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SUMMARY
This paper considers an asymptotic distribution for an estimate Ŝpk of the process yield index Spk proposed by
Boyles (1994). The asymptotic distribution of Ŝpk is useful in statistical inferences for Spk. An illustrative example
is given for hypothesis testing and for interval estimation on the yield index Spk. Copyright  2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Process capability indices, establishing the relation-
ship between the actual process performance and the
manufacturing specifications, have been the focus of
recent research in quality assurance and capability
analysis. Those capability indices, quantifying process
potential and process performance, are essential to any
successful quality improvement activities and quality
program implementation. Some basic capability in-
dices that have been widely used in the manufacturing
industry include Cp, Ca and Cpk. These indices are
explicitly defined as follows [1–3]:

Cp = USL − LSL

6σ
Ca = 1 − |µ − m|

d

Cpk = min

{
USL − µ

3σ
,
µ − LSL

3σ

}
where USL and LSL are the upper and the lower
specification limits, respectively, µ is the process
mean, σ is the process standard deviation, m =
(USL + LSL)/2 is the midpoint of the specification
interval and d = (USL − LSL)/2 is half the length of
specification interval. We will focus on the situation in
which the specification interval is two-sided with the
target value T at m, which is most common in practice.

The indexCp measures the overall process variation
relative to the specification tolerance and, therefore,
only reflects process potential (or process precision).
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The index Ca measures the degree of process
centering, which alerts the user if the process
mean deviates from its target value. Therefore,
the index Ca only reflects process accuracy. The
index Cpk takes into account the magnitudes of
process variation as well as the degree of process
centering, which measures process performance based
on yield (proportion of conformities). For a normally
distributed process with a fixed value of Cpk, the
bounds on process yield are given by

2�(3Cpk) − 1 ≤ %Yield < �(3Cpk)

where �(·) is the cumulative distribution function
of N(0, 1), the standard normal distribution. For
example, if Cpk = 1.00, then it guarantees that
the %Yield will be no less than 99.73%, or no
greater than 2700 ppm (parts per million) of non-
conformities. We note that the index Cpk only provides
an approximate rather than an exact measure of the
process yield.

To obtain an exact measure, Boyles [4] considered
a yield index, referred to as Spk, for processes with
normal distributions. The index Spk is defined as:

Spk = 1
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(1.1)

It can be written as

Spk = 1
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(1.2)
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Table 1. Various Spk values and the corresponding process yield

Spk Process yield

1.00 0.997 300 204
1.24 0.999 800 777
1.33 0.999 933 927
1.50 0.999 993 205
1.67 0.999 999 456
2.00 0.999 999 998

where �−1 is the inverse function of �, Cdr = (µ −
m)/d and Cdp = σ/d . For a process with Spk = c,
we can obtain %Yield = 2�(3c) − 1. Obviously,
there is a one-to-one relationship between Spk and
the process yield. Thus, the yield index Spk provides
an exact measure of the process yield. For normal
processes, the expected number of non-conformities
corresponding to a capable process with Spk = 1.00
is 2700 ppm, a satisfactory process with Spk = 1.33
is 63 ppm, an excellent process with Spk = 1.67
is 0.6 ppm and a super process with Spk = 2.00 is
0.002 ppm, as summarized in Table 1.

2. AN ESTIMATOR AND ITS DISTRIBUTION

Let X1, . . . , Xn be a random sample from the normal
process, a natural estimator of Spk is

Ŝpk = 1

3
�−1

{
1

2
�

(
1 − Ĉdr

Ĉdp

)
+1

2
�

(
1 + Ĉdr

Ĉdp

)}
(2.1)

where Ĉdr and Ĉdp are estimates of Cdr and Cdp,
respectively and are defined as

Ĉdr = (X̄ − m)/d

Ĉdp = S/d
(2.2)

with X̄ = 1/n
∑n

i=1 Xi and S2 = 1/(n −
1)
∑n

i=1(Xi − X̄)2. The distribution of Ŝpk is non-
trivial as it is a complex function of the statistics X̄

and S2. However, a useful approximate distribution
of Ŝpk can be furnished by considering the following
asymptotic expansion of Ŝpk. Let Z = √

n(X̄ − µ),
Y = √

n(S2 − σ 2), then Z and Y are independent
and since the first two moments of X̄ and S2 exist, by
the Central Limit Theorem they converge to N(0, σ 2)

and N(0, 2σ 2), respectively, as n goes to infinity.
Consequently, Ŝpk can be expressed as

Ŝpk = Spk + 1

6
√
n
(φ(3Spk))

−1W + Op(n
−1) (2.3)

where

W = − d

2σ 3 Y
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(2.4)

which is normally distributed with a mean of zero and
a variance of a2 + b2,

a = d√
2σ

{
(1 − Cdr)φ

(
1 − Cdr

Cdp

)

+(1 + Cdr)φ

(
1 + Cdr

Cdp

)}

b = φ

(
1 − Cdr

Cdp

)
− φ

(
1 + Cdr

Cdp

)
(2.5)

and φ is the probability density function of
the standard normal distribution. It is noted that
the asymptotic expansion of Ŝpk, as given in
(2.3), indicates that asymptotically Ŝpk is normally
distributed with mean Spk and variance (a2 +
b2)/36n(φ(3Spk))

2. In (2.3), Cdr and Cdp appear in
the asymptotic expression of Ŝpk as a consequence of
the Taylor expansion used in the asymptotic expansion
of Ŝpk around the true values Cdr and Cdp. In practice,
Ĉdr and Ĉdp are used instead because they will
converge to Cdr and Cdp, respectively. Also, the
remaining terms Op(n

−1) represent the error of the
expansion having a leading term of order n−1 in
probability.

