energy and frequency energy. It makes the word sigridénce, an auditory-based spectrum obtained by summing
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frequency interval by (1). The value of the triangular function,
S, k), in the figure also represents the weighting factor of the
frequency energy at thieth point of theith band.

With the mel-scale frequency bank given in Fig. 1(b), we
can now calculate the energy of each frequency band for each
time frame of a speech signal. Consider a given time-domain
noisy speech signakim.(m, n), representing the magnitude
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1500 of the nth point of themth frame. We first find the spectrum,
Treq(m, k), of this signal by discrete Fourier transform
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@ wherez . (m, k) is the magnitude of theth point of the spec-

trum of themth frame, NV is 128 in our system, and/ is the
number of frames of the speech signal for analysis. We then mul-
tiply the spectrunx .o (m, k) by the weighting factorg (¢, k)

on the mel-scale frequency bank and sum the products fér all
to get the energy:(m, ¢) of each frequency bandof the mth
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wherei is the filter band indexk is the spectrum indexy is

02 , the frame number, andl/ is the number of frames for analysis.
We found in our experiments that the energfm, i) ob-

RN : tained in (4) usually had some undesired impulse noise and was

o s is w0 zo0 20 axo a0 4000 covered by the energy of background noise. Hence, we further

Fre:;;mm smooth it by using a three-point median filter to gétn, )

Fig. 1. (a) The relation between mel-scale frequency (Mels) and normal . ) z(m—1,4) +x(m, )+ z(m+ 1, )

frequency (Hz). (b) A mel-scale filter-bank in which each filter has a triangular x(m, 'L) = 3 . B

bandpass frequency response with bandwidth and spacing determined by a

constant mel-frequency interval. Finally, the smoothed energyi(m, i), is normalized by
removing the frequency energy of the beginning interval,

the energies in each critical band is a perceptually relevanise_freq, to getX (m, 1), where the energy of the beginning

characterization. It is also known that critical band filteringnterval is estimated by averaging the frequency energy of the

of the speech spectrum using parallel bandpass filters fumigst five frames of the recording

tionally represents an aspect of auditory processing. There

0.3

0.1

is an evidence from auditory psychophysics that the human X (m, i) =2(m, i) — Noise_freq
ear perceives speech along a nonlinear scale in the frequency 4
domain. One approach to simulating the subjective spectrum is Z (4, 1)

to use a filter bank, spaced uniformly on a nonlinear, warped
frequency scale, such as the mel scale. The relation between
mel-scale frequency and frequency (hertz) is shown in Fig. 1(
and described by the following equation [12]:

) P a— (6)

5

%th the smoothed and normalized energy ofitieband of the
mth frame, X (m, ¢), we can calculate the total energy of the

mel = 2595 log(1 + f/700) 1) nearly pure speech signal at tith band ast(¢)
wheremel is the mel-frequency scale arnfdis in hertz. The B(i) = /3—:1 Xom ) -

filter bank is then designed according to the mel scale as shown
in Fig. 1(b), where the filters of 20 bands are approximated by
simulating 20 triangular bandpass filtef§:, k) (1 < < 20, o )
0 < k < 63), over afrequency range of 0-4000 Hz. Hence, eafh Minimum-Energy Band Selection

filter band has a triangular bandpass frequency response, and tH&ince our goal is to extract the information of variation of
spacing as well as the bandwidth is determined by a constant inatkground noise level, we need a parameter to stand for the

m=0
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Fig. 2. (a) Flowchart for computing the parameters and thresholds in the proposed robust word boundary detection algorithm. (b) Minimum lmend selecti
procedure [in (a)] for computing the MiMSB and VAR parameters, and adaptive band selection procedure [in (a)] for computing the frequency energy.

