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In general, synchronization mechanisms can be used to preserve dependence con-
straints in any nested loop, and can be combined with a loop scheduling scheme to form
a uniform framework to obtain the correct execution order and balance workload distri-
bution. Most current scheduling mechanisms cannot handle non-uniform dependence
loops. In this paper, we propose a new combined scheduling scheme called Release
Combined Scheduling for Non-uniform Dependence Loops (RCS) to schedule
non-uniform dependence doubly-nested loops in multiprocessor systems. It combines
both static and dynamic scheduling mechanisms in order to optimize the system per-
formance. In our approach, initialisation of a set of scheduling information is based on
the concept of the minimum dependence distance. During runtime, scheduling informa-
tion is used to adjust the number of parallelizable iterations. Our method is able to dis-
cover more parallelism from a given non-uniform dependence doubly-nested loop than is
possible with previous approaches. The experimental results show that the RCS method
reliably exploits parallelism and outperforms most of the existing non-uniform depend-
ence loop scheduling schemes by 20.29%, on average.

Keywords: loop scheduling, multiprocessor, non-uniform dependence, hopping gate,
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1. INTRODUCTION

The multiprocessor (MP) is one of the most important computer architectural de-
signs addressing the demand for fast computational performance. To fully utilize an en-
tire system, the workload on all the processors should be as evenly distributed as possible
[1]. Ever since loops were identified as a major source of parallelism, the problem of
loop scheduling has been studied in order to achieve equal and fair workload distribution,
in addition to reducing synchronization, communication, and thread management over-
heads [2] in computer systems. In spite of the commonality of DOALL loop scheduling
schemes [1-6], there are few non-uniform dependence loop scheduling schemes.

Non-uniform dependence loops, which exhibit irregular dependence on the iteration
level, are mainly as a result of coupled subscripts [7], and Fortran numerical packages
such as Linpack [19], Eispack [20], Itpack [21], and Fishpak [22] are typical examples of
programs containing non-uniform dependence loops. These are library packages and can
be frequently called on by a user in scientific and engineering computational programs.
Henceforth, it is important to develop an efficient loop scheduling scheme for them, as
shown in Fig. 1.
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for I = 1, UI

for J = 1, UJ

…
Sd: A(f1(I, J), f2(I, J)) = ...

…
Su: ... = A(f3(I, J), f4(I, J))

…
endfor

endfor

Fig. 1. Program model.

Among the existing approaches, the Staggered Distribution method [8] performs
outstandingly in data-flow machines but is not adaptable for shared memory multiproc-
essor systems. On the other hand, in most of the current systems, acceptable scheduling
schemes [9-13] introduce a significant delay overhead when preserving dependence cor-
rectness. In this paper, we develop a non-uniform dependence loop scheduling scheme,
which is free from any evident delay overhead and is capable of achieving dynamically
extracting parallelism. This newly developed method is called the release combined
scheduling (RCS) method. The target platform is the shared-memory or distributed
shared-memory MP system. It is not only able to exploit more parallelism than the com-
piler partitioning technique, but also can avoid causing any synchronization overhead or
waiting time.

The RCS method originated in loop tiling techniques [14, 15] but differs from them
in its method of maintaining parallelizable iterations. In loop tiling, a number of paral-
lelizable iterations on each tile are determined during compilation time. During execution,
this number is fixed, and before all the iterations in the current tile have been executed,
no idle processors are allowed to execute iterations from subsequent tiles. To preserve the
correct execution order, barrier synchronization is inserted at the end of each tile. In the
RCS method, in contrast, a number of parallelizable iterations are initialized during com-
pilation time, but these are updated after a certain number of dependence tails have been
executed, such that parallelism can be exploited more dynamically. On the other hand,
because we only derive scheduling information, we do not really partition the loop dur-
ing the compilation stage. In fact, our method can exploit more parallelism while elimi-
nating synchronizations. We propose a strategy that we can use to analyse statical de-
pendent information in non-uniform dependence loops. We then can dynamically use this
information to synchronize parallel-executed iterations such that improved parallel exe-
cution performance for non-uniform dependence loops can be obtained. To simplify our
discussion, the program model shown in Fig. 1 is used for description and preliminary
evaluation, as has been widely discussed by several other authors [10-16]. Performance
evaluations were carried out using a CONVEX SPP-1000. According to our results, re-
gardless of the number of processors available, the RCS method substantially reduces the
delay overhead as well as multi-barrier synchronization. When eight processors are used
and real benchmarks are considered, the RCS method performs better than the Index
Synchronization Method [10] by 15.25%, on average. If our method is compared with
loop partition techniques [14, 15] in terms of performance, then it is superior by 25.33%,
on average. These amazing findings inspired for us to further extend the method.



A RELEASE COMBINED SCHEDULING SCHEME 225

The organization of this paper is as follows. Related work is discussed in section 2.
Section 3 presents the basic concepts and principles of the RCS method. Section 4 pro-
vides further generalization of the method. Section 5 gives performance evaluations. Sec-
tion 6 is a conclusion.

2. RELATED WORK

Conventionally, the performance of a loop scheduling mechanism is determined by
five factors: (i) workload balancing; (ii) the scheduling overhead; (iii) the communication
overhead; (iv) the thread management overhead; and (v) the synchronization overhead
[2]. Among these, the synchronization, scheduling, and thread management overheads
are our major concerns. The execution time of a loop body is assumed to be consistent
for all iterations, so workload imbalance will only be caused by the scheduling mecha-
nism.

Several previous works have been devoted to effectively scheduling non-uniform
dependence loops, including: the Index Synchronization Method (ISM) [10]; the Group
Synchronization Method [11]; and the Static Strip Scheme (SSS) [12,13]. ISM was pro-
posed to schedule non-uniformly dependent two-way nested loops after partitioning
using dependence uniformization method. The basic idea is to serially execute an inner
loop while executing an outer loop and synchronization concurrently. This is done using
a globally shared array, which incorporates a delayed operation. The performance of ISM
will probably be constrained by the dependence uniformization method because an addi-
tional delay overhead is introduced. One of the variations of ISM is the Group Synchro-
nization Method. Here also, a delay overhead is inevitable, and it may restrict the per-
formance gain.

SSS is another approach that is also associated with the dependence uniformization
method. A strip is a group of iterations that are to be executed sequentially. Cross strip
dependences are preserved through explicit synchronization primitives, for example,
post&wait. As the name implies, SSS is classified as static scheduling. Once again, it is
constrained by the dependence uniformization technique, and different synchronization
primitives result in distinct performance behaviours.

Another intuitive approach is scheduling the tiled loops, since a DOACROSS loop
can be partitioned into a few totally parallelizable tiles. Dependence analysis is handled
using loop partition techniques during compilation time. Any existing chunk size control
functions can be applied to guide the scheduling process, such as Pure Self Scheduling,
Chunk Self Scheduling, or Guided Self Scheduling [1]. Barrier synchronization is in-
serted at the end of each tile. In spite of the intuitiveness and simplicity of this method,
scheduling of tiled loops is restricted by both the loop partition techniques and schedul-
ing schemes. Multi barrier synchronization instructions are unavoidable at the end of
each tile, and a poor choice of scheduling scheme can incur a further apparent overhead.

We will also introduce two related partitioning mechanisms for the purpose of per-
formance evaluation. The minimum dependence distance tiling method [11, 14] exploits
parallelism by using the minimum computed distances from the dependence vectors of
the Integer Dependence Convex Hull (IDCH) extreme points. The minimum distances
are used to partition the iteration space into tiles of regular size and shape. The Paralleli-
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zation Part Splitting (PPS) [15] mechanism splits up the parallelization part of the itera-
tion space for the purpose of parallel execution. As the parallelization part always occu-
pies most of the iteration space, it can be partitioned in advance based on the concept of
loop splitting in the uniform dependence loop partitioning method. This breaks the itera-
tion space into three regions: two non-IDCH regions that are parallelizable and an IDCH
region that must be incorporated using either a MDT or dependence uniformization
method.

