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A novel off-line algorithm and a modified chain code for recognizing signatures
are proposed in the present study. Carbon paper is used to detect force distributions
when people write their signatures. First of all, the signature contours are located and the
upper and lower profiles are generated; then, these are used to classify the given signa-
ture. Both the gray-scale and the chain code characteristics of a signature are used to ex-
tract structure and force distribution features, which are then transformed into a normal-
ized vector. Finally, a Supervised Fuzzy Adaptive Hamming Network (SFAHN) is em-
ployed to interpret the feature vector in order to determine whether the signature is
genuine or not. Simulation results show that the proposed algorithm has a good recogni-
tion rate.
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traction

1. INTRODUCTION

Much research has been done on recognition of hand-written characters and signa-
tures. The origin of character recognition goes back as far as 1870. Character recogni-
tion and signature identification are two important issues today in business activities and
are classified as data processing applications. Signature recognition and character recog-
nition are very similar in many respects. A common application of signature recognition
is signature identification. Whether a signature is genuine or not can affect economic
security since false identification of the signature on a bank check, a commercial form, or
personal identification maybe result in huge losses. To handle such tasks, signature rec-
ognition should be quick, convenient, and highly reliable.

Although identification can be achieved using ID cards, secret hidden marks, pass-
words and other methods, these methods suffer from being duplicated easily or being too
complex for people to use easily. However, everyone remembers his name easily and has
his own particular style of handwriting. In some cases, fingerprints or voiceprints can be
used for identification, though bank checks and commercial forms usually need faster
processing.

Signature recognition is usually divided into two stages. In the first stage, the char-
acteristic features of a signature are extracted using sensors (electronic pens or tablets),
or else images are obtained by means of scanning. The second, judgment stage deter-
mines whether the signature is genuine or forged. Many approaches, such as statistical,
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syntactic, and neural network methods have been investigated in recent years. The fea-
ture-extraction techniques can usually be divided into two types: on-line and off-line. An
on-line method extracts features while a person is signing; an off-line method extracts
features after a person has finished writing his signature. Since an on-line method must
extract features in real time, it requires the use of sensorial input tools [4, 11, 13, 25, 28].
Zimmermann and Varady [28] used a digitizing graphic tablet to detect pen/writing sur-
face contact over a fixed period of time. Herbst and Liu [11] detected acceleration while
people were writing their signatures. Dimauro, Impedovo, and Pirlo [4] also used a
graphic tablet to determine pen-down and pen-up positions. An on-line method is more
informative than an off-line method, but it is limited by the need for special devices.
Since an off-line method cannot get real-time information, it only focuses on the analysis
of shape, structure, strokes, and other features of the signature. An off-line method re-
quires some special character-recognition processing techniques, such as thinning [6, 27,
29], slope detection, angle calculation, finding the number and positions of crossing
strokes and closed-loops, determining arc curvature, selective searching [30], and so on
[1, 3, 9, 14, 17, 18, 20, 24, 25, 29, 30]. In an off-line technique, some useful features ob-
tained by an on-line method are missing, for example, the force distribution and accel-
eration of a signature. Ammar, Yoshida, and Fukumura [1] used a pencil for signing in
order to record the force employed, but they found it difficult to determine the threshold
value, which is a limitation of input tools. A pencil is normally not used while conduct-
ing business, and pencil signatures can be distorted or even disappear due to external
influences. Feature extraction is also important since everyone write his or her signature
differently but in much the same way each time.

The methods used to determine whether a signature is genuine or not can usually be
classified into three categories:

1) statistical methods [1, 5, 11, 14, 17, 18, 20],
2) syntactic methods [9, 22], and
3) neural network methods [5, 17, 18, 21, 23].

Genetic Algorithms (GAs) can also be used in the judgment stage [25], but they are
not often discussed. Each method mentioned above has its own advantages and disad-
vantages:

1) Statistical approaches: Since our habits change, it is inevitable that there will be some
differences between the signatures that are written by the same signer. These differ-
ences are not serious, but sometimes people may be disturbed by external or internal
events, and may generate some particularly unusual signatures. Hence, special pat-
terns must be included in the database and this requires the use of many signature pat-
terns to create a more complete database. Thus, a statistical method is time consuming
and requires more operations.

2) Syntactic approaches: In syntactic approaches, the structure of an entity is of para-
mount importance. By analyzing the structure, the classification and description can
be determined. Two major rule types are:
a) formal grammars and
b) relational descriptions (principally graphs).
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Signature skeletons are often located by means of thinning. The results of thinning
[6, 27] are usually not good, especially when there are some abnormal forks at stroke
intersection points. Since a syntactic method needs correct skeleton structures, Liao and
Hung [15] proposed the use of Bernstein-Bezier Curve Fitting to solve abnormal forking
problems in character recognition. However, more time is required for preprocessing,
and this method is suitable for printed characters only. The relational description must
also be suitable and robust; otherwise, one cannot use Liao and Hung’s method to get
appropriate features to represent the character.