amount of the background noise. It is understood #@? in cording to theirE(¢) values. This is also a preparatory task for
(7) cannot represent the total (frequency) energy of the exadtiye adaptively band-chosen method developed in the following
pure speech signal, since the part of the word signal covereddaction. LetS be the set of alE ()

background noise is also removed in the normalization proce-

dure. HoweverF (i) is still a good indicator for the amount of S={E®)i=1,2,3,...,20} (8)
speech information, since the more the word signal information

is covered by the noise, the smaller tH€) is. In other words, The sorting is performed as follows:

the larger the (%) is, the more word signal information thith P(1) = max{S}
band has. Hence, we use the total enefy,), to stand for the P(2) = max{S — {P(1)}}
amount of the word signal information in bandn order to ex- P(3) = max{$ — {P(1), P(2)}} )

tract the information of background noise and reduce the effect
of word signal, we choose the band having the smaligs} to :
stand for the background noise. P(20) = max{5 — {P(1), P(2), ..., P(19)}}
Since the band with smalldr(¢) contains less pure speechwhereP(1) is the maximum total energy, ade(20) is the min-
information, we shall sort the 20 mel-scale frequency bands aecwm total energy. Let the band index corresponding (o) be
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Fig. 3. (a) Speech waveform recorded in silent environment (no additiég. 4. (a) Speech waveform recorded in fixed noise-level environment with
noise). (b) Smoothed and normalized frequency enefggm, i), on 20 SNR being 5 dB. (b) Smoothed and normalized frequency enaf@y;, i), on
frequency bands, wher& (m, 13) has the minimum total energy. (c) The 20 frequency bands, whef€(m, 13) has the minimum total energy. (c) The
values of MiMSB parameter obtained By(m, 13). values of MiMSB parameter obtained By(m, 13).

represented by(q), fori = 1,2, ..., 20. Thatis,I(1) isthe and 100 frames are shown in Fig. 3(b), which indicates that
index of band having the maximum total ene#gfl ), and/(20) X (m, 13) has the minimum total energy. The values of MiMSB
is that having the minimum total energ3(20). parameter can be obtained y(m, 13) as shown in Fig. 3(c).
From the above analysis, the output of the bafa, 1(20)) |t appears that the MiMSB parameter is almost constant (zero)
is a good indicator for the variation of background noise levednd does reflect the level of background noise. In Fig. 4(a),
We name it the minimum mel-scale frequency band parametge speech is recorded in the condition of fixed background
of themth frameMiM S B(m). The procedure to get the valuenoise level with SNR being 5 dB. The corresponding frequency
of MIMSB parameter is illustrated in Fig. 2(a). The details OénergiesX(m7 i) and values of MiMSB parameter are shown
the block with label “Select the minimum total energy band” o, Fig. 4(b) and (c), respectively. Again, the MiMSB parameter
this figure is shown in Fig. 2(b). Finally, we define a parameteis nearly constant in the recording interval. It matches the
VAR, to be the sum of the MiMSB values over all frames  sjtuation of fixed background noise level. In Figs. 5 and 6,

M-—1 the speech signals are corrupted by background noise with

Z [IMIMSB (m)| increasing and decreasing levels, respectively. Accordingly, the

VAR — m=0 (10) corresponding values of MiMSB parameter form an increasing
M curve and a decreasing curve, respectively, in Figs. 5(c) and

whereM is the number of frames of the speech signal for ana{c). From these observations, we see that the MiMSB param-
ysis. The VAR parameter can tell us the average variation effer can efficiently reflect the background noise level, either in
background noise level. fixed noise-level background (including silent environment) or
To demonstrate the efficiency of MIMSB parameteiin variable noise-level background.

Figs. 3-7 show the experimental results in white noise back-In the above, we focused on the band with the minimum total
ground with different noise levels. We first see its performananergy. In fact, the bands which have larger total energy are
in silent environment. Fig. 3(a) shows a clean speech signallso useful. These bands can help us to make the distinction
The corresponding smoothed and normalized frequency dmtween speech signal and noise in noisy environment. We shall
ergies, X (m, i) [see (6)], on 20 mel-scale frequency bandmtroduce this concept in the next section.
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Band index (i}

ET=)

©)

S0
Frame number (rm)

=0

(a) Speech waveform recorded in decreasing noise-level environment

with SNR being 5 dB. (b) Smoothed and normalized frequency energyith SNR being 5 dB. (b) Smoothed and normalized frequency energy,
X(m, i), on 20 frequency bands, whefé(m, 12) has the minimum total X (m, i), on 20 frequency bands, whefé(m, 11) has the minimum total
energy. (c) The values of MiMSB parameter obtained®bn, 12). energy. (c) The values of MiMSB parameter obtainedt¥byn, 11).