In the following section, we will present our new RCS method, which essentially
separates the iteration space into either parallelizable or sequential blocks, while elimi-
nating the delay instructions, synchronization primitives, and multi-barrier synchroniza-
tion stages.

3. BASIC CONCEPTS AND PRINCIPLES OF THE RCS METHOD

Conventionally, exact techniques for analysing cross-iteration dependences are
based on solving Diophantine equations [25] corresponding to array subscript expres-
sions [10]. For a nested loop, as shown in Fig. 1, a dependence exists between statement
Sd and statement Su, if they both refer to the same element of array A, or if f1(i1, j1) =
f3(i2, j2), and f2(i1, j1) = f4(i2, j2). In [14], it is stated that a cross-iteration dependency ex-
ists between Sd and Su only if there is a set of integer solutions (i1, j1, i2, j2) to the Dio-
phantine equation (1) and the following system of linear inequalities (2):
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The Banerjee algorithm [26] can be applied to find general solutions (i1, j1, i2, j2) to
equation (1). These general solutions can be expressed in terms of two integer variables x
and y, except when f1(i1, j1) = f3(i2, j2) is parallel to f2(i1, j1) = f4(i2, j2), in which case, the
solution is obtained in terms of three integer variables. Here, we consider the general
solution with only two variables, (i1, j1, i2, j2) = (S1 (x, y), S2 (x, y), S3 (x, y), S4 (x, y)), and
the dependence vector set is defined as either

D(x, y) = {(S3(x, y)- S1(x, y)), (S4(x, y)- S2(x, y))} or
di(x, y) = [S3(x, y)- S1(x, y)], dj(x, y) = [S4(x, y)- S2(x, y)].

Eq. (2) can then be rewritten as
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Diophantine equations (3)
s1, s2, s3, t1, t2, t3 ∈ R

These inequalities form a convex polyhedron or Dependence Convex Hull (DCH).
This can be represented as

DCH = {(x, y) | 1≤ S1(x, y) ≤ UI }
∩ {(x, y) | 1≤ S2(x, y) ≤ UJ }
∩ {(x, y) | 1≤ S3(x, y) ≤ UI }
∩ {(x, y) | 1≤ S4(x, y) ≤ UJ }.

A DCH-forming algorithm has been proposed by Tzen and Ni [10]. If the DCH is
empty, then either there are no integer solutions (i1, j1, i2, j2) satisfying equation (2), or
statements Sd and Su in the program model are cross-iteration independent. Otherwise,
dependence vectors exist for that iteration space. The extreme points of the convex hull
may have real coordinates because these points are simply intersections of a set of hy-
perplanes. An algorithm for converting real coordinates into integer coordinates was pro-
posed in [14], and the result is called the IDCH.

Thus far, the general Diophantine equations and dependence vector set of the pro-
gram model shown in Fig. 1 can be expressed as
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Example 1 (L1):

for I = 1, 10
for J = 1, 10

Sd:A(3I, 5J) = …
Su:…= A(I, J)

endfor
endfor

Fig. 2. Array assignment pattern of L1.

L1 is an example of a non-uniform dependence loop and is shown in Fig. 2. Its
dependence graph is shown in Fig. 3. The Diophantine equation set of L1 is
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Fig. 3. Dependence graph of L1.

The dependence vector set is {(3-1)x, (5-1)y } = {2x, 4y}, and the DCH is located at
the intersection of eight half spaces [25], DCH(L1) = {(x, y) | 1 ≤ x ≤ 10 } ∩ {(x, y) | 1 ≤ y
≤ 10 } ∩ {(x, y) | 1 ≤ 3x ≤ 10 } ∩ {(x, y) | 1 ≤ 5y ≤ 10}. It forms a rectangular shape in
the dependence graph as shown in Fig. 3. If we express the dependence vector as an ar-
row, then the arrowhead is called the dependence head (destination), and the arrow’s tail
is called the dependence tail (source). For this example, iterations within the IDCH are
called dependence tails. To preserve program correctness, iterations within the IDCH
must be executed before their respective dependence heads are executed.

A feature of the RCS method is that a number of parallelizable iterations can hop
across subsequent iterations as a result of the relaxation of dependence constraints. The
basic idea of the RCS method is illustrated in Figs. 4 and 5. The letter M in these figures
represents the number of parallelizable iterations in the two execution stages, as shown in
Figs. 4 and 5. This is formally defined in Definition 3.3 below. The hopping gate is a
specific iteration on which an iteration in a subsequent tile depends.

To achieve our goal, we allow for two global variables which can be used to track
the dependence constraints: the hopping gate and hopping distance. The hopping gate is
set to monitor the hopping occasion, while the hopping distance is used to define the dis-
tance that needs to be hopped. In Fig. 4, the hopping gate is initially set to iteration (1,2),
and the hopping distance covers the first 20 iterations, ranging from (1,1) to (2,10). Once
iterations (1,1) and (1,2) have been executed, the 30 iterations from (3,1) to (5,10) can be
carried out. Afterwards, the hopping distance has been incremented by 30 iterations, and
the hopping gate has been shifted by 10, as shown in Fig. 5. If any iterations before (2,2)
have also been executed, the 30 more iterations ranging from (6,1) to (8,10) will be
added to the current hopping distance.

3.1 The RCS Method for Growing Pattern Loops

The dependence vectors of a loop may increase backwards or forwards along a par-
ticular loop dimension. In [15], this type of loop is defined as having a growing pattern in
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Fig. 4. The hopping gate and M before execution.

Fig. 5. The first hop of M.

the loop dimension. The authors in [15] took advantage of this feature and tiled the loop
according to the dependence vector. As long as the dependence distance is increasing, the
tile size will definitely grow, thus improving the parallelism. We use this specific loop in
our illustration of the RCS method because of its simplicity and uniqueness. A formal
definition of, and the condition for the growing pattern are given below.
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Definition 3.1 (Growing Pattern Loop (GPL)): Given a two-way nested loop L, let LI,
and UI be the lower and upper bounds on the loop index I, respectively, and let the de-
pendence vector function VI, be real on (LI, UI). If, LI < x < y < UI, then this implies that
|VI(x)| ≤ |VI(y)| and the pattern of VI has a growing pattern on (LI, UI), where L is called
the Growing Pattern Loop (GPL). �

If a loop is a GPL, then VI = {di(x, y) | di(x,y) = (s1 − 1)x + s3 and |(s1 − 1)x1 + s3| ≤
|(s1 − 1)x2 + s3| for any LI ≤ x1 < x2 ≤ UI}. L1 in Example 1, is a typical example since the
dependence vector set of L1 is {2x, 4y}, or di = 2x. For any 1 ≤ x1< x2 ≤ 10, |2x1| < |2x2|
always holds; therefore, L1 is said to have a growing pattern on loop index I. The fol-
lowing lemma further specifies the condition of a growing pattern.