3) Neural network approaches: The most popular neural-network-based pattern recogni-
tion algorithm, called Back-Propagation (BP), is widely used for signature recogni-
tion [5]. Adaptive Resonance Theory (ART) is another well-known neural network
approach, and is usually used in the object recognition field [2]. However, neural
networks can only be used to solve problems on a case by case basis. Each problem
requires the use of a suitable neural network to obtain a solution. The inputs of a neu-
ral network must be fixed dimension vectors, which are obtained by means of feature
extraction. Extraction of effective features can reduce the training time required and
produce good performance. Thus, feature extraction is a key part of neural network
approaches. In addition, arranging the training-pattern order, choosing the number of
nodes, and adjusting other neural network parameters require experience and are usu-
ally done by means of a trial and error.

The off-line signature recognition method can be divided into two stages: identifica-
tion and verification. Identification means determining the group that a signature belongs
to. On the other hand, verification means verifying a supposition that a particular signer
wrote the signature. In other words, identification is the same as classification since it
also classifies signatures. Therefore, whether a signature is genuine or not is judged dur-
ing the verification process. Much research has focused on verification issues, but little
research has dealt with identification problems [17].

An automatic signature recognition system (ASRS) must accomplish both identifi-
cation and verification. When we want to determine whether a signature is genuine or not,
we usually go by the overall outline of the entire signature to be first. If it varies in out-
line from the genuine signature, then the signature can be easily and quickly determined
to be forged. If not, then the fine parts of the entire signature must be analyzed in detail.
For the above reason, the entire outlines of signatures are saved as features. Parisses [16]
and Gupta [8] adjusted the parameters to get more accurate or coarser feature vectors.
Using a statistical method to achieve easy and robust identification is a not bad choice.
The Nearest Neighbor Rule (NNR) is a popular method of classification in statistics since
it can find the minimum difference between test and database patterns.

In recent years, the use of a neural network in the verification step has often been
proposed. Drouhard, Sabourin, and Godbout [5] used a back-propagation neural network
for verification. Although Back-Propagation (BP) algorithms are popular learning meth-
ods, they have the disadvantages of requiring a large amount of training time and usually
finding a local-minimum solution. The adaptive resonance theory (ART) has also been
applied to pattern recognition. It is an on-line learning architecture that does not need
prior knowledge of the total number of pattern classes. When a new pattern is presented,
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ART does not need to learn all the patterns, including those that have been previously
learned. ART is much more convenient to use than BP. Tseng and Huang [23] used the
ART-1 neural network to perform verification. In a study on verification, an experiment
comparing six methods was conducted [17]. Pottier [17] showed that using a 2-layer arti-
ficial neural network with fully connected perceptrons gave the best recognition rate
compared with 1-NNR, 3-NNR, etc. Adaptive Hamming networks have been proved to
be equivalent to the ART-1 model with a fast-learning architecture that minimizes the
searching process [12]. The fuzzy adaptive Hamming network [13], which evolved from
the adaptive Hamming network, can deal with analog input patterns. Furthermore, the
Supervised Fuzzy Adaptive Hamming Net (SFAHN) [13] not only accepts analog input
patterns, but also can operate in a supervised-learning mode. Since neural networks have
good recognition rates, we use SFAHN in the verification phase.

In order to save force distributions as features when signatures are written, we use
carbon paper as the force sensor. Since the characteristics of ink allow it to diffuse rap-
idly and consistently on a normal paper, the intensity of the strokes hardly varies, making
it difficult to get a fine force distribution record. However, carbon paper generates darker
and lighter strokes on the paper beneath it when people use more or less strength. We
scan the signatures duplicated by the carbon paper using a scanner and save them as im-
ages. Then, a fast and easy thinning algorithm [6] is used to get signature skeletons. In
order to get features that are not influenced by abnormal forks, a modified algorithm has
been developed from the chain code algorithm. Finally, SFAHN is used to verify whether
the signatures are genuine or not. Since SFAHN can be trained on-line, it requires less
training time and has a good recognition rate.

2. CHAIN CODES AND SUPERVISED FUZZY ADAPTIVE
HAMMING NETWORK

2.1 Chain Codes

Chain codes [6] have been used in pattern recognition, where the contours tracked
and chain codes used to record variation in direction. They are also used to represent a
boundary as a sequence of connected straight-line segments. Digital images are usually
acquired and processed in a grid format with equal spacing in the x and y directions, so
that chain codes can be generated by following a boundary in a clockwise direction and
assigning a specific direction to the segment connected with a pair of pixels. An
8-directional chain code was used in this study. The code words 0, 1, 2, 3, 4, 5, 6, and 7
represented the changes in direction between pixels, and they represented right, right-up,
up, left-up, left, left-down, down, and right-down, respectively.