amount of word signal information in each band. Based on the
analysis in the previous section, we know ti#t) in (7) is a

tiolnnk?eecnairselz, tt:: ;ﬂ%\?ﬁgg ?y)ss;ljrsecsetpf;“eb:jeistgnr:;[)igﬁ ggtrvrvu ood indicator for the amount of speech information. In other
ds, the larger th& (<) is, the more word signal information

the word signal and noise. The general solution is to COMP&R-, 1 band has

sate the strength of word signal in noisy environment. It has Before we consider the adaptive choices of suitable bands for

been found that the information of frequency energy of a no'%&tracting useful frequency information of word signal, we first

speech signal can enhance the normally used time energymtgke some observations on the effect of additive noise on each

make the distinction between word signal and background no . . .
more obvious. In [6], Junquet al. extracted the frequency en_ﬁgquency band. Obviously, larger background noise will add

. . ore noise component into each band, and thus reduce each
ergy of the signal on a single frequency band (250-3500 (4). Especially a?t low SNR, we found the total enedgyi) of

t?nf?rmbtzz TE Ipariamfettﬁ I 'Il'rl]: th":' f:cttlc;nt, \;Vne Iggnﬁéal'ﬁelt%%ch band become small. However, some bands are corrupted
Easge?j_oﬁ meall sa::gisesfrcé ugnc E:ni aide rc()) OL;e aanewaE?l'l):/ ore seriously than the others. These seriously obscured bands
q y prop e little word signal information left, and are not useful, if not

rameter. The ETF parameter is obtained by smoathing the s Ir;ﬂmful, for word boundary detection. We denote the number of

of the time energy and frequency energy, where the frequenc . : Wi
energy is contributed by six adaptively chosen frequency ban dnds useful for producing reliable frequency energiasive

Based : ts the ETE ter | fso observed that even at the same noise energy level (SNR),
ased on our experiments, the parameter IMProves tH \\seful bands were different under different noise conditions.
word boundary detection accuracy not only in noisy enviro

L "%his is because different noise sources focus their energy on
ment, but also in silent background. different frequency bands; some focus on low frequency bands,
. ) and others on high frequency bands. The effect can be detected
A. Effect of Additive Noise by the total frequency energ¥(i) in (7) .

Since our goal is to select some bands having the maximume try to add white noise (10 dB) to the clean speech signal to
word signal information, we need a parameter to stand for thee the effects of adding noise on each band. For illustration, the

IIl. ETF PARAMETER
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B. Robust Parameter in Noisy Environment

Based on the above discussion and illustrations, we now pro-
pose a way to adaptively extract helpful frequency informa-
tion of word signal. More precisely, after ordering the band in-
dexes according to their total frequency enefdy(:)) as in
(9), we want to decide the numbé¥, such that the firstv,
bands(1(1), I(2), ..., I(N,)) can produce helpful frequency
energy,(P(1) = E(I(1)), P(2) = E(I(2)), ..., P(N,) =
E(I(N,)))-

By trial and error, we observed that the first 6 bands (after
ordering) could provide the maximum improvement for word
boundary detection in noisy environment. Witj, = 6, we
then sum the total energies of the firét bands (after ordering)
in (9) to get the final frequency energy(m), of framem:

Na
F(m) = Z X (m, I(i)). (11)

The proposed ETF parameter of theth frame is the result ob-
tained after smoothing the sum of the frequency endfgy:)
in (11) and time energ¥(m):

ETF(m) = SMOOTHING(T(m) + cF(m))  (12)

where SMOOTHING is performed by a three-point median
filter as in (5), and constantis a proper weighting factor to
adjust the scale of the ETF parameter. Differemalues around

1 affect the smoothing process slightly. The typicahlue that

we used in the smoothing process is 1.1. The time eriB(gy)

in (12) is given by smoothing and normalizing the logarithm of
the root-mean-square (rms) energy of the time-domain speech
signal:

Fig. 7. Multiband spectrum analysis of the speech signal with additive white L1 5
Z xtime(m7 7’L)

noise of 10 dB. (a) Smoothed and normalized frequency energiés;, ),

on 20 frequency bands. (b) Smoothed and normalized frequency energies,

X (m, 5) andX (m, 18), on the 5th and 8th frequency bands.