Lemma 3.1: Let I and J be index variables. The pattern of the dependence vector is a
growing pattern if the dependence vector functions VI and VJ, contain only the linear
functions of loop index variables I and J, respectively. �

Proof: If the dependence vector contains only one variable I, then it must be a*I + c,
where a,c ∈ R. We can differentiate this so that d(a*I + c)/dI = a. Clearly, |a*x + c| ≤ |a*y
+ c|, ∀ x, y ∈ Z and x < y. Thus, the pattern of the dependence vector function VI is a
growing pattern. The dependence vector function VJ can also be proven to be a growing
pattern in a similar manner. �

Furthermore, if the loop has a growing pattern on loop index I, then the correspond-
ing dependence vector function carries a single index variable, I. This is formally ex-
pressed as VI = {di(x,y) | di(x,y) = (s1 − 1)x + s3 and |(s1 − 1)x1 + s3| ≤ |(s1 − 1)x2 + s3|, ∀ LI

< x1 < x2 < UI}. The growing pattern dependence vectors can be anti-dependent or
flow-dependent. As any anti-dependence can be eliminated by means of array renaming,
we are only concerned with flow-dependence loops with the growing pattern in the out-
ermost loop level. These are called Backward Growing Pattern Loops (BGPLs), and a
formal definition is given below.

Definition 3.2 Backward Growing Pattern Loop (BGPL): Given a two-way nested
loop L, as shown in Fig. 1, the dependence vector function on the outermost loop level VI,
is positive and real. If VI(x) ≤ VI(y) for any x and y satisfy 1 < x < y < UI, then L is said to
have a backward growing pattern on loop dimension I, and L is called the Backward
Growing Pattern Loop (BGPL).

Also, if a loop has a backward growing pattern on the outermost loop level I, then
VI = {di(x, y) | di(x, y) = (s1 − 1)x + s3 and [(s1 − 1)x1 + s3 ] ≤ [(s1 − 1)x2 + s3 ] for any LI ≤
x1 < x2 ≤ UI}. Consider Example 1 again. L1 has a growing pattern on loop index I, and it
is also a BGPL because the dependences are all flow-dependent.

Lemma 3.2: Assume that the dependence vector function of the loop is VI, and that the
loop has the pattern of a BGPL for loop index I; then, the maximum dependence distance
of the loop index variable i ∈ I must be VI(i).
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Proof: The pattern of a dependence vector function VI for loop index I is the backward
growing pattern. As ∀ x, y ∈ N, and x < y, this implies that VI(x) ≤ VI(y). The maximum
dependence distance of the loop index variable i ∈ I must be VI(i) because VI(i) ≤ VI(x),
∀ x ∈ (i + 1, i + VI(i) − 1). �

Theorem 3.1 shows that if we use conventional partitioning methods to partition the
iteration space, then the maximum number of parallelizable iterations we can exploit
according the concept of the BGPL can be calculated.

Theorem 3.1: Assume that the pattern of the dependence vector function VI for loop
index I is a growing pattern, and that the dependence vector function is VI = s1*I + s3,
where s1, s1, s3 ∈ R, and I is the variable of the corresponding loop index. The paralleliz-
able iterations Pn for the nth stage are |s1*(Kn-1 + 1) + s3|, where Kn is equal to

.)()1(
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Proof: The theorem can be proved by induction on k. We begin our induction at 1.

Basis: k = 1. Then, P1 is equal to the absolute value of the dependence vector VI(1) and
P1 = |VI(1)| = |s1 + s3|.

Induction: k > 1. By the induction hypothesis,
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Since Pk+1 = VI(Kk + 1) = |s1*( Kk + 1) + s3|, it follows that

Pk+1 = |s1*(Kk-1 + 1) + s3|
= |s1*(Kk-1 + s1(Kk-1 + 1) + s3 + 1) + s3|
= |s1*((s1 + 1)Kk-1 + s1 + s3 + 1) + s3|

= |s1*((s1 + 1)( ∑
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= |s1*(Kk + 1) + s3|
= VI(Kk + 1).

Thus, the proof is complete. �
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Now, we will give a simple example to show how we can detect whether a loop is a
GPL or not. We will consider loop L1 in this example.

Example 2: In Fig. 2, loop L1 is an example of a non-uniform dependence loop, and its
dependence graph is shown in Fig. 3. The Diophantine equation set is {i1 = x, j1 = y, i2 =
3x, j2 = 5y}, and the dependence vector set is {2x, 4y}. In loop L1, 1 ≤ i1 < i2 ≤ 10, 2i1<2i2;
therefore, it is a BGPL.

From the definition of a BGPL, its basic properties can be summarized directly as
follows.

Property 1: The IDCH [14] of a BGPL is always situated at the side of di(x, y) > 0, be-
cause the dependence vector function in the I dimension is always non-zero, positive, and
real. Geometrically, this tells us that any dependence vectors that are within an outer loop
index Ii or are anti-dependent are impossible.

Property 2: For any two dependence tails (i, j) and (i+1, j), their dependence heads are
shifted rightward by s1 and s3, respectively, which represents the initial dependence offset
along loop index I. Consider the dependence graph of L1 shown in Fig. 3. The depend-
ence heads of (1,1) and (2,1) are (3,5) and (6,5), respectively. Their dependence distance
in the I dimension is 3.

Property 3: s2 is always 0 for a GPL. The dependence heads of the two dependence tails
(i, j) and (i, j+1) are located at the same outer loop index i + di(x, y) = i + (s1 − 1)x + s3.
For example, the dependence tails (1,1) and (1,2) shown in Fig. 3, have dependence
heads on (3,5) and (3,10), respectively. They are both situated in the same column, Ii = 3.

In the following subsection, we will determine some of the hopping information, in
order to exploit as much parallelism as possible.

3.1.1 Determination of M

Given an iteration space, M represents the number of parallelizable iterations. We
formally define M below.

Definition 3.3 (M): Given a normalized two-level nested loop L, let the lower and upper
bounds on the outer loop index I be LI and UI, respectively. UJ is the upper bound on in-
ner loop dimension J, and Ii to Ii+j are adjacent columns of iterations in the loop dimen-
sion I, where LI ≤ Ii ≤ Ii+j ≤ UI. For any iteration, i ∈ [Ii , Ii+j] if it satisfies one of the fol-
lowing conditions:

(i) it is dependence free;
(ii) it is a dependence tail, but the corresponding dependence head has i' ∉ [Ii , Ii+j];
(iii) it is a dependence head, but the corresponding dependence tail has i' ∉ [Ii , Ii+j].

We say that these iterations are parallelizable and denote the number of paralleliz-
able iterations as M, where M = [( Ii+j − II + 1)*UJ]. �
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For DOALL loops, M is initially equal to the total number of iterations in the itera-
tion space, or [Ii, Ii+j] = [LI, UI] and M = [(UI − LI + 1)*UJ]. To initialize M, the number of
parallelizable iterations before an IDCH and the first group of parallelizable iterations in
an IDCH are computed. This is formally stated in Theorem 3.2. According to the PPS
mechanism, a parallelizable region can be split from an IDCH by finding a non-IDCH
region [15].

Definition 3.4 Non-IDCH region: For a nested loop L, let Γ be the iteration space with
iterations ik (k = 1, 2, 3, …) ∈ Γ. Γ(IDCH) represents the IDCH region. For any ik'∈ Γ,
but not in Γ(IDCH), we say that they are in Γ(non-IDCH), and Γ(non-IDCH) is called the
non-IDCH region of L.

The IDCH region shown in Fig. 6 is located from I4 to I7, while one of the
non-IDCH regions is located from I1 to I3 and another from I8 to I10. Lemma 3.3 empha-
sizes the features of the non-IDCH regions.

Fig. 6. IDCH and Non-IDCH regions of an iteration space.

Lemma 3.3 [15]: For a nested loop L, let Γ be the iteration space with iteration ik, im ∈
Γ(non-IDCH). Then, ik and im are cross-iteration independent and can be executed in
parallel.

Therefore, the two non-IDCH regions shown in Fig. 6 are parallelizable. Theorem
3.2 defines the size of the non-IDCH region on the left-hand side of the IDCH.