Although chain codes are usually used within closed boundaries, we can also apply
them in signature recognition. In Fig. 1, there are three lines with tilt degrees of 23°, 45°,
and 80°, respectively. These lines were scanned from left to right and from top to bottom.
Skeletons of these lines comprise the right, down, and right-down directions mostly, so
the numbers for the right, down, and right-down code words could be determined. We
calculated the ratio of a codeword by dividing the number of the specific codeword by
the total number of codewords, and the ratios of code words 0, 6, and 7 could be used to
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(a)

(b)

(c)
Fig. 1. Analyses of three lines with different tilt degrees using chain codes.

describe the tilt state of each line in Fig. 1. The larger the ratio for code 6, the greater the
tilt degree. The distribution of the ratio for each code reveals the useful features. People
were asked to sign their names on a horizontal line, called the base-line, a common re-
quirement for bank checks and other documents, to obtain horizontal signatures. If the
signatures were not written along the horizontal line, we would get useless chain codes
because it would not represent the real structure of the signature.
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Chain codes can be used to generate fixed dimension feature vectors that represent
structures, and these features can be used as inputs of a neural network. By adding varia-
tion of gray values to chain codes, the force distribution features can be extracted. Chain
codes can be modified and used to analyze signature structures and force distributions for
the purpose of verification.

2.2 Supervised Fuzzy Adaptive Hamming Network

In this section, the Supervised Fuzzy Adaptive Hamming network (SFAHN) will be
introduced as a feature classifier. SFAHN receives analog input patterns and learns them
in a supervised mode. If an input pattern is similar to one of its stored patterns, the
weights connected to the neuron of the stored pattern are updated. On the other hand, if
the input pattern is not similar to any of the stored patterns, then a new neuron is created,
and the weights are updated to store the new pattern. When a new input pattern is learned,
the SFAHN does not need to acquire the patterns learned previously. SFAHN operates at
a fast speed since it does not waste any time on searching. Hence, the SFAHN feature
classifier was adopted for our system in order to achieve quick recognition.

SFAHN consists of complement coding, a score-matching net, MAXNET, map field,
and match-tracking. Although a detailed explanation of SFAHN was given by Hung and
Lin [13], a brief description is given below.

When SFAHN receives an M-dimensional analog input pattern, it produces 2M fea-
tures using complement coding. These 2M features are input to the score-matching net to
generate N outputs. After applying a piecewise linear function to the score-matching op-
eration, a choice function is used to select a maximum value among the N outputs.
MAXNET is employed to choose the neuron that has the maximum choice function
value, and then a comparison is made between the class label of the chosen neuron and
the desired input class label according to the map field. If these two classes are the same,
then the weights of the chosen neuron are updated. Otherwise, match tracking is used to
increase the threshold value of the score-matching net, and another neuron with a maxi-
mum choice function value is found and selected. After searching all the neurons with
previously learned patterns, if no neuron with the same class label as the desired input
class label is found, then a new neuron is created and assigned to the desired class label,
and its weights are updated to store the new input pattern. We will now describe the rec-
ognition phase of SFAHN. In the recognition phase, the operating components consist of
complement coding, a score-matching net, and MAXNET. When a test pattern is input
and a complement is coded, the features are input to the score-matching net, and the
choice function value is computed. MAXNET is used to select the neuron with the
maximum choice function value, and from the map field, the class label of the chosen
neuron corresponding to the output is the recognized result.

In the identification phase, a statistical method known as 1-NNR is employed to
classify signatures. The upper and lower profiles of each test signature are created. Then,
after finding the minimum distance between the test and the database profiles, we assign
a numerical label (0, 1, 2, ...) to each classified signature. SFAHN is used as a feature
verifier to determine whether the signatures are genuine or not. The features of each sig-
nature are extracted and saved in vector form. After the internal operations are performed,
the output of SFAHN is the number of the chosen neuron with the maximum choice
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function value. This number is the result of the given signature recognized by SFAHN.
For example, if the number of the output node with the maximum value of SFAHN is not
the same as the label given in the identification, we conclude that the signature is forged.

3. THE ALGORITHM FOR IDENTIFICATION AND VERIFICATION

3.1 System Overview

A block diagram of our signature recognition system is shown in Fig. 2. Two major
processes are performed by the proposed system: identification and verification.

Fig. 2. Block diagram of the signature recognition system.
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In the identification phase, first of all, the size of an input signature is normalized.
Second, the input signature is segmented into several parts. Third, the upper contour and
the lower contour of each segment are determined, and these contours are used to create
an upper profile and a lower profile for the input signature. Finally, these profiles are
used to classify the signature, and a numerical label is assigned to each of the classified
signatures.

In the verification phase, first of all, the thinning process is used to obtain the sig-
nature skeletons and the force distributions. There are many redundant pixels around the
signature boundaries, and we must avoid influence from redundant pixels in order to get
useful force distributions. After the thinning process, a modified chain code is used to
perform feature extraction. Finally, SFAHN as a feature verifier is employed to deter-
mine whether the input signature is genuine or not.