Zyms(m) = log "ZOT 13)

_ -/L'rms(m_ 1) + Lrms (m) + $r11ls(m + 1)
o 3

Zrms (M) (24)

smoothed and normalized frequency energies of a speech signal, () = #,,,,.(m) — Noise_time

X (m, i) in (6), for 20 bandsi(= 1, 2, ..., 20) and 100 frames
(m = 0,1, ...,99) are shown in Fig. 7(a). Specifically, the
energies of the 5th and 18th band¥yn, 5) and.X (m, 18), are

shown in Fig. 7(b). From the figure, we observe that the additive = Zrms(m) 5

noise reduceX (m, 5) and X (m, 18), and thus reducek(5)
and F(18), but we still haveE(5) > F(18). Hence, both the

4
> Erms()
- = (15)

where L is the length of the frame, which is 120 (15 ms) in

bands are corrupted by the additive noise. However, Fig. 7@)r system. The procedure to calculate the ETF parameter is
shows that the 18th band is corrupted by the added noise mitirestrated in Fig. 2(a). The details of the block with label “Select
seriously than the 5th band. The word signal is still clear in th€, useful bands to produce frequency energy” of this figure is

5th band whose maximuti (i, 5) value is about 30, but the

shown in Fig. 2(b).

word signal is ambiguous in the 18th band whose maximumUp to now, we have proposed the MiMSB and ETF param-
X (m, 18) value falls below 10. As a result, we cannot extraaters to indicate the variable background noise level and the
helpful word signal information from the 18th band, and wamount of word signal information, respectively. We shall next
shall not treat this band as a useful frequency band. On the othespose a new robust word boundary detection algorithm using
hand, the 5th band is still a useful frequency band in the addixse two parameters for variable background noise level in the

white-noise environment.

next section.
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th2(m) = max_e x coefl
VAR th3(m) = max_e x coef3
No

i (Fixed background noise level) | th2(m) = max_ex coefl+MiMSB(m)x coef2

Yes i th3(m) = max_ex coef3 +MiMSB(m)x coef4
(Variable background noise level)
Search for the next
possible word boundary
v No
Use th2(m) to determine - S TR -1 th3(inded)
_iy| the beginning ETF(m1) es iyl _ ml-1)>th3(index
ETF > 2-m1>th4 >| index=m1
(m) and ending ETF(m2) X fndex—m Qr ZCR(m1-1)>th5
boundary No
A
Part A
y
Y ETE(m2+1)>th3(index No Find the beginning boundary (m1)
index=m2 or ZCR(m2+1)>ths A7 and ending boundary (m2)

Fig. 8. Flowchart of the proposed robust algorithm for word boundary detection. Part A is to find the rough reliability boundary, Part B is to twgh the ro
beginning boundary, and Part C is to tune the rough ending boundary.

IV. ROBUST ALGORITHM FOR VARIABLE VAR < thl, the average variation of background noise level in
NOISELEVEL ENVIRONMENT allthe recording intervals is small. In this case, the preset thresh-

In this section, we propose a new robust algorithm using t édsth2(m_) athlz3(m) are not tuned and kept constant n all
fpe recording intervals

MiMSB and ETF parameters for word boundary detection.
the background noise level changes gradually in the recording th2(m) = max_e x coef1
interval, the proposed robust algorithm will automatically tune th3(m) =max_e x coef3 (16)
its thresholds to find the word boundary. The new algorithm . . .
works well in fixed noise-level environment as well as in vari\—Nhere max ¢ 1S t.he maximum time energy, andef1 and
able noise-level environment. coef3 are the welghtln'g factors for determmmg the thregholds
th2(m) andth3(m) to find the word boundary in the condition
of fixed background noise level. FAR > thl, the average
variation of background noise level in the recording interval is
Most algorithms for word boundary detection cannot finthrge. In this case, thresholds2(m) andth3(m) are tuned
proper boundary of the word signal in variable background noigeoperly in the recording interval
level condition, sing:e they cannot ge_t the correct information of th2(m) =max_e x coef1-+MMSB(m) x coef2
the background noise level and use it to tune some preset thresh- .
olds in all the recording intervals. Improper thresholds will re- th3(m) =max.c x cocf3 + MIMSB(m) x coef4 (17)
sultin incorrect location of the boundaries. In previous sectionshere the MiMSB parameter is used to estimate the background
we have proposed the MiMSB parameter to estimate the bacdloise level, andoef2 and coef4 are used to determine the
ground noise level and the ETF parameter to make the distimttange amount ofh2 and¢h3 due to the variable background
tion between speech signal and background noise clear. The nise level. In other words:pe f2 andcoe f4 are used to tune
problem is how to use these parameters in variable noise-lethe thresholdsh2(m) andth3(m) to find the word boundary in
background. We shall deal with this problem by proposing a nefve condition of variable background noise level. Since the ETF
word boundary detection algorithm. parameter can extract useful frequency information, it is used
The new robust algorithm of using MiMSB and ETF paramto find the word boundary in the noisy environment. In Part A
eters for word boundary detection is outlined in Fig. 8. Thef Fig. 8, threshold¢h2(m) andth4 are used to find the rough
VAR parameter in (10) is used to stand for the average vareliability boundary. In Part B of Fig. 8, thresholtfs3(m) and
ation of background noise level, and threshold is used to ¢45 are used to tune the rough beginning reliability boundary.
judge whether the background noise level is fixed or variable.It Part C of Fig. 8, threshold:3(m) and¢h5 are used to tune