Theorem 3.2 [15]: Let L be a doubly nested loop, as shown in Fig. 1, and let LI(IDCH)
be the lower bound of the IDCH in loop index I. If LI < LI(IDCH), then the loop iteration
can be partitioned from LI to (LI(IDCH)-1) to form a parallel execution tile called the left
tile, with tile size TL = (LI(IDCH) - LI)*(UJ-LJ+1).

Using the size of the left tile, Theorem 3.3 aims to initialize M.
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Theorem 3.3: Given a GPL (L) as shown in Fig. 1, M is initialized as (s1*ileft) + s3 − 1
* UJ, where ileft is the leftmost extreme point of the IDCH in loop dimension I, and s1 and
s3 are the two coefficients in the Diophantine equations (3).

Proof: The parallelizable region before the IDCH covers [(ileft-1)*UJ] iterations. As a
dependence will only exist in the IDCH region, the first group of parallelizable iterations
next to the region is certainly contributed by the leftmost extreme points of the IDCH,
according to the definition of a GPL. Property (3) implies that the dependence distance of
the leftmost extreme is exactly [(s1 − 1)*ileft] +s3. Therefore, the initial value of M is

[(ileft − 1)*UJ] + [(s1 − 1)*ileft + s3]*UJ

= {ileft − 1 + [(s1 − 1)*ileft] + s3}*UJ

= [(s1*ileft) + s3 −1]*UJ

= (s1*ileft) + s3 – L1  *UJ (convert real to integer). �

Even though the iteration space is an integer space, the partitioning parameters are
composed of those coefficients of the Diophantine equations that may be positive and
real. On the other hand, because we have partitioned the integer iteration space, the
partition parameters must be changed into integer space. Thus, a floor operation is used
based on the concept of conservation of partitioning.

Consider Example 1, in which a set of extreme points is {(1, 1), (1, 2), (3, 1), (3, 2)}.
Among these, the leftmost extreme point in loop dimension I is 1; therefore, M is initial-
ized as (3*1) + 0 − 1*10 = 20. Geometrically, this indicates that there are 20 paral-
lelizable iterations at first, and that any idle processor can schedule iterations from them.

We propose a strategy to analyse static dependent information for non-uniform de-
pendence loops. We then dynamically use this information to synchronize the paral-
lel-executed iterations (chunks), such that better parallel execution performance for
non-uniform dependence loops can be achieved. In a general scheduling mechanism, the
iterations inside a current partitioning tile are being scheduled, and iterations in the fol-
lowing tile will be scheduled until all the iterations in the current tile have been sched-
uled and completed. If all the iterations in the current tile have been scheduled and com-
pleted, then the synchronization instruction (in this case a barrier instruction) will be re-
leased, and the iterations in the next tile can be scheduled. This continues until all the
iterations in the loop have been scheduled.

In our scheduling mechanism, we obtain the scheduling information, called a “hop-
ping gate” and a “hopping distance,” in the compilation phase. The hopping gate is the
iteration that the iteration in the following tile depends on, as shown in Fig. 4. The hop-
ping distance contains information about how many iterations can be released if all the
dependences in the current tile can be resolved. Note that the tile is pseudo, and we that
do not really partition the loop in the compilation phase. After the compilation phase of
the RCS method, this dependency information between two tiles is remembered as the
hopping gate, and the boundary of the next tile is remembered as the hopping distance. In
the execution phase, if we have the iteration named hopping gate has been scheduled and
completed, then the iterations as the next tile remembered in the hopping distance can be
released and scheduled.
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3.1.2 Determination of the hopping gate

When the iterations before the hopping gate have all been executed, the corre-
sponding dependence heads will be released. Therefore, the hopping gate specifies the
relaxation time of the dependence heads, and is defined below.

Definition 3.5 (Hopping Gate): Given a two-way nested loop L, let n be an identifier of
an iteration, and let M be defined as in Definition 3.3. If iterations i ≤ n are all paral-
lelizable, then before they are completely executed, no iterations j > M can be executed.
We call n a hopping gate. �

When the iterations before a hopping gate have all been executed, there may exist a
certain number of releasable iterations, so that M will probably be incremented. If a hop-
ping gate always carries single parallelizable iterations, M may be updated each time the
iteration is executed. Since M and the hopping gate are globally shared variables,
frequent adjustments can lead to a synchronization overhead. Therefore, we adjust M
only when the dependence tails within an outer loop instance Ii have been completely
executed, and the hopping gate then moves ahead by UJ. In other words, the hopping gate
will be defined by the last dependence tail of an outer loop instance Ii. However, as the
total number of dependence tails in each outer loop instance Ii may vary, we will
conservatively choose the highest number as the hopping gate. Based on linear
programming theorems stated in [14], the initial value of the hopping gate can be defined
as follows.

Theorem 3.4: Given a BGPL (L) as shown in Fig. 1, the hopping gate is initialized as
[(ileft − 1)*UJ] + j, where j = max(j') and (i', j') are the extreme points of the IDCH, and ileft

is the leftmost extreme of the IDCH in loop index I.

Proof: The hopping gate is invalid for a parallelizable region. If it exists on the left side
of an IDCH, then the hopping gate will be shifted ahead by (ileft − 1)*UJ. Since the
maximum j appears at the extreme points, the hopping gate is initialized as [(ileft−1)*UJ]
+ j. �

Consider L1 shown in Fig. 2 again. Among the extreme points (1,1), (3,1), (1,2) and
(3,2), the maximum j is 2, and ileft is 1, so that the hopping gate will be initialized as
(1-1)*10+2 = 2. This means that once iterations (1,1) and (1,2) have been completely
executed, their corresponding dependence heads will be released. At the same time, the
hopping gate will increment by 10 (UJ), and the newly updated hopping gate will be situ-
ated at (2,2).

3.1.3 Determination of the hopping distance (HD)

When the hopping gate is reached, the hopping distance defines the total number of
releasable iterations. A formal definition is given below.

Definition 3.6 (Hopping Distance, HD): Given a two-way nested loop L, let UI and UJ

be the upper bounds in loop indices I and J, respectively. For M as defined in Definition
3.3 and the hopping gate (G) as defined in Definition 3.5, Ii to Ii+j are adjacent columns of
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parallelizable iterations in the loop dimension I and satisfy (M/UJ) < Ii ≤ Ii+j ≤ UI. For all
iterations, j ≤ G. If these have been completely executed, then iterations i ∈ [Ii , Ii+j] are
all releasable. The maximum length of [Ii , Ii+j]*UJ is called the hopping distance. �

For a GPL, the hopping distance can be determined by the following theorems.

Theorem 3.5: Given a BGPL (L) as shown in Fig. 1, the hopping distance of L is
(s1*UJ).

Proof: The proof is straightforward. For a BGPL, each time the hopping gate is reached,
iterations between two adjacent columns of the dependence heads will be freed. Accord-
ing to Property 2, the dependence distance between two adjacent columns of dependence
heads is s1; therefore, the hopping distance is assigned to be (s1*UJ). �

Unlike M and the hopping gate, the hopping distance is determined at compilation
time but remains constant. In Example 1, the hopping distance of L1 is (3*10) = 30.
When iterations (3, 5) and (3, 10) are released, M is incremented by 30, or M has a total
of 20 + 30 = 50 parallelizable iterations, ranging from iterations (1, 1) to (5, 10). Both the
hopping gate and the hopping distance will be active until iterations within the IDCH
have all been executed.

The following corollary guarantees that the hopping gate is less than, or equal to, M.

Corollary 3.1: Given a BGPL (L) as shown in Fig. 1, the hopping gate is always less
than, or equal to, M.

Proof: Initially, the hopping gate is less than, or equal to, M:

(s1*ileft) + s3 − 1*UJ

= (s1 −1)*ileft + ileft + s3 − 1*UJ

≥ ileft −1 *UJ + (s1 − 1)* ileft + s3*UJ

≥ [ileft −1]*UJ + UJ (di(ileft,0) = [(s1 − 1)* ileft + s3] ≥ 1, else it is meaningless)
≥ (ileft −1)*UJ + j (1 ≤ j ≤ UJ) .