It is assumed that all the signatures are written from left to right. The process is
shown in Fig. 3. A person signs his name on the “A” sheet of paper, and a carbon paper
duplicates the signature on the “B” sheet of paper. The “A” sheet is graph paper whereas
the “B” sheet is plain white paper. Generally, a signature duplicated via carbon paper has
better contrast than the original one, so we can extract better features from the duplicated
signature.

Fig. 3. The process for getting signatures.



CHINESE CARBON-SIGNATURE RECOGNITION 265

Fig. 4. Contours and profiles.
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Fig. 4. (Cont’d) Contours and profiles.

The person is asked to write his name along the horizontal line on sheet A. This line
serves as a base-line. Then, some people are asked to forge the signature, after showing
them sheet A. The forgers are allowed to see the structures of the genuine signature, but
they do not know its force distributions. Assuming that the signature on sheet B has a
uniform background, it is scanned using a scanner, and the image is saved as a raw data
file. The scanned files are saved in gray-level mode where the white pixels are consid-
ered to be background, and all the others are considered to be signatures.
Eight-bit-per-pixel resolution is used to represent the gray level of each pixel.

3.2 Identification

The aim of identification is to get an approximate outline of the signature. Parisse
[16] proposed a method for obtaining global word shape, though his original goal was to
perform off-line handwritten recognition. He used several vectors to approximate the
outline of a signature. Parisse’s method can be used to perform identification, and it
also serves as a classifier. However, his coordinate system is not suitable for our signa-
ture recognition system. In order to define an effective and appropriate coordinate system,
we refer to the algorithm in [8] and propose a modified version for the purpose of identi-
fication.

1) Normalization: We choose a suitable fixed-size rectangle as a normalization standard
size. If an input signature is larger or smaller than this rectangle, then the size of the
input signature is changed such that the signature fits exactly in this rectangle.

2) Segmentation: For any given signature (Fig. 4 (a)), we assume that the origin point is
in the top-left corner of the image, defined as (0,0). The rightward direction is defined
as positive x and the downward direction as positive y; then, the uppermost, lowest,
leftmost, and rightmost pixels in the image are located. The uppermost pixel (xu, yu) in
the image is the point that belongs to the signature with the lowest y component value.
If more than one pixel qualifies, then the pixel with the lowest x component value is
selected as the uppermost pixel. Similarly, the lowest pixel (xd, yd) has the highest y
component value. The leftmost pixel (xl, yl) and the rightmost pixel (xr, yr) are deter-
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mined in a similar way. Then, these four points are employed to generate the mini-
mum rectangle size that can include all the pixels of the signature (Fig. 4 (b)).
Since signatures are horizontal, they are separated into several segments based on the
spaces between the signature elements in the minimum rectangle. For example, each
of the columns in the minimum rectangle is scanned from left to right. If the column
being scanned has no pixel that belongs to the signature, whereas its right/left column
has pixels that belong to the signature, then this column is saved as a start/end column
of a segment. The column between a start column and an end column, the leftmost
column in the minimum rectangle, and the rightmost column in the minimum rectan-
gle are defined as segments. For example, the number of segments shown in Fig. 4 (a)
is four (Fig. 4(c)).

3) Contours: The shapes of signatures can be used as features for classification. The up-
per contour and the lower contour can be used to describe the shape of a signature.
The definitions of an upper contour, a lower contour, and an entire contour are given
in the following:
a) Upper contour: For every segment, each column is scanned from yu to yd, and the

first pixel of each column is located. All the first pixels in a segment are connected
to produce the upper contour (Fig. 4(d)).

b) Lower contour: The definition for a lower contour is the same as for an upper con-
tour except that the scanning direction is reversed, that is from yd to yu. Similarly,
for each column, the first pixel that belongs to the signature is determined and be-
comes a lower contour point. All the lower contour points of a segment comprise
the lower contour (Fig. 4 (e)).

c) Entire contour:The entire contour can be obtained by linking the upper and the
lower contours, as shown in Fig. 4 (f).

4) Profile: The profile of a segment is determined by transforming a sequence of points,
which are sampled from a lower/upper contour, into a special set. In other words,
some pixels from the sampling contours are used to approximate the upper and the
lower contours.
a) Upper profile: Given a segment, progressing from left to right, we find the first

pixel of the upper contour and have its coordinate (x u
1

, y u
1

). Now, we define x u
2

=
x u

1
+ ∆x, where ∆x is a small positive integer. There exists a unique point on this

upper contour with x-coordinate x u
2 . Then, its y-coordinate y u

2 is also located. The
above steps are repeated to get pixels (x u

3
, y u

3
), (x u

4
, y u

4
), and so on. The relation-

ship among these points is:

x u
i

= x u
i 1− + ∆ x.

If x u
i

is beyond the last pixel of the upper contour, the last pixel of the upper con-
tour is chosen to replace x u

i
. These pixels, (x u

k , y u
k ), are defined as sampled pixels. For

two consecutive sampled pixels, (x u
i 1− , y u

i 1− ) and (x u
i , y u

i ), the y-component difference is
defined as follows:

Ui-1,i = y u
i 1− - y u

i .