A. New Robust Word Boundary Detection Algorithm
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2 algorithm are shown as solid lines. The background noise
| level is fixed in Fig. 9(a) and (b). It is observed that the two
algorithms find nearly the same word boundaries in the fixed
background noise level condition, where dotted lines and solid
lines coincide. Under the condition of variable background
| noise level in Fig. 9(c) and (d), the TF-based algorithm fails
2l e ases———B55s———a5e5——sise——ahee 10 find the correct word boundary because its preset thresh-
T'““(:)'”"e" olds cannot be tuned properly according to the variation of
background noise level. In Fig. 9(c), the TF-based algorithm
finds the wrong beginning boundary and cannot find the
ending boundary due to the increasing noise level. Also, in
Fig. 9(d), the TF-based algorithm finds the wrong location of
the boundaries because the decreasing background noise level.
In the proposed MiIMSB-ETF-based robust algorithm, the
preset thresholdg:2(m) andth3(m) are tuned by the MiMSB

Hagniude
[s]

Magnitde

25 Zooo @00 so5s soos  oess azeco  PArameter according to the variation of background noise level.
T'?;':'"dex The MiIMSB parameter makes these thresholds proper from

e 10" time to time to find the correct location of word boundaries as
: shown in Fig. 9(c) and (d).

Magniude

B. Experimental Evaluation

There are two possible ways to evaluate the correctness of
a word boundary detection algorithm; one is to compare the
Time tndes detected results to hand labeled ones, and the other is to pass
the detected words into a speech recognizer to see the recog-
nition rate. The latter approach is the most common one due
to its subjective nature. In this section, we shall test the per-
formance of the proposed MiMSB-ETF-based algorithm and
compare it to the TF-based robust algorithm in [6]. In order to
observe the effects of the proposed MiMSB and ETF parame-
ters, respectively, we use the TF parameter instead of the ETF
parameter in the MiMSB-ETF-based algorithm to form another
word boundary detection algorithm, called MiMSB-TF-based
algorithm for performance comparison. In addition, we used the
) ) ) ) ) ETF parameter instead of the TF parameter in the TF-based al-
Fig. 9. Performance illustration of word boundary detection algorithms under_ . . ..
different background noise conditions, where the word boundaries detecte: ithm to form the ETF-based algomhm' Recognition rates of
the proposed MiMSB-ETF-based algorithm are shown by solid lines, and thdkeese four word boundary detection algorithms (MiMSB—ETF-

by the TF-based algorithm are shown by dotted lines. (a) The condition ghsed aIgorithm MiMSB-TF-based algorithm ETF-based al-
silent background. (b) The condition of fixed background noise level. (c) The ’ ’

condition of increasing background noise level. (d) The condition ofdecreasigé)ri_thm’ and TF-based algorithm) Wi_” be Obta_‘ined in the fol-
background noise level. Noted that the solid lines and dotted lines coincidd@wing tests. The tests are performed in the variable background
Figs. (a) and (b), and the right-hand-side dotted line in Fig. () is missing. Thigise conditions in cars. Since inaccurate detection of word
means that the word ending boundary was not found by the TF-based algorithm. . ..
boundary is harmful to recognition, the performance of the word
boundary detection process is examined by the recognition rate
the rough ending reliability boundary. Finally, we can obtain thef speech recognizer. In the following, we shall introduce the

beginning boundary:1 and ending boundamy2. By trial and used speech recognizer, test database, and the evaluation results.
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error, we chooseocf1l = 0.7, coef2 = 0.8, coef3 = 0.25, Speech Recognition Systerfihe speech recognition system
coefd4 = 1,thl = 5, andth4 = 6 in the proposed new robustused in this paper for evaluating the performance of word
algorithm. boundary detection algorithms is a robust isolated word