The first-order approximation of Ŝpk, as given
in (2.3), can produce an adequate approximate
distribution for a large enough sample size. Figures 1
and 2 depict approximate and exact distributions,
obtained by simulations, with a sample size of n =
100, 200, 300, 400, 500, 1000. It is clear that as the
sample size n reaches 1000, the approximate and exact
distributions are almost indistinguishable. In fact, even
with n = 100 the approximation is quite reasonable
for practical purposes.

3. INFERENCE BASED ON Ŝpk

From (2.3) and (2.4), it is clear that Ŝpk is an
asymptotically unbiased estimator of Spk. Also, thanks
to the asymptotic distribution of Ŝpk given in (2.3)–
(2.5), hypothesis testing and a confidence interval for
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Figure 1. Comparison of approximate and exact densities via simulations
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Figure 2. Comparison of approximate and exact cumulative distribution functions via simulations
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Spk can be constructed. For example, the following
null hypothesis

H0 : Spk ≤ c, a specified value (3.1)

versus alternative hypothesis

H1 : Spk > c (3.2)

can be executed by considering the testing statistic

T = 6(Ŝpk − c)
√
nφ(3Ŝpk)√

â2 + b̂2
(3.3)

where â and b̂ are estimates of a and b, with Cdr , Cdp

and σ replaced by Ĉdr , Ĉdp and S, respectively. The
null hypothesis H0 is rejected at α level if T > zα ,
where zα is the upper 100α% point of the standard
normal distribution.

An approximate 1 − α confidence interval for Spk is(
Ŝpk −

√
â2 + b̂2

6
√
nφ(3Ŝpk)

zα/2, Ŝpk+
√
â2 + b̂2

6
√
nφ(3Ŝpk)

zα/2

)
(3.4)

An illustrative example is given in the next section.

4. AN ILLUSTRATIVE EXAMPLE

Consider the following example taken from a
supplier manufacturing high-end audio speaker drivers
including 3-inch tweeters, 3-inch full-range drivers,
5-inch mid-range drivers, 6.5-inch woofers and 8-inch,
10-inch and 12-inch subwoofers. A standard woofer
driver consists of components including an edge,
cone, dustcap, spider (damper), voice coil, lead wire,
frame, magnet, front plate and back plate. The edge
(on the top) and the spider (on the bottom) are
glued onto the frame to hold the cone for the piston
movement and the dustcap (glued onto the cone
to cover the top of the voice coil) decouples the
noise from the musical signals. One characteristic,
which reflects the bass performance, musical image,
clarity and cleanness of the sound, transparence and
compliance (excursion movement) of the mid-range,
full-range or subwoofer driver units, is F0 (the free-
air resonance frequency). Some key factors, which
determine F0 values, include the hardness, thickness,
weight of the damper, weight of the edges and the
weight of the cone. Typical ranges of F0 values are
25–40 Hz for subwoofers, 40–60 Hz for woofers,
50–100 Hz for full-range, and 500–5000 Hz for mid-
ranges.

One particular model of the 3-inch full-range
drivers, designed particularly for the central and

Table 2. F0 measures for the 3-inch drivers

81 80 82 79 78 76 78 78 76 81
83 78 81 85 81 78 79 79 80 82
79 79 82 78 82 80 75 85 80 80
80 75 81 78 82 84 76 78 80 79
82 82 78 78 82 78 82 80 82 83
81 78 83 81 82 79 80 79 81 82
79 80 82 77 81 80 81 81 75 76
83 86 82 79 82 85 80 80 77 75
78 85 81 79 81 83 78 78 80 80
79 76 77 74 85 83 76 80 75 82

background channels of home-theater applications,
has used the specially designed Pulux edge, Pulux
dustcap and PP-mica cone. This model of 3-inch driver
requires the F0 value to be 80 Hz with ±10 Hz
tolerance. The production specification limits for
this particular model of drivers are therefore set to
(LSL, T ,USL) = (70, 80, 90) for F0. The quality
requirement was predefined as Spk ≥ 1.00 (equivalent
to USL − LSL = 6σ ). A total of 100 samples of data
were collected from the factory, which are displayed
in Table 2.

Thus, statistical inferences on the index, Spk, such
as hypothesis testing and interval estimation can be
considered. For testing the null hypothesis H0 as
given in (3.1) with c = 1 against the alternative
hypothesis as given in (3.2), the testing statistic T ,
as given in (3.3), yields 3.1389. Since 3.1389 >

z0.05 = 1.96, the null hypothesis H0 is rejected at
α = 0.05. We may conclude that the process satisfies
the capability requirement Spk ≥ 1.00. Moreover, an
approximate 95% confidence interval for Spk is easily
obtained from (3.4) as

(1.1078, 1.4664)

which is consistent with the hypothesis testing result.
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