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Abstract: Various indices of component importance with respect to system reliability have
been proposed. The most popular one is the Birnbaum importance. In particular, a special case
called uniform Birnbaum importance in which all components have the same reliability p has been
widely studied for the consecutive-k system. Since it is not easy to compare uniform Birnbaum
importance, the literature has looked into the case p = 1

2 , p → 1, or p ≥ 1
2 . In this paper, we

look into the case p → 0 to complete the spectrum of examining Birnbaum importance over
the whole range of p. c© 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 159–166, 2002; DOI
10.1002/nav.10001
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1. INTRODUCTION

We consider a system T consisting of functionally identical components. The system state and
the component state are both binary, either working or failed. We define an aggregate state as the
union of the component-i state over all i. The functioning of the system is defined by a structural
function f which maps {aggregate state} to {system state}, i.e., f(S) = 1 (or 0) means the
aggregate state S induces a working (failed) system. Let R(T ) denote the system reliability and
P (S) the probability of the aggregate state S. Then

R(T ) =
∑
S

f(S)P (S).

Note that P (S) is a function of the component reliabilities (p1, p2, . . . , pn); therefore, so is R(T ).
A component importance index measures the contribution of a (working) component towards

the system reliability. The most important one is the Birnbaum importance [1] which is defined as
∂iR(T ), where ∂i is the derivative with respect to the reliability of component i. An importance
index is structural if it depends only on f(·) but not on P (·). Note that the Birnbaum importance
of component i depends both on the location of component i and the component reliabilities

c© 2002 Wiley Periodicals, Inc.



160 Naval Research Logistics, Vol. 49 (2002)

{p1, . . . , pn}which appear inR(T ). Given a component importance index Ii for a systemT , we get
a structural importance index for T by applying Ii under the assumption p1 = p2 = · · · = pn = p
for some p ∈ (0, 1). In the following we list several importance indices which have been studied
in the literature (we write i → j to mean component i is more important than component j).

1. Uniform Birnbaum importance [1]. i → j if

∂iR(T ) ≥ ∂jR(T ), for all 0 < p < 1.

2. Combinatorial importance [9]. The special case of uniform Birnbaum impor-
tance with p = 1

2 .

3. Half-line importance [6]. A weakened version of uniform Birnbaum importance
by requiring i → j for all p ≥ 1

2 .

Let CS(T ) (or PS(T )) denote the set of cutsets (or pathsets) of T . Let CSd(T ) denote
CS(T ) given d failed components and PSw(T ) denote PS(T ) given w working components.
Let CSi,d(T ) denote CSd(T ) given component i is failed and PSi,w(T ) denote PSw(T ) given
component i is working. Furthermore, we use lower-case to denote cardinality, i.e., cs(T ) is the
number of cutsets of T .

4. Critical importance [2]. i → j if for any subset S not containing i and j

j ∪ S ∈ CSj(T ) ⇒ i ∪ S ∈ CSi(T ).

5. H-importance [8]. i → j if

csi,d(T ) ≥ csj,d(T ) for all d.

6. Cut importance [3]. i → j if

(csi,1(T ), csi,2(T ), · · ·) ≥ (csj,1(T ), csj,2(T ), · · ·) lexicographically.

7. First-term importance [12]. Compare only the first term of the vector above.

Clearly, the critical importance implies the H-importance. Meng [10, 11] proved some relations
with respect to the critical importance and the cut importance. It was also proved [8] that the H-
importance implies uniform Birnbaum importance, which clearly implies the half-line importance,
and thus the combinatorial importance. The justification of using the half-line importance is p ≥ 1

2
holds in most practical cases. In the more extreme case p → 1, then a d-cutset is much more likely
to occur than a d′-cutset for d < d′ and thus justifies the use of the first-term importance. The
cut importance is an extension of the first-term importance by looking into more terms, but in the
order of their likelihood. Thus we see that, while the critical importance, the H-importance, and
the uniform Birnbaum importance are overall measures and usually too strong for comparisons,
the other four indices all consider large p, or at least not small. In this paper we examine a special
case from the other end of p when the number of working components is small. We call it the
rare-event importance. There are two reasons to study the rare-event importance:



Chang and Hwang: Rare-Event Component Importance 161

i. Showing i → j not true for the rare-event importance is an easy way to disprove
a claim of i → j for the uniform Birnbaum importance.

ii. A comparison in the uniform Birnbaum importance is hard to obtain. Usually,
we only establish it under the half-line importance, or under both the first-term
and the combinatorial importance. If in addition, we establish the comparison
under the rare-event importance, we obtain a strong indication that it might hold
for all p.