When execution commences, M, together with the hopping gate, will be updated by
the same processor. Each time hopping takes place, M increments by at least s1*UJ (the
hopping count), and the hopping gate increments by UJ. Since s1 > 1 for a BGPL, this
implies that (s1*UJ) ≥ UJ. Therefore at any time instance, the hopping gate is always
less than, or equal to, M. �

Based on Corollary 3.1, when the RCS method is applied, dynamic parallelism ex-
traction is achieved through the earlier relaxation of parallelizable iterations. However,
the hopping information can only be obtained and implemented in the outer loop dimen-
sion. We will propose a new method to exploit parallelism in another loop dimension.

3.2 Combination With the Irregular Loop Interchange Mechanism

In this section, we will present an effective method to check whether a loop inter-
change is allowable in a non-uniform dependence loop. Thus, after the Irregular Loop
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Interchange (ILI), the parallelism of the loop is dependent on the maximum parallelism
before, and after, the ILI mechanism. In the following paragraphs, we discuss some de-
pendence lemmas and then introduce our ILI mechanism.

Definition 3.7 [25]: The standard execution order is the execution order defined by the
Fortran standard. It is denoted by the symbol ‘«’.

Definition 3.8 [25]: Let S and S′ be arbitrary statements. Then S bef S′ : <==> S occurs
textually before S′.

The iteration vector i(1:m) will be abbreviated using the notation \i for the sake of
ease of representation.

Lemma 3.4: Let Sh and Sh′ be statements at level m, with associated iteration vectors j
and j′. Then

Sh(j) « Sh′ (j′) <==> ((j < j′) ∨ (j = j′) ∧ h < h′). �

Lemma 3.5 [15]: Assuming that S and S′ are two statements with associated iteration
vectors i and i′, respectively, then

S(i) « S′ (i′) <==> (\i < \i′) ∨ (\i = \ i′ ∧ S bef S′). �

Proof: Let the indices of S and S′ in the statement sequence of the body of Lm be h and h′,
respectively, and let i ∈ [S] and i′ ∈ [S′] be arbitrarily selected. Then \i ∈ [Sh] and \i′ ∈
[Sh′], and Sh(\i) « Sh′ (\i′) iff S(i) « S′(i′). Application of Lemma 3.4 (with j = \i, j′ = \i′)
yields

S(i) « S′ (i′) <==> (\i < \i′) ∨ (\i = \i′ ∧ h < h′). �

Definition 3.9 [25]: A direction vector is a vector θ ∈ {<, =, >, ∗} for some k ≥ 1.

Definition 3.10 [25]: Let S and S′ be statements in a loop. Then

(1) S « S′ : <==> ∃i, i′ : S(i) « S′ (i′),
(2) S δ S′ : <==> ∃i, i′ : S(i) δ S′ (i′).

S δ S′ is expressed as S′ and is (data) dependent on S. �

In the following, we will use «/c to denote the standard execution order of L/c, and
use δ/c for its dependence relation. For an arbitrary vector x of length n, x/c is the vector
obtained from x by swapping components xc and xc+1. Note that (L/c)/c = L.

Lemma 3.6 [15]: Assume that S and S′ are statements in L, and that i and i′ are iteration
vectors associated with S and S′, respectively. Then θ = dir (i, i′), c is an interchange
level, and S(i) « S′ (i′). Then
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S′(i′/c) «/c S(i/c) iff θ = (=c-1, <, >, ∗…∗). �

Proof: Let the assumptions of the lemma hold. We apply Lemma 3.5 twice to obtain

(1) S(i) « S′(i′) <==> (\i < \i′) ∨ (\i = \i′ ∧ S bef S′),
(2) S′(i′/c) «/c S(i/c) <==> (\i′ </c \i) ∨ (\i′/c = \i/c ∧ S’ bef S).

Now suppose S′(i′/c) «/c S(i/c). Then \i′/c < \i/c, i = i′ cannot hold, and there is a k ∈
[1: n], such that i <k i′. Clearly, the condition cannot be satisfied for any k ≠ c. For k = c,
we have

),...,,,,...,( 111 nccc iiiiii +−= ,

),...,,,,...,( 111 nccc iiiiii +− ′′=′ ,

with
cc ii ′< . In i/c and i′/c, the components c and c+1 are switched. From S′ (i′ /c) «/c S

(i/c), we immediately obtain
11 ++ ′> cc ii . This is the direction vector and has the form θ =

(=c-1, <, >, ∗…∗).
Conversely, θ = (=c-1, <, >, ∗…∗), which implies that S′(i′ /c) «/c S (i/c). This con-

cludes the proof of the lemma. �

Definition 3.11 [15]: A dependence S δθθθθ S′ in loop L is c-interchange preventing iff
S(i/c) δ/c S′(i′ /c) does not hold. �

Lemma 3.7 [15]: A dependence S δθθθθ S′ on L is c-interchange preventing iff θ = (=c-1, <,
>, ∗…∗). �

Lemma 3.8 [15]: Loop interchange at level c is valid iff there exists no c-interchange
preventing dependence. �

It is, thus, most important to distinguish whether a non-uniform loop interchange is
valid or not. Below, we will first present some theorems to distinguish if an interchange
is legal or not and then apply an appropriate non-uniform loop interchange technique to
it.

Theorem 3.6: Assume that the general solutions for interchanged dependence vectors
are Vc(X, Y) and Vc+1(X, Y), respectively. A dependence S δθθθθ S′ exists in L, where θθθθ =
(=c-1, Vc(X, Y) , Vc+1(X, Y), *…*). The loop interchange at level c is valid iff Vc(X,
Y)*Vc+1(X, Y) ≥ 0.

Proof: Let the assumptions of the above theorem hold. Applying Lemma 3.6, the loop
interchange at level c is valid; thus, there exists no c-interchange preventing depend-
ence. From Lemma 3.6, a dependence S δθθθθ S′ exists in L; thus, θθθθ ≠ (=c-1, <, >,*…*).
Clearly, Vc (X, Y)*Vc+1(X, Y) < 0 cannot be satisfied. We have Vc(X, Y)*Vc+1(X, Y) ≥ 0.

Conversely, Vc(X, Y)*Vc+1(X, Y) ≥ 0, implies that a dependence S δθθθθ S′ exists in L,
thus θθθθ ≠ (=c-1, <, >, *…*), which concludes the proof of the theorem. �
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Theorem 3.7: Assume that applying the loop interchange at level c is valid. The loop
bounds of the normalized loop indices c and c+1, are Uc and Uc+1, respectively. The
minimum dependence distances for the loop indices c and c+1 are Min(dc) and Min(dc+1),
respectively. The maximum parallelism for loop indices c and c+1 is Max(Min(dc)*Uc+1,

Min(dc+1)*Uc).

Proof: Let the assumption of the above theorem hold. There is no dependency between
any two iterations inside Min(dc) and Min(dc+1), respectively. The iterations that can be
parallelized are Min(dc)*Uc+1 and Min(dc+1)*Uc. The maximum parallelism of loop indi-
ces c and c+1 are the maximum dependence distance of the loop indices c and c+1. Thus,
the maximum parallelism is Max(Min(dc)*Uc+1, Min(dc+1)*Uc). �

Theorem 3.6 detects whether certain specific kinds of non-uniform loops can be in-
terchanged. Any non-uniform loops can be interchanged immediately after validation has
been determined. Theorem 3.7 tells us how to calculate the hopping distance before, and
after, the ILI method is performed and how to select the largest minimum dependence
distance as the hopping distance.

