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We have characterized the SYgbe, 4 heterostructure formed by two-step solid-phase reaction. Single crystalline behavior is
evidenced by X-ray diffraction. In sharp contrast to conventional strain-relaxed SiGe, an extremely smooth surface close to the Si
substrate is measured by cross-sectional transmission electron microscopy and atomic force microscopy. Good material quality is
further evidenced from the near identical current-voltage characteristics for thermal oxide grown ggG®&j/sand on the Si

control sample.
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Although silicon-germaniuniSiGe) heterostructurés™ on sili- Results and Discussion
con (Si) have been studied extensively, one difficult challenge to
integration of strained SiGe into current Si complementary metal-
oxide-semiconductor fleld-eﬁ?ct tgan&s_(ﬁh\/lOSFET)proc_esses IS ion. The comparable sharp and strong XRD peaks fg, - and
the low temperatureT < 800°C)*? required to avoid strain relax- - . . - . . .
ation and defect generation. This is because SiGe is generally grow§'0-6(,36b-4 ,W'th Si substrate |nq|cates a smgle Cr.yS‘a"'f‘e and. high
by a low pressure chemical vapor depositiafPCVD) at low tem-  duality SbeGey4, where the single crystalline 3iGey; is previ-
perature but current CMOS process must use a high tempera2Us!y demonstratetf. A Ge composition of 0.4 was obtained in
ture annealing for dopant activation after source-drain ion Si/SiGe heterostructure. from the relative XRD peak.polsmon to Si
implantation2 Unfortunately, strain will be relaxed at high tempera- Substrate. The composition change from ;Sie,; to Si/Sh.¢Ge 4
tures and may degrade the device performance by forming rougfnay be due to additional Si supplied from top Si layer that dilutes
surface and pinholét® In addition to low dopant activation, the low the Ge content. _ )
temperature restriction for strained SiGe also degrades gate oxide e have used XTEM to further characterize the top Si layer of
integrity, increases source-drain junction leakage, and is incompatthe Si/Sh¢Ge, 4 heterostructure. As shown in Fig. 2, two uniform
ible to modern high dielectric constant gate dielecttit¥ There-  layers are observed on Si substrate and form the (&8} 4 het-
fore, strain-relaxed SiGe has attracted much attention recently, bugrostructure. No polycrystalline grain can be observed in XTEM that
the strain relaxation related rough surface still prohibits further ap-is consistent with the narrow and sharp XRD peak shown in Fig. 1.
plication of SiGe to current Si CMOS technolog}* Recently, we ~ Good material quality is evidenced by the smooth surface, smooth
have developed a strain-relaxed SiGe using a new high temperaturigterface, and almost defect free Si§bg), heterostructure. In
solid phase reaction method; good integrity of p-MOSFET is combination of smaller thickness of Si top layer with Ge composi-
obtained:>*® In this paper, we have characterized the Si/SiGe het-tion decreasing after solid-phase reaction, the mechanism of second-
erostructures on Si substrate by two-step solid-phase reaction. Goagiep reaction is due to the intermixing of top Si with underneath
material quality is revealed by X-ray diffractic®RD) and cross-  SiGe. Further, TEM, shows that the formed, §e,, and the re-
sectional transmission electron microscop§TEM). The primary maining top Si layers are-300 and~160 A that are in close agree-

advantage of this simple method is the full compatibility to the ment with the calculated data from the following reaction equations
existing Si ultralarge-scale integratiq/LSI) technology without

the constraint of low temperature processing or alternating the per-
formance of Si CMOS devices.

Figure 1 shows the XRD spectra of one-step formegd,G&, ;
and two-step formed Si/SiGe heterostructure by solid-phase reac-

0.3Si+ 0.7Ge— SiysG&), [1]

Experimental

Standard Si wafers of 1Q cm resistivity were used in this study. 1001 Sl substrate
After a standard RCA clean, HF vapor passivation is used to sup- 1 \
press the native oxide formation before Ge depositfof¥An amor-
phous Ge layer of 120 A is selectively deposited by lithography in °

t)
©
o

1

I

=
active region to form a single crystalline,3Ge, ; layer*® by rapid = 60
thermal annealingRTA) at 900°C for 60 s. More detailed material 5 1
characterization can be found in our previous sttdjhen Si/SiGe £
heterostructure is formed by a 150 or 300 A amorphous Si deposi-g 40 4
tion and subsequent RTA, while the thicker Si is used for material ~
analysis and the thinner one is for device characterization. g 20
MOS capacitors were fabricated by growing a 30 A thermal ox- 2 1

ide at 900°C, a 3000 A poly-Si deposition, phosphorus doping, Al &
metallization, and patterning. XRD, cross-sectional TEM, secondary 0
ion-mass spectroscopySIMS), capacitor leakage current, and

capacitance-voltagéC-V) measurements are used to characterize 62 e4 e 6 70 72

the material property Si/SiGe heterostructure. 260 (deg)