The set of all Ui-1,i is called the upper profile.
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b) Lower profile: The steps followed to generate a lower profile are similar to those
for an upper profile. First of all, the first pixel of a lower contour and its coordinates
(x l

1 , y l
1 ) is determined. Then, we find the sampled pixels (x l

2 , y l
2 ), (x l

3 , y l
3 ), and so

on. The relationship among them is:

x l
i = x l

i 1− + ∆ x.

We use these sampled pixels from the lower contour to generate Li-1,i:

Li-1,i = y l
i 1− − y l

i .

The set of all Li-1,i is called the lower profile.

Fig. 4 (g) shows an example of generating profiles of one segment, and Fig. 4(h)
shows the profiles of the signature shown in Fig. 4(a). This method is employed to create
database profiles. When a test signature is given, its segment number, upper profile, and
lower profile are determined. These profiles are used to find the minimum distance be-
tween the input signature and each signature stored in the database. The identification
algorithm is described below.

Step 1. Input a testing signature.
Step 2. Find its segments, upper profile and lower profile.
Step 3. Find the signatures from the database that have the same number of segments as

the testing signature.
Step 4. For the same segment sequence, find the minimum distance between the test and

the candidate’s signature segment by segment, and then add them together.
Step 5. Compare all the database profiles found in Step 3 with the test profiles based on

the total minimum distances found in Step 4; thus, the test signature can be clas-
sified.

An example of signature identification is shown in Fig. 5.

(a) The profile form of a signature, where the number of segments in n.
For every segment, there are in-1 dimension vectors for the upper profile
and lower profile.

Fig. 5. An example of using comparison to perform identification.
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Database profiles S1 S2

Type 1
(3, 26, -18)
(4, 8, -9)

(-4, -16, 5, 3)
(2, -1, 8, -13)

Type 2
(-4, -6, 5, -9)
(3, 4, 22, -1)

(-3, 2, -12, -3, 6)
(6, 2, -4, 11, -7)

Test profiles S1 S2

Unknown type
(-5, 8, -12)
(6, 27, 2)

(-9, 2, 8)
(-2, 8, -1)

(b) We wish to classify the test signature as type 1 or type 2.

Compared with type 1:

distance.profileupper32,|12)(18)(||826||5)(3|
12)-8,(-5,-

18)26,(3,

Test

1Type =−−−+−+−−=
−

distance.profilelower32,|29)(||278||64|
2)27,(6,-

9)8,(4,

Test

1Type =−−+−+−=
−S1

The distance for segment (1) is 32 + 32 = 64.

distance.profileupper25,|3||85||2(-16)||9)((-4)|
0)8,2,(-9,-

3)5,16,-(-4,

Test

1Type =+−+−+−−=

distance.profilelower35,|-13||1)(8||8(-1)||2)(2|
0)1,-8,(-2,-

13)-8,1,-(2,

Test

1Type =+−−+−+−−=

distance.profileupper19,|8-3||25||9)((-16)||4|
8)2,9,-(0,-

3)5,16,-(-4,

Test

1Type =+−+−−+−=

distance.profilelower15,|(-1)-(-13)||88||)2((-1)||2|
1)-8,2,-(0,-

13)-8,1,-(2,

Test

1Type =+−+−−+=

S2

The distance for segment (2) is min(60, 34) = 34.

(c) The minimum distance over all the segments between the test signature and the
type 1 signature is 64+34=98. For the same process, we find that the minimum
distance over all the segments between the test signature and the type 2 signature
is 24+34=58. Therefore, we classify this test signature as type 2.

Fig. 5. (Cont’d) An example of using comparison to perform identification.
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3.3 Verification Preprocessing

Before verification, the signatures are thinned in order to acquire their skeletons.
This is helpful for obtaining the force distributions and the structure of a signature.
SThere are many redundant pixels around the boundary of a signature, and the force dis-
tributions may be influenced by these redundant pixels. In order to get useful force dis-
tributions, a thinning process is employed, and a common thinning algorithm [6] is
adopted.

Since the thinning method is very simple, the resulting skeleton might not be very
accurate. Hence, an average gray value is adopted in order to get more robust results. The
operations for representing the average gray values must be performed in parallel to
avoid changing gray values of other pixels during execution.

4. MODIFIED CHAIN CODES

The goal of verification is to determine whether a signature is genuine or not. The
major features of any given signature consist of its structure and force distributions.
Some studies have only focused on structural features, such as the height/width ratio,
principle-axis orientation, handwriting slope, hole and cavity attributes, pixel density
distributions and so on. A forger can imitate these features easily, for example, by tracing
the original signature, but a force distribution is difficult to imitate.