Example 3: In Fig. 2, loop L1 is an example of a non-uniform dependence loop, and its
dependence graph is shown in Fig. 3. The Diophantine equation set is {i1 = x, j1 = y, i2 =
3x, j2 = 5y}, and the dependence vector set is {2x, 4y}, where x and y are two integer
variables. According to Theorem 3.6, the production of two dependence vectors is V1*V2

= 2x*4y > 0, and Min(d1) = 2, Min(d2) = 4; therefore, loops I and J are interchangeable.
Thus, a degree of parallelism can be exploited through the ILI mechanism.

In the following section, we will discuss the generalities of the RCS method.

4. GENERALITIES OF THE RCS METHOD

If a loop does not belong to the GPL, then the RCS method works in a similar man-
ner to a GPL, with a slight modification in initialization of the hopping information. Be-
cause of the probable existence of the coefficient s2 in the dependence vector function
di(x, y), the number of parallelizable iterations is determined based on the concept of the
minimum dependence distance [14]. If di(x, y) = 0 does not pass through the IDCH, then
the absolute minimum and maximum values of di(x, y) appear as the extreme points.

Consequently, the minimum dependence distance of a flow dependence loop is {md
| md = min[di(x, y)], where (x, y) are the extreme points of the IDCH, and md ∈ R}. Let
UJ, be as defined as shown in Fig. 1, so that iterations within md*UJ are parallelizable
[14]. Here, the hopping information can be determined by means of the following corol-
lary.

Corollary 4.1: Given a non-GPL flow dependence loop (L) as shown in Fig. 1, the hop-
ping information can be initialized as follows:

(i) M = (ileft −1) + md*UJ,
(ii) hopping gate = ileft + md −2*UJ + j,
(iii)hopping distance = md*UJ,
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where md is the minimum dependence distance of L, and j = max(j'), where (i', j') are the
extreme points of the IDCH.

Proof: (i) Similar to Theorem 3.3, M is initialized as
[(ileft −1)*UJ] + md*UJ

= (ileft −1) + md*UJ.
(ii) Iterations in md * UJ are parallelizable, so md-1 * UJ + j. Therefore, the

hopping gate can be initialized as
[(ileft-1)*UJ] + md − 1*UJ + j
= ileft + md − 2*UJ + j.

(iii) Given that M and the hopping gate are defined as in (i) and (ii), if we assume
that the iterations before the hopping gate have all been executed, then the
total number of releasable iterations is d*UJ. If d > md, then there may exist
dependence vectors located within d*UJ, so d*UJ will definitely not be
parallelizable. If d < md, then iterations in d*UJ are parallelizable, but d is
not the maximal length of a parallelizable iteration. As a result, d must be
equal to md; thus, the hopping distance = md*UJ. �

On the other hand, if di(x, y) = 0 passes through the IDCH, then the iterations within
the IDCH can be flow-dependent tails or anti-dependent heads. By using array duplica-
tion and renaming, the anti-dependences can be removed completely. Moreover, some
dependence tails may have dependence heads located at the same loop instance Ii. Dj(x, y)
= 0, which implies that there exists intra-iteration dependence for all iterations along the
line segment di(x, y) = 0. As long as a single iteration is executed serially, the in-
tra-iteration dependence is preserved. The RCS method works similarly, but determina-
tion of the minimum dependence distance follows Theorem 3.7.

Theorem 4.1: If di(x, y) = 0 passes through the IDCH and dj(x, y) = 0, then the absolute
minimum value of di(x, y) appears at either the extreme points or at the iterations next to
the intersection points of the line segment di(x, y) = 0 with the IDCH.

Proof: Let E represent a set of extreme points, let E' be a subset of E, and let (x1, y1) and
(x2, y2) be two points of intersection of the line segment di(x, y) = 0 with the IDCH. If
di(x,y) = 0 passes through the IDCH, then it divides the IDCH into a unique tail set and a
unique head set [16]. The two unique sets are subsets of the IDCH. If they are denoted as
Sf and Sa, then the extreme points around their parameter will be union of E' and {(x, y) |
(x, y) | a coordinate of the IDCH, which is closest to the intersection points (x1, y1) or (x2,
y2)}. Their respective absolute minimum dependence distances can now be determined.
Assuming that they are mdf and mda, the overall minimum dependence distance is
min[mdf, mda]. �

Finally, we can check the hopping information of both axes. If the loop is found to
be interchangeable, then we can choose the one with the larger hopping distance. Thus,
the degree of exploitation of parallelism will be maximized.

Based on the above analysis, our RCS method can be easily generalized. During the
compilation phase, the loop is examined to determine whether or not it is interchangeable
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according to Theorem 3.6. If it is, then, an irregular loop interchange is applied and more
parallelism in another loop dimension will be exploited. The detailed procedure is shown
in detail in Algorithm 1.

Algorithm 1: Compilation phase of the RCS method
Input: A two-way nested loop L, as shown in Fig. 1, which has a total of N=UI * UJ it-

erations.
Output: A set of initialized variables {M, hopping_gate, hopping_distance, iright}
Method

function Banerjee (L): General solutions of the Diophantine equation set (S)
/* This is used to create general solutions of the Diophantine equation set (S). The

output is a list of eight half spaces and the dependence vector set (V).*/
function Tzen_and_Ni (S) : DCH (D)
/* This aims to form the DCH from the given Diophantine equation set (S) and is

expressed as a list of nodes. */
function Is_DCH_Empty (D) : Boolean
/* If the DCH is empty, then it returns TRUE, else it returns FALSE*/
function Transform_DCH_To_IDCH : IDCH(I)
/* This is used to convert the DCH into an IDCH and to record the maximum j and

the leftmost and rightmost extreme points as j, ileft and iright.*/
function Determine_Position_Of_IDCH(S,V) : integer
/* If di(x', y') > 0 for all the extreme points of the IDCH (x', y'), then the IDCH is

located at di(x, y) > 0 and returns 1. Else, if di(x', y') < 0 for all the extreme points
of the IDCH (x', y'), then the IDCH is located at di(x, y) < 0 and returns -1. Oth-
erwise, it returns 0.*/

function Is_BGPL(S) : Boolean
/* If s1 > 1, and s2 = 0, then it returns TRUE, else it returns FALSE. */
function Determine_Minimum_Dependence_Distance(V, D) : integer
/* This determines the minimum dependence distance of the IDCH using Theorem

4.1.*/
function Determine_Overall_MDD(V, D) : integer
/* This determines the minimum dependence distance of the IDCH.*/
function J_Dependence_Free(V) : Boolean
/* If dj(x, y) = 0, or j2 = y, for Diophantine Equation (1), then it returns TRUE, else

it returns FALSE.*/
begin

hopping_gate : = 0;
hopping_distance : = 0;
S : = Banerjee(L);
D : = Tzen_and_Ni(S);
if (Is_DCH_Empty = TRUE)

then /* identify L as DOALL loop */
M : = N2;

else
I : = Transform_DCH_To_IDCH(D);
switch (Determine_Position_Of_IDCH(S, V))
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begin
case -1 : /*Reconstruct the loop as DOALL loop.*/

M : = N2;
case 1 : if (IS_BGPL(S))

then
M : = (s1*ileft) + s3 −1*UJ; /* Theorem 3-3*/
hopping_gate : = [(ileft −1)*UJ] + j; /* Theorem 3-4*/
hopping_distance : = s1*UJ; /* Theorem 3-5*/

else
md : = Determine_Minimum_Dependence_Distance(V, D);
M = (ileft −1) + md*UJ; /* Corollary 4-1*/
hopping gate ileft + md −2*UJ + j;
hopping distance = md*UJ;

fi
case 0 : if (J_Dependence_Free(V) = TRUE)

then
md : = Determine_Overall_MDD(V, D);
M = (ileft −1) + md*UJ; /* Corollary 4-1*/
hopping gate ileft + md −2*UJ + j;
hopping distance = md*UJ;
fi

endswitch
fi

end

The complexity of this algorithm is bound by the formation of the DCH, by the
transformation of the DCH into the IDCH, and by the determination of the position of the
IDCH and of the minimum dependence distance. During the execution phase, the RCS
method follows Algorithm 2. Notice that the RCS method defines the number of paral-
lelizable iterations and can also incorporate a predefined chunk size control function.