Figure 1. XRD spectra of one-step formed,3Ge, ; and two-step formed
Z E-mail: achin@cc.nctu.edu.tw Si/S (G& 4 heterostructure by solid-phase reaction.
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Figure 2. Cross-sectional TEM of the Si/xiGe, 4 heterostructure.
Figure 4. AFM surface topography of the SifSGe, 4 heterostructure.

0.43Si+ 0.57Sj ;Gey7 — Sip Gy [2]
also consistent with the smooth surface observed by TEM. To our
According to Eq. 1, a 120 A deposited Ge will form a 170 A best knowledge, this is the smoothest surface of strain relaxed Si/

Sip :G&y 7. From Eq. 2, the $isGe, ,in turn gives a 300 A SiGe, 4 SiGe that can be used for fu_rther devu?e application.
and a remaining top 170 A Si layer. The good agreement between We have further characterized the Si/e, 4 heterostructure by
calculated and transmission electron microsc6piM) measured ~ Measuring the capacitor leakage current. As shown in Fig. 5, almost
data again suggests that the top Si layer is the main source of Si foflentical |-V characteristics are obtained for 30 A thermal oxides
Siy ¢G& 4. This is reasonable because the top amorphous Si layeBrown on both Si/gisGe, 4and Si that suggests the excellent quality
has weaker bonding than bottom single crystalline Si gGé&;  Of oxide grown on Si/QiGe 4 heterostructure. The comparable
layers. electrical characteristics with Si control sample is because the ther-
We have further measured the composition profile of $iSe, 4 mal oxide is grown on top Si _|nlst2ead of on SiGe that avoids the
heterostructure. As shown in Fig. 3, a uniform composition of SiGeWeak GeQ inside the SiQ matrix.
measured by SIMS is consistent with the sharp XRD peak in Fig. 1. The quality of oxide grown on Si/§iGe, 4 heterostructure is
Athin Si layer at top surface with very low Ge is also observed that further examined by the C-V characteristics. Figures 6a and b show
suggests the composition transition from, $Be,; to Si/Sh Gey 4 the measured high and low frequency C-V curves and interface trap
originated from top Si. The long graded Ge composition tail adja-density ©;) plot, respectively. Thd; as a function of energy is
cent to uniform SjGe, , may be due to Ge diffusion into Si sub- optained directly from measured (;-V data. The cllosc.e match betwgen
strate. Because the graded Ge profile is naturally formed during théigh and low frequency capacitance values indicates the high
solid-phase reaction, it is important for strain relaxation of the uni- 0xide quality with low bulk and interface defects. This is further
form Si, «G&, 4 layer and achieving a smooth Sig6e, , interface evidenced from the low minimum interface trap density of 6
in Fig. 2. X 10% eV Ycn?, which is already good enough for MOSFET
Because the device performance of the MOSFET is directly re-applications:*
lated to the surface roughness before and after oxidatihye )
have used atomic force microscop§FM) to further measure the Conclusions
surface roughness of Si/SiGe heterostructure. The top Si layer cal- We have demonstrated a simple method to fabricate Si/SiGe het-
culated from above equations is about 20 A. As shown in Fig. 4, aerostructure with good material quality, which is fully compatible
root-mean-squaréms) value of 1.5 A is measured that is close to
the original Si surface value of 1.2 A. The small rms roughness is

. —=— Si/Si, ,Ge, , oxide
—a— Si oxide
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Figure 5. I-V characteristics of 30 A thermal oxide grown on Si and
Figure 3. SIMS profile of the Si/SjGe&, 4 heterostructure. Si/Sh.G& 4.
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Figure 6. (a, top)C-V characteristics anth, bottom)interface trap density
plot of 30 A thermal oxide grown on Si and Si}3Gey 4.

age current with control thermal SjQwhich can be further used for
p-MOSFET application.
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