We call the word boundary detection algorithm in [6] as theecognition system consisting of two parts, feature extractor
TF-based algorithm. Compared to the TF-based algorithm, thed classifier. In the feature extractor, the modified two-di-
proposed MiMSB-ETF-based robust algorithm gives more amensional cepstrum (Modified TDC—MTDC) [13]-[16] is
curate word beginning and ending boundaries in the conditiosed as the speech feature. The MTDC can simultaneously
of variable background noise level. In Fig. 9, we add whiteepresent several types of information contained in the speech
noise with different noise levels to demonstrate the efficieneyaveform: static and dynamic features, as well as global and
of the proposed robust word boundary detection algorithriine frequency structures. To represent an utterance, only some
The word boundaries determined by the TF-based algoritivifrDC coefficients need to be selected to form a feature vector
are shown as dotted lines and those by the MiIMSB-ETF-badadtead of the sequence of feature vectors. The MTDC has
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Fig. 10. Recognition rates of four word boundary detection algorithms (MiMSB—ETF-based new algorithm, MiMSB-TF-based algorithm, ETF-biéiser algor
and TF-based algorithm) in the condition of variable background noise level.

the advantage of simple computation and is suitable for noidgta were sampled at 19.98 kHz and stored as 16-bit integers.
speech recognition due to its choices of robust coefficients.our experiments, they are prepared for use by downsampling
In the classifier, a Gaussian clustering algorithm is used. Ttee 8 kHz and applying attenuation on them. The attenuation
training was done on clean speech pronounced in a clesas applied to enable the addition of noise without causing
environment (without background noise). In the training phasan overflow of the 16-bit integer range. The speech data used
each model is trained by a mixture of four Gaussian distributidar our experiments are the set of isolated Mandarin digits.
density functions. We use a total of 1000 utterances for traininthey are ten digits spoken by ten speakers and each speaker
The details of the above isolated word recognition system caronounced the ten digits 20 times. The recording sampling
be found in [16]. rate is 8 kHz and stored as 16-bit integer. To set up the noisy
Test Environment and Noise Speech Databdsahe recog- speech database for testing, we added the prepared noisy
nition procedure, the frame window used for obtaining thgignals to the recorded speech signals with different SNRs
MTDC features is 30 ms in length, with 15-ms overlap betweencluding 5, 10, 15, 20, anco dB. To test the proposed robust
two frames. In the word boundary detection procedure, tladgorithm in the variable background noise condition, we
frame length is set to be 15 ms in order to get more accurateange the amplitude of a given noise signal between 0.4 and
endpoint location. The sampling rate of our system is 8 kH2.5 times of its nominal energy value linearly under a desired
The noise signals are taken from the noise database provi@R level. In other words, we change the power level of the
by the NATO Research Study Group on Speech Processmmjse signal between 0.16 and 6.25 times of its nominal power
(RSG.10) NOISE-ROM-0 [17]. The database consists of 24lue linearly. For example, if the desired SNR is 10 dB, then
noise sources in order to offer as wide as possible variatione change the noise level such that the SNRs vary from 1.6
in characteristics. Among these noise sources, we take fear6.25 dB. The noise level changing could be in increasing,
typical types of noise for speech contamination in our exlecreasing, increasing—decreasing, or decreasing—increasing
periments. They are vehicle noise, cockpit noise, multitalkerder. The duration of each utterance used for testing the
babble noise, and white noise. The original NOISE-ROM-Performance of the word boundary detection algorithm is about
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Fig. 11. Recognition error rates of four word boundary detection algorithms (MiMSB—ETF-based new algorithm, MiMSB—-TF-based algorithm, ETF-based
algorithm, and TF-based algorithm) in the condition of variable background noise level.