Algorithm 2: Execution phase of the RCS method
Input: Number of processors P, and output of Algorithm 1, {M, hopping_gate, hop-

ping_distance and iright}.
Output: Scheduling code of the RCS method on BGPL.
Method

/* Define a structure to record the lower and upper bounds of the current chunk for
each processor. The following example is written in C:

typedef struct {
int lb; /*lower bound*/
int ub; /*upper bound*/

} bound_type;
bound_type bound[P]; */
procedure Get_A_Chunk_Of_Iterations(Count);
/* Chunk size control function is defined during compilation time. The following

example assumes that the GSS is applied.
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lock(s);
bound[processor_id].lb = Count + 1;
bound[processor_id].ub = Count + (N-Count)/P;

unlock(s); */
procedure Execute_A_Chunk();
/* Executing loop body*/

begin
/* Count is used to record the id of the currently scheduled iteration, and Executed

is used to record the id of the currently executed iteration. */
Count : = 0;
Executed : = 0;
/* Start parallel execution */
while (Count < N)

Get_A_Chunk_Of_Iterations(Count);
Execute_A_Chunk();
if (M < N)

then
lock(t);

Executed = max(Executed, bound[processor_id].ub);
/*processor triggers hopping*/

if (bound[processor_id].lb ≤ hopping_gate and
bound[processor_id].ub ≥ hopping_gate)

then
if (hopping_gate ≥ [(iright-1)*UJ+hopping_gate])

then
M : = N2;

else
hopping_count : = [(Executed-hopping_gate)/UJ + 1];
hopping_gate : = hopping_gate + (hopping_count*UJ);
M : = M + (hopping_count * hopping_distance);

fi
fi

unlock(t);
fi

endwhile
end

Consider L1 in Example 1. If we assume that there are two available processors, P1

and P2, and that the GSS is chosen for scheduling, then one of the possible execution
orders is that shown in Table 1. Note that only the activities that are protected by pairs of
lock-unlock operations are included. The ranges shown in parentheses in Table 1 repre-
sent the lower and upper bounds of that chunk.

If we suppose that P1 acquires a lock at the beginning, then chunk2 finishes its exe-
cution before chunk1 does, but is not allowed to trigger hopping as shown in step 4 be-
cause the hopping gate is included in chunk1 and P1 is the unique candidate for triggering
the hopping gate. When chunk1 finishes, the hopping gate ought to be adjusted twice as
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Table 1. One possible execution order of L1.

Step P1 P2

1 chunk1 = (20-0)/2 = 10 (1~10)

2 Chunk2 = (20-10)/2 = 5 (11~15)

3
Executed = max (0, 15) = 15
� (11>2) and (15>2)
� hopping fails.

4

Executed = max(15, 10) = 15
� (1<2) and (10>2),
� hopping count = (15-2)/10+1 = 2

hopping gate = 2 + (2x10) = 22
M = 20 + (2x30) = 80

Chunk3 = (20-15)/2 = 3 (15~17)

5 chunk4 = (80-17)/2 = 32 (18~49)

6
Executed = max(15, 17) = 17
� (15<22) and (17<22)
� hopping fails.

7 Chunk5 = (80-49)/2 = 16 (49~64)

8
Executed = max(17, 64) = 64
� (49<22) and (64<22)
� hopping fails.

9

Executed = max(64, 49) = 64
� (18<22) and (49>22) and

22 = [(3-1)*10+2]
� M = 100

chunk6 = (80-64)/2 = 8 (64~71)

10 chunk7 = (100-71)/2 = 15 (72~85)

11 chunk8 = (100-85)/2 = 8 (85~92)

12 chunk9 = (100-92)/2 = 4 (93~96)

13 chunk10 = (100-96)/2 = 2 (97~98)

14 chunk11 = (100-98)/2 = 1 (99)

15 chunk12 = (100-99)/2 = 1 (100)

long as chunk2 has already passed over the subsequent hopping gate. Once P1 appears to
schedule chunk4, it schedules iterations from the newly updated M (step 5). Once P1 de-
tects that iterations within the IDCH have all been executed, M will reach N, as shown in
step 9. Scheduling continues until M is completely executed.

5. PRELIMINARY PERFORMANCE EVALUATIONS

In this section, performance evaluations will be presented to verify the practical ef-
fectiveness of the RCS method. The experimental programs include program models
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discussed in the previous section and some practical code segments. The experimental
evaluations were carried out on a CONVEX SPP-1000 clustered multiprocessor system
[17, 18], which had eight PA-RISC processors and a shared distributed memory con-
figuration.

To find out whether our RCS technique would perform better than the existing parti-
tioning mechanisms in a system with a large number of processors, we constructed a
multiprocessor evaluation environment to measure their performance. Different mecha-
nisms were implemented, and the object code was evaluated on a simulator called Simu-
lation and Evaluation Environment for Shared-Memory Multiprocessor Architecture
(SEESMA) [23], which was an enhanced version of MINT [24]. This system had a
highly parallel shared memory multiprocessor system environment and was similar to the
Exemplar system architecture with a large number of processors.

Our performance merit was the execution time. This was divided into five compo-
nents: (i) busy time (the average parallel execution time of each activated processor); (ii)
waiting time (the processor’s average waiting time while others were busy executing);
(iii) the scheduling overhead (average latency of scheduling a chunk); (iv) the fork and
barrier overhead (the average time spent at the end of each tile); and (v) the initialization
overhead (the time consumed in initializing a scheduling scheme and chunk to be exe-
cuted).

The methods that were compared consisted of the ISM [10], the MDT [14], the PPS
[15], and the GPD [15].

As discussed in section 3, the RCS method ought to be associated with one of the
dynamic scheduling schemes. To determine which was best, we applied the Pure Self
Scheduling (PSS), the Chunk Self Scheduling (CSS), the Guided Self Scheduling (GSS)
[1], and the Trapezoid Self Scheduling (TS) [3] schemes on L1. As shown in Fig. 7, the
association with GSS was the most superior scheme.
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Fig. 7. The RCS method associated with various chunk size control functions.
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The chunk size of the PSS was kept constant at 1. The processors spent a lot of time
performing parallel execution of a single iteration, leading to heavier initialization and
scheduling overhead. These overheads can be reduced by increasing the chunk size. In
the same time, a subroutine is called on to complete a chunk of iterations rather than a
single iteration. The faster the chunk size converges to 1, the lower the scheduling and
initialization overheads will be. The CSS, GSS, and TS schemes benefit from this ability.
The formulae in the TS scheme failed sometimes, resulting in imbalanced workload. In
the following evaluations, the RCS method was incorporated with the GSS scheme to
reliably extract parallelism, and the GSS was also incorporated with the PPS, MDT and
GPD methods.

5.1 Performance Evaluation of the Program Models

Table 2 detailed listing of the results for the program model L1 when different
scheduling approaches were used.

Table 2. Scheduling-related information about the various approaches.

Scheduling Schemes L1

ISM BDVS = {(0, 1), (1, −1)}
PPS IDCH covers from I = 1 to 10; BDVS = {(0, 1), (1, −1)}

MDT Tile length = 2; Tile size = 60
GPD Tile lengths = 2, 4, 12, 12; there are 4 tiles in total.