In order to get more local information, we divide the minimum rectangle into sev-
eral equal parts proceeding from left to right. The experimental environment determines
the number of parts. For a three-character Chinese name, three parts are recommended.
In each part, the proposed modified chain code is used to perform feature extraction. To
solve the problem of obtaining force distributions, we propose using a sheet of carbon
paper to detect force distributions, and this method has been proved to be suitable for
obtaining signatures with good contrast. The problem of transforming force distributions
into features has not yet been solved. An algorithm is needed to effectively determine the
direction and the variation of a force distribution. Hence, the chain code combined with
gray value variation is used to solve this problem.

Since the images are scanned from left to right and from top to bottom, for a pixel at
(x, y), only its left, upper-left, up, and upper-right pixels need to be checked. This can
only generate four directions (which are right, down-left, down, and down-right). Refer-
ring to the 8-direction chain code, the code words of these four directions are 0, 5, 6, and
7, respectively. Let the gray value of a pixel at coordinate (x, y) be g(x, y). If g(x, y) ≤ g(x',
y'), where the pixel at (x', y') represents anyone of the above four pixels, then the gray
level variation is said to be darkening. On the other hand, if g(x, y) > g(x', y'), then the
gray level variation is lightening. Suppose that we process a pixel at (x, y). From the gray
level variations between g(x, y) and g(x-1, y), g(x-1, y-1), g(x, y-1), g(x+1, y-1), respec-
tively, we can create class 1 chain codes and class 2 chain codes.

1) Class 1 chain code: If the variation of gray levels is darkening, then it is defined as a
class 1 chain code (Fig. 6 (a)).

2) Class 2 chain code: If the variation of gray levels is lightening, then it is defined as a
class 2 chain code (Fig. 6(b)).
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For a thinned signature (Fig. 7(a)), the number of class 1 and of class 2 chain codes
is determined, and the percentage for each class is computed (Fig. 7(b)). These data are
useful since they can reduce the influence of false forks. We define the number of pixels
between two gray values G1 and G2 as NG 1 , G 2

. For each part, the maximum gray value
Gmax and the minimum gray value Gmin can be easily located. A threshold value, Gth, is
determined as follows:

maxmin

min

,

,

GG

GG

N

N
th = S, 0 ≤ S ≤ 1.
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(a) Class 1 chain codes.
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(c) Class 3 chain codes.
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(b) Class 2 chain codes.
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(d) Class 4 chain codes.

Fig. 6. The modified chain codes.

Then, the threshold of each part is used to get a binary image (Fig. 7(c)). If a pixel at
(x, y) satisfies g(x, y)> Gth, then we define it as a white pixel. If a pixel at (x, y) satisfies
g(x, y) ≤ Gth, then we define this pixel as a black pixel. Thus, the corresponding binary
image can be found. If the parameter S is large, then the threshold Gth will be large, and
there will be more black pixels in the binary image. If the parameter S is small, then the
threshold Gth will be small and there will be more white pixels in the binary image. Thus,
we can find the ratio of the number of black pixels to the total number of
non-background pixels for each part (Fig. 7 (d)). After applying threshold values, the
four adjacent scanned pixels are rechecked, and the class 3 and class 4 chain codes are
created. Let us assume that we next process the pixel at (x, y), and that pixel (x', y') is one
of the four adjacent scanned neighboring pixels.
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1) Class 3 chain code: If both (x, y) and (x', y') are black pixels, then the corresponding
chain code is defined as a class 3 chain code (Fig. 6 (c)).

2) Class 4 chain code: If both (x, y) and (x', y') are white pixels, then the corresponding
chain code is defined as a class 4 chain code (Fig. 6 (d)).

The number of class 3 and if class 4 chain codes is calculated, and the corresponding
percent- ages for each part are computed (Fig. 7 (e)).

(a) A thinned singnature.

Part(1) Code 0 Code 5 Code 6 Code 7

Class 1
54

(29.67%)
58

(31.868%)
21

(11.538%)
49

(26.923%)

Class 2
34

(23.943%)
48

(33.802%)
19

(13.38%)
41

(28.873%)

Part(1) Code 0 Code 5 Code 6 Code 7

Class 1
41

(26.451%)
61

(39.354%)
9

(5.806%)
44

(28.387%)

Class 2
33

(33.333%)
38

(33.383%)
11

(11.111%)
17

(17.171%)

Part(1) Code 0 Code 5 Code 6 Code 7

Class 1
32

(22.222%)
41

(28.472%)
17

(11.805%)
54

(37.5%)

Class 2
32

(26.666%)
34

(28.333%)
13

(10.833%)
41

(34.166%)

(b) The distribution of class 1 and 2 chain codes.

(c) A binary image.

Fig. 7. Feature extraction for the purpose of verification.
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S = 0.75 Part (1) Part (2) Part (3)

52.14% 69.802% 96.153%

(d) The percentage of black pixels in each part.