1 s (including silence). A total of 600 utterances were used inConsidering another performance index, we examine the
our experiments. recognition error rates averaged across the four noise conditions
Experimental ResultsFour word boundary detection al-due to incorrect word boundary detection as a function of SNRs.
gorithms (MiIMSB-ETF-based algorithm, MiMSB-TF-based he results are shown in Fig. 11. Here, the recognition error
algorithm, ETF-based algorithm, and TF-based algorithmate is the ratio of the recognition errors due to incorrect word
are tested in the variable background noise condition, and teundary detection (taking the recognition scores obtained by
results are shown in Fig. 10. There are totally 600 utterandesnd labeling as a reference) to the total number of recognition
used in this test to simulate the variable background noise leeetors of the detection algorithm [6]. More precisely, let the
conditions in cars; 300 utterances are recorded in the increasiagognition errors obtained by hand labeling Bg;, and
background noise level condition and 300 utterances alee recognition errors obtained by using the automatic word
recorded in the decreasing background noise level condititmundary detection algorithm bg,;. Then the recognition
We first make some observations on the effect of the MiMS8rror rate is given byE,; — En1)/ Ea1. This index represents the
parameter. Since the MiIMSB parameter tunes some prepetcentage of recognition errors attributable to word boundary
thresholds according to the variation of background noise levdktection errors relative to the total number of errors, where
the MiMSB-TF-based algorithm outperforms the TF-basdte recognition rate with hand-labeled boundaries is used as a
algorithm. Since the ETF parameter can extract more usefaference. By averaging the experimental results obtained in
frequency information of word signal than the TF parametedfjg. 11 with both different background noise types (vehicle
the ETF-based algorithm also outperforms the TF-basadise, cockpit noise, multitalker babble noise, and white noise)
algorithm. By using both the MiMSB and ETF parameters, trend different SNR decibels, (5, 10, 15, 20, arddB) we get
proposed MiMSB—-ETF-based algorithm outperforms the othtére averaged recognition error rates of these four algorithms
three algorithms. which are 25%, 31%, 30%, and 34%, respectively. In other
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words, these rates are obtained by averaging the point valvesording interval, the proposed MiMSB—ETF-based algorithm
on the curves corresponding to each algorithm in Fig. 1does not use fixed preset thresholds; they are tuned adaptively
It shows that the proposed MiIMSB-ETF-based algorithmiccording to the MiMSB parameter. This makes the algorithm
reduced the recognition error rate due to endpoint detectionnmre reliable in the noisy environment with variable noise level.
25%, compared to an average of 31%, 30%, and 34% obtaindte MiMSB-ETF-based algorithm has been tested over a va-
by the MIMSB-TF-based algorithm, ETF-based algorithmijety of noise conditions in cars and has been found to perform
and TF-based algorithm, respectively. The MiMSB—ETF-base¢kll in both fixed and variable noise-level environments. Also,
algorithm still outperforms the other three algorithms. the results are compared to those of other word boundary detec-
As a summary, since the MiMSB parameter tunes some pretiet schemes under the samell-behavedpeech recognizer. In
thresholds in all the recording intervals and the ETF parametasr experimental evaluation, the MiMSB—ETF-based algorithm
extracts more useful frequency information of word signal thaachieved higher recognition rate than the TF-based algorithm
the TF parameter, the proposed MiMSB—-ETF-based algorithy about 5% in the variable background noise level condition.
achieves higher recognition rate than the TF-based algorittinalso reduced the recognition error rate due to endpoint detec-
by about 5% in the variable background noise level conditiotion to 25%, compared to an average of 34% obtained with the
It also reduces the recognition error rate due to endpoint deté@é-based robust algorithm. In our future work, we will perform
tion to 25%, compared to an average of 34% obtained with theme advanced experiments of the proposed robust algorithm in
TF-based robust algorithm. a real car on site.
In the proposed robust word boundary detection algorithm,
we use some segmental parameters such@$ VAR, and
MiMSB to help the detection of word boundaries. Since most
of these parameters are independent of those used in the speech
recognizer, they need extra computation for each frame. Al-[1] C. E. Mokbel and G. F. A. Chollet, “Automatic word recognition in
though this two-phase process (i.e., word detection and word cars,"IEEE Trans. Speech Audio Processiugl. 3, pp. 346-356, Sept.
re_(_:ognition) is a normal meChar.]ism existing_in a spee_ch reCOg_[2] I:_L?QRS..Rabiner and M. R. Sambur, “An algorithm for determining the
nition system, our word detection scheme is more time con- endpoints of isolated utterance&gll Syst. Tech. Jvol. 54, no. 2, pp.
suming than the normal approaches. However, this is the reason- 297-315, Feb. 1975.
able expense paid for a robust word boundary detection schemB] M. H. Savoji, “A robust algorithm for accurate endpointing of speech,”
suitable, especially, for varying background noise like the in-car ,, Epﬁf’fgnfgpﬁugoéa%iﬁgr"‘f_gé’lesgegﬁberg’ and 1. G. Wilson, “An
environment. In all the segmental parameters of our algorithm,  improved endpoint detector for isolated word recognitidBEE ASSP
only the VAR parameter cannot be obtained on-line; it needsto  Mag, vol. 29, pp. 777-785, Aug. 1981.
be calculated after a set of speech frames has arrived. The VARP] B- Reaves, “Comments on an improved endpoint detector for isolated
. L . word recognition, IEEE Trans. Signal Processingpl. 39, pp. 526-527,
is to detect the average variation of background noise level and . 1991
to determine if the tuning of the two threshold&?2 and¢h3 [6] J. C. Junqua, B. Mak, and B. Reaves, “A robust algorithm for word
in (17), are necessary. Hence, the VAR parameter need not be boundar_y detection in the presence of noi$EEE Trans. Speech Audio
calculated at any time; once it deteCtS the varying noise envt&?] ?rgﬁisnséng.vsl..jaﬁs .“Cgii;?j%jﬁ\f;gez?gtnce classification of speech
ronment, we can switch on the tuning phase of thresholds and * sing hybrid features and a network classifidEEE Trans. Speech
keep this phase running for a period of time without recalcu-  Audio Processingvol. 1, pp. 250-255, Apr. 1993.
lating VAR. So, the proposed algorithm can-linedetect word ~ [8] S.J-Kiaand G. G. Coghill, "A mapping neural network and its applica-
boundaries practically in adverse environments. This makes it Tlonto vowed-unvmced-sﬂgnpe classification,’Rroc. 1st New Zealand
| . . . nt. Two-Stream Conf. Artificial Neural Networks Expert Systeii93,
have potential for real-time operation, depending the computa-  pp. 104-108.