RCS Method M = 120; Hopping gate = 10; Hopping distance = 150; iright = 6

Fig. 8 shows the execution time of L1 when different scheduling and partition
mechanisms were incorporated. The number of processors (P) varied from two to eight.
In the above condition, the MDT execution time was the longest, no matter how many
processors were used. It required 15 times the number of process fork-joins than other
mechanisms, and thus required barrier synchronization, so the overhead became signifi-
cant when P became large. In addition, its limited tile size caused the number of paral-
lelizable iterations to be reduced, with a consequent delay in the scheduling time. When
L1 was scheduled with the ISM, the system spent a significant amount of time waiting for
other iterations to complete. Finally, the delay overhead resulted in low performance gain.
The performance behaviour of the PPS was similar to that of the ISM. This is because the
method of scheduling iterations in the IDCH region followed that of the ISM. When the
IDCH region was large, the performance of the PPS was bound by the delay overhead
inherited from the ISM. Although the GPD was specific to the growing pattern loop, it
was still restricted by the multi-barrier synchronization overhead. Its execution time
eventually became worse than that of the RCS method. Overall, the RCS method
achieves success by removing the system waiting time and multi-barrier synchronization
time. As a result, it outperformed all the other methods.

5.2 Performance Evaluation on Practical Code Segments

In addition to the program models, practical code segments were also taken into ac-
count. Evaluations of the Propagate code segment will be presented first. This is one
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Fig. 8. Execution time of L1.

dependence pattern widely found in the Linpack and Eispack packages. The code seg-
ments are shown in Figs. 9a and 9b. Both of these share a dependence graph as shown in
Fig. 9c. The results, computed based on iterations (1, j), are propagated toward iterations
(i,j) for all i ∈ [1, Q]. The dscheduling information for the distinct scheduling schemes is
presented in detail in Table 3.

DO I = 1, Q DO I = 1, Q
DO J = 1, R DO J = 1, R

AR(I, J) = AR(1, J) B(J, I) = B(J, 1)
CONTINUE CONTINUE

CONTINUE CONTINUE

Fig. 9a. Code segment 1. Fig. 9b. Code segment 2.

Figs. 10a and 10b show the execution time and speedup of the propagate code seg-
ment. The upper loop bound was set at 30 on each dimension. For this particular code
pattern, the MDT tiles the iteration space with a tile length equal to 1 or each column of
iterations forms a parallelizable tile. The 30 times fork-join processes and barrier syn-
chronization result in an extremely large overhead that seriously degrades performance.
The ISM schedules the loop with a delay factor equal to 1. Both the ISM and PPS meth-
ods are rather worse than the RCS method because of their substantial waiting over head.
Again, the RCS method retains its superiority. From Fig. 10b, we can further conclude
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Fig. 9c. Dependence graph.

Table 3. Scheduling-related information for various approaches.

Scheduling
Schemes

Propagate Code Segment (30x30) Swap Code Segment (30x30)

ISM BDVS = {(0, 1), (1, 0)} BDVS = {(0, 1), (1, 0)}

PPS
IDCH at I = 1;
BDVS = {(0, 1), (1, 0)}

IDCH covers from I = 1 to 30;
BDVS = {(0, 1), (1, 0)}

MDT
Tile length = 1
Tile size = 30

Non

RCS Method
M = 30; Hopping gate = 30
Hopping distance = 0

M = 30; Hopping gate = 30;
Hopping distance = 30

that if a given loop inherits adequate parallelism, the RCS method can extract it with
little hopping overhead.

Another code segment evaluated is called the Swap code, which serves as the kernel
of the Fishpak package. Fig. 11a and 11b show the code patterns and their dependence
graph. We found that the IDCH occupied the whole iteration space; moreover, di(x, y) = 0
went through the IDCH vertically, and dj(x, y) = 0. At this point, the MDT failed, and the
performance of the PPS was identical to that of the ISM, because both the left and right
tiles were empty. The right half of Table 3 tabulates the performance of the ISM and RCS
methods when they were applied to the swap code.

The execution time and speedup graph of the swap code segment are presented in
Figs. 12a and 12b, respectively. Since there were at most, 30 parallelizable iterations to
be executed at any given time, the limited parallelism caused a significant scheduling
overhead when the RCS method was employed. Except for the case when five or more
processors were used simultaneously, the performance gain of the RCS method was just
as good as that of the ISM method.
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Fig. 10a. Execution time of the propagate code segment.

Fig. 10b. Speedup of the propagate code segment.

On the other hand, to show the performance of our mechanism when the number of
processors is larger than eight, we implemented different mechanisms in the SEESMA
environment, using 128 processors. The speedup of the Propagate and Swap code seg
ments is shown in Figs. 13 and 14, respectively. The loop bounds of the benchmarks
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DO I = 1, 10
DO J = 1, 10

A1 = Y(J, I)
Y(J, I) = Y(J, N+1-I)
Y(J,N+1-I) = A1

CONTINUE
CONTINUE

Fig. 11a. Swap code segment. Fig. 11b. Dependence graph of the swap code.

Fig. 12a. Execution time of the swap code segment.

were set to 100. We can see that our RCS mechanism performed better than the other
scheduling mechanisms when a large number of processors was used.

In summary, the performance of the RCS method is exactly proportional to the un-
derlying parallelism. If the parallelism is sufficiently large, the RCS method can reliably
extract parallelism without introducing an intolerable scheduling overhead. Consequently,
the RCS method is an encouraging approach to scheduling non-uniform dependence
nested loops.

0

10

20

30

40

50

60

E
xe

cu
tio

n
T

im
e

(m
s)

.

ISM /
P=2

RCS /
P=2

ISM /
P=4

RCS /
P=4

ISM /
P=6

RCS /
P=6

ISM /
P=8

RCS /
P=8

Scheduling Mechanism / Number of Processors

Swap Code Segment (30X30).

Initialization Overhead

Fork+Barrier Overhead

Scheduling Overhead

Waiting Time

Busy Time

1 2 3 4 5 6 7 8 9 10 I

10

9

8

7

6

5

4

3

2

1

0

J

IDCH

X = 5.5



A RELEASE COMBINED SCHEDULING SCHEME 251

Fig. 12b. Speedup of the swap code segment.

Fig. 13. The speedup of the propagate code segment in the SEESMA environment.

6. CONCLUDING REMARKS

Due to the available parallelism, concurrent execution of loops is vital to the per-
formance of shared-memory multiprocessors. An efficient non-uniform loop scheduling
scheme, called the RCS method, has been developed, and its effectiveness has been
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Fig. 14. Speedup of the swap code segment in the SEESMA environment.

shown by executing program codes on a CONVEX SPP 1000 machine. Based on solving
a set of Diophantine equations, and using the idea of the minimum dependence distance,
we have presented the procedures for determining scheduling information, including the
number of parallelizable iterations, the hopping gate and the hopping distance. As the
RCS method does not define the scheduling approach, it must be incorporated with a
chunk size control function. Preliminary evaluation has shown that GSS is the best
scheme to use with the RCS method.

Our performance evaluation shows that the RCS method is significantly affected by
the parallelism of the target program. If the parallelism is sufficiently large, the RCS
method will reliably extract any available parallelism without introducing any serious
synchronization overhead. Unlike other loop partition techniques, it can successfully
eliminate multi-barrier synchronization and release parallelizable iterations earlier. In-
stead of relying on cross-block synchronization primitives and delay instructions, the
RCS method dynamically adjusts the hopping information to maintain dependence cor-
rectness.

In the future, we plan to further extend the RCS method to a multi-dimensional it-
eration space and establish an appropriate dynamic data allocation mechanism to reduce
data conflict.
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