Part(1) Code 0 Code 5 Code 6 Code 7

Class 1
38

(25.675%)
54

(36.486%)
16

(10.81%)
40

(27.027%)

Class 2
41

(29.078%)
41

(29.078%)
19

(13.475%)
40

(28.368%)

Part(1) Code 0 Code 5 Code 6 Code 7

Class 1
47

(27.647%)
68

(40%)
17

(10%)
38

(22.352%)

Class 2
18

(30.508%)
25

(42.372%)
1

(1.694%)
15

(25.423%)

Part(1) Code 0 Code 5 Code 6 Code 7

Class 1
60

(24%)
72

(28.8%)
29

(11.6%)
89

(35.6%)

Class 2
2

(33.333%)
2

(33.333%)
0

(0%)
2

(33.333%)

(e) The distribution of class 3 and 4 chain codes.

Fig. 7. (Cont’d) Feature extraction for the purpose of verification.

We assign a unique class label to each signature template. In the identification phase,
the input signature is classified to an appropriate class no matter whether it is a genuine
signature or not. In the verification phase, the modified chain codes are used to extract
signature features. These features are used to form an input vector of SFAHN, and the
output of SFAHN is a class label. If the output of SFAHN is the same as the label found
in the identification phase, then the input signature is regarded as a genuine one. On the
other hand, if they are not the same, then the input signature is regarded as a forged one.

5. SIMULATIONS AND RESULTS

5.1 Experiment Environment

In this section, we will evaluate the performance of the proposed signature recogni-
tion system. Signatures of 34 people were collected (Fig. 8 (a)). A sheet of graph paper
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and a sheet of carbon paper placed underneath were used to obtain each signature. The
same genuine signatures were used in both the identification and verification phases to
generate a database and to train SFAHN.

(a) Genuine signatures. (b) Forged signatures.

Fig. 8. Genuine and forged signatures.

2,394 genuine signatures were collected. To create the database profiles and to train
the neural network, SFAHN, 1,100 signatures were selected, and the remaining 1,294
signatures were used as test signatures. 602 forged signatures were also collected (Fig. 8
(b)) and combined with 1294 genuine test signatures to form a test set.

Three kinds of paper were used, arranged from top to bottom: graph paper, carbon
paper, and plain white paper. After each person signed his or her name on the graph pa-
per, his or her carbon signature showing force distributions was obtained on the plain
white paper. The carbon signature was scanned and saved as an image file in the typical
256-gray-level mode.

5.2 Experiment Results and Analyses

After constructing the database and training the neural network, we began to test
this system. In the identification phase, all 1,294 genuine signatures and 602 forged sig-
natures were tested. For each tested signature, a numerical label was given after it was
classified in the identification phase. In the verification phase, we determined whether
the signature tested was genuine or not according to the identification label and the veri-
fication label. When an unknown signature was inserted, it was first identified, and then
the genuineness of this unknown signature was determined.
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The most important part of identification is classifying the signature. During the
process of identification, if ∆x is small, then the dimension of the profile vectors is high.
However, this will lead to misidentification of genuine signatures. In other words, the
tested signature must look more or less like the genuine signature. For three different ∆x
values, the results are shown in Table 1. Most of the genuine signatures were misidenti-
fied due to their small sizes. Since these small signatures had lower-dimension profile
vectors, it was easy to find the best match position, and then the overall distance become
smaller. When ∆x = 1 or ∆x > 4, the performance worsened.

Table 1. The number of misidentified signatures.

∆x = 2 ∆x = 3 ∆x = 4

Genuine 28 26 30

Forgery 37 32 35

In the identification phase, the tested signature was assigned to a certain class.
Whether this signature was genuine or not was determined during the verification phase.
For every tested signature, its features were extracted and verified using SFAHN. After
the inner operation, SFAHN generated a label that indicated whether the input signature
really belonged to a designated person or not. If the label given in the identification
phase did not match the output result from SFAHN, then this input signature was re-
garded as forged.

An error-rate definition was adopted from [5]. There are two conditions that will
lead to incorrect verification:

Type I: Genuine signatures are determined to be forged.
Type II: Forged signatures are determined to be genuine.

Therefore, the total error rate is defined as the ratio of the number of incorrectly
verified signatures to the total number of all test signatures. The threshold parameter (S)
and vigilance parameter (ρ) can be adjusted to get different total error rates. The analysis
results for ρ and S are given in Table 2 and Table 3, respectively.

In this present system, the best total error rate is 10.495% (S = 0.75 and ρ = 0.95).
The vigilance parameter ρ is used to measure the degree of similarity. If ρ is large, then
the test signature must look very like the genuine signature, or it will be verified as a
forged signature. This will cause the number of type I errors to increase. On the other
hand, if ρ is small, then the number of type II errors will increase. A forger usually does
not clearly understand the force strength variations although he often does know quite
well where he should use more (or less) force. In other words, the difference of Gmax and
Gmin may be the same, but the gray level distributions of pixels are different between
these two values. The threshold Gth is used to make these different distributions reveal on
white/black pixels and class 3/class 4 chain codes. Thus, the parameter S is adjusted to
find the most effective value of Gth for distinguishing genuine signatures from forged
signatures.
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Table 2. The error rate with ∆∆∆∆x = 3 and S = 0.6, 0.65 and 0.7.