tion power of the used hardware platform_ [9] M. Hamada, Y. Takizawa, and T. Norimatsu, “A noise robust speech
recognition,” inProc. ICSLR 1990, pp. 893—-896.
[10] J.R.Deller,J. G. Proakis, and J. H. L. Handeiscrete-Time Processing
of Speech Signals New York: Macmillan, 1993.
V. CONCLUSIONS [11] J. B. Allen, “Cochlear modeling,JEEE Acoust., Speech, Signal Pro-
cessingvol. 2, pp. 3-29, 1985.
In this paper, we first proposed a MiMSB parameter which[lZ] \?V'e‘;esy*fi‘g%';ﬁ‘ifsﬁgf’e‘:“ Communication Reading, MA: Addison
can efficiently estimate the variation of background noise levej13] V. Ariki, S. Mizuta, and T. Sakai, “Spoken-word recognition using dy-
in cars. This parameter adaptively chooses one band with min- namic features analyzed by two-dimensional cepstriimt. Inst. Elec.

; _ Eng, pt. I, vol. 136, no. 2, Apr. 1989.

imum frequency ene_rgy from the mel-scale frequency bank. Wi 4] H. F. Pai and H. C. Wang, “A study on two-dimensional cepstrum
also_proposed a reliable parameter, ETF, that possesses b_oth approach for speech recognitiorGomput. Speech Langvol. 6, pp.
the time and frequency features for word boundary detection in 361375, 1992. _

noisy environment. This parameter adaptively adopts six usefi}S] H. Hermansky and N. Morgan, “RASTA processing of speetBEE

. Trans. Speech Audio Processjngl. 2, pp. 578-589, Oct. 1994.
bands from 20 mel-scale frequency bands for producing useftﬂe] C.T. Lin, H. W, Nein, and J. Y. Hwu, “GA-based noisy speech recogni-

frequency features to enhance time features of word signal in ~ tion using two-dimensional cepstrumEEE Trans. Speech Audio Pro-

noisy environment. Based on the MiMSB and ETF parameters, cessingto be published. _

we proposed a new robust word boundary detection algorithmi}?] A- Varga and H. J. M. Steeneken, "Assessment for automatic speech
recognition: 1l. NOISEX-92: A database and an experiment to study

In contrast to the commonly used robust word boundary de- the effect of additive noise on speech recognition syster@pgech

tection algorithms which always fix all preset thresholds inthe ~ Commun.vol. 12, pp. 247-251, 1993.
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