Vigilance (ρ)
S =0.6

0.94 0.95 0.96

Type� 59/1294 81/1294 190/1294

Type� 205/602 169/602 131/602

Total error rate 13.924% 13.185% 16.930%

Vigilance (ρ)
S =0.65

0.94 0.95 0.96

Type� 64/1294 83/1294 124/1294

Type� 235/602 161/602 112/602

Total error rate 15.770% 12.869% 12.447%

Vigilance (ρ)
S =0.7

0.94 0.95 0.96

Type� 57/1294 82/1294 217/1294

Type� 229/602 172/602 96/602

Total error rate 15.084% 13.296% 16.508%

If the minimum rectangle is not divided into several small parts, then it may gener-
ate features that are not robust enough. Hence, the total error rate will not decrease. The
minimum rectangle is divided into six parts (2×3) in order to get more local features.
However, the result shows an increase in the number of type I and type II errors. If it is
divided into too many small parts, it may extract features that are very local. Hence,
these features cannot respond to the characteristics of signatures and, therefore, will not
help in distinguishing genuine signatures from forged signatures.

6. CONCLUSIONS

In this study, a sheet of carbon paper was used to detect the force distributions in
signatures, and an off-line signature recognition system was employed. The proposed
system performs identification and verification. For the purpose of identification, we use
contours and profiles to classify signatures. This involves in implementing a real auto-
matic signature recognition system (ASRS). In most of the reported signature recognition
systems, the identification phase is ignored. If there are signatures whose shapes are very
irregular, then systems which do not perform identification can be used to determine
whether these input signatures are genuine or forged but cannot determine what classes
unknown signatures belong to. Carbon paper is widely used to duplicate what we write or
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Table 3. The error rate with ∆∆∆∆x = 3 and S = 0.75, 0.8 and 0.85.

Vigilance (ρ)
S =0.75

0.94 0.95 0.96

Type� 70/1294 102/1294 251/1294

Type� 231/602 97/602 84/602

Total error rate 15.875% 10.495% 17.668%

Vigilance (ρ)
S =0.8

0.94 0.95 0.96

Type� 64/1294 121/1294 389/1294

Type� 227/602 102/602 67/602

Total error rate 15.348% 11.761% 24.050%

Vigilance (ρ)
S =0.85

0.94 0.95 0.96

Type� 75/1294 132/1294 354/1294

Type� 209/602 142/602 89/602

Total error rate 14.978% 14.451% 23.364%

type, and it is easy to find some applications in daily life for the algorithm we have pro-
posed in this paper. For example, when there is an argument over a credit card statement,
the algorithm can be applied to the bank copy that is generated by a carbon copy. By
using this method, a forgery signature can be easily found out.

Usually, an off-line system does not have any special features to extract. Hence,
most of the off-line systems focus on signature structures. Since signature structures can
be imitated by means of tracing, a very strict and accurate verification algorithm is re-
quired. However, it is impossible for people to write their signatures in exactly the same
manner every time, so a very strict system focusing on signature structure is not practical.
Therefore, a sheet of carbon paper is used in our method to detect force distributions that
indeed have useful features. The proposed modified chain code includes the structure and
force distribution features, thus making it easy to identify and trace forgeries. Also, a
new neural network model, the supervised fuzzy adaptive Hamming network (SFAHN),
is adopted as the feature verifier due to its ability to learn new classes and input patterns,
and to refine existing classes without destroying previously learned patterns. SFAHN not
only exhibits good performance, but also offers fast verification.

The proposed system can perform both identification and verification of signatures.
However, it still cannot satisfy the requirement of real ASRS specifications. In the case
of a slanted signature, the present modified chain code will become invalid, since the
chain codes will be different from the ones in the database.
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Further studies will improve the performance of our signature recognition in many
ways. One avenue of research will be to explore the unused features hidden in the inter-
nal contours of signatures, besides the upper and the lower contours. This will result in
more complicated, accurate, and robust contour features. Thus, we can achieve the goal
of reducing the type I error rate while allowing more (all) genuine signatures to pass the
identification phase. However, a more complex feature extraction and comparison algo-
rithm is needed. We can also use some transforms, like Fourier transform and the wavelet
transform, to get special features in the frequency domain. With the aid of these special
features, we should be able to improve the performance of this system. In order to get
more robust local features, we can divide up the minimum rectangle according to the
segments found in the identification phase. However, this will generate un-
fixed-dimension vectors that will make the neural network difficult to design unless each
neural network is trained according to different numbers of segments. This will require
more operations and preprocessing, and will be time consuming. Furthermore, a local or
global histogram can be used to analyze force distributions. However, it should be noted
that analyzing very basic local features might be of no value.
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