In the following sections we study the rare-event importance of the consecutive-k-out-of-n
system. Note that the first-term importance index of component i is simply the number of k-
subsequences (with consecutive components) containing i. Thus the index is i for i ≤ k − 1 or
i ≥ n−k+2, and is k otherwise. However, the rare-event importance index, surprisingly, employs
interesting mathematics. We should make it clear that the rare-event importance index cannot be
obtained from the first-term importance index by simply switching the roles of working and failed
components, because the first-term importance index in the new system still counts the number of
k-subsequences (of good components now) while the rare event importance index in the original
system counts the number of minimum sets to prevent the occurrence of a k-subsequence (of
failed components).

2. RARE-EVENT COMPONENT IMPORTANCE FOR THE
CONSECUTIVE-kkk SYSTEM

A consecutive-k-out-of-n system is a line of n components which fails if and only if some k
consecutive components all fail [7]. Component importance of this system has received a great
deal of attention (see [5] for references) due to many applications.

Represent n as n = qk + r, where 0 ≤ r < k. Then q is the minimum number of working
components for a pathset to exist. Note that when p → 0, then a system with exactly q working
component dominates probability-wise a system with more working components. Yet a working
system must have at least q working components. Thus the rare-event importance IR

i of com-
ponent i is defined to be psi,q(k, n), the leading term in the system reliability. For example, for
a consecutive-3-out-of-7 system (a, b, c, d, e, f, g), the minimum pathsets are {b, e}, {c, e}, and
{c, f}. We now give some general formulas for IR

i .

THEOREM 1: psq(k, n) = ( q+k−r−1
k−r−1 ).

PROOF: Theorem 1 is easily verified for n ≤ k. We prove the general case by induction on n.
Consider n = qk + r > k. Suppose r > 0. Then

n − 1 = qk + (r − 1).

Clearly, every pathset of the n-line is a pathset of the (n − 1)-line. The additional pathsets of the
(n − 1)-line are those which has its last working component at position n − k (so that the n-line
is not working). The number of such pathsets is, of course, psq−1(k, n − k − 1). Therefore,

psq(k, n) = psq(k, n − 1) − psq−1(k, n − k − 1)

=
(

q + k − (r − 1) − 1
k − (r − 1) − 1

)
−

(
(q − 1) + k − (r − 1) − 1

k − (r − 1) − 1

)
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=
(

q + k − r
k − r

)
−

(
q + k − r − 1

k − r

)

=
(

q + k − r − 1
k − r − 1

)
.

Next suppose r = 0. The last working component must occupy one of the last k positions, say
m, and the first m − 1 components must form a working line with q − 1 working components.

Therefore,

psq(k, n) =
k∑

i=1

psq−1(k, n − i)

=
k∑

i=1

(
q − 1 + k − (k − i) − 1

k − (k − i) − 1

)

=
k∑

i=1

(
q + i − 2

i − 1

)

=
(

q + k − 1
k − 1

)
.

Represent i = uk + v, where 0 < v ≤ k. Define (x
y) = 0 for y < 0 as usual.

THEOREM 2: psi,q(k, n) = (u+k−v
k−v )( q−u+v−r−2

v−r−1 ).

PROOF: PSi,q(k, n) consists of those pathsets with u working components in the first i − 1
positions and q −u−1 working components in the last n− i positions. In other words, it consists
of the product of PSu(k, i − 1) and PSq−u−1(k, n − i). Therefore,

psi,q(k, n) = psu(k, i − 1)psq−u−1(k, n − i).

If v < r + 1, then

n − i = (q − u)k + (r − v).

Hence, psq−u−1(k, n − i) = 0 and Theorem 2 is trivially true.
Next assume v ≥ r + 1. Then

n − i = (q − u − 1)k + (k + r − v).

Therefore,

psi,q(k, n) =
(

u + k − (v − 1) − 1
k − (v − 1) − 1

) (
(q − u − 1) + k − (k + r − v) − 1

k − (k + r − v) − 1

)

=
(

u + k − v
k − v

) (
q − u + v − r − 2

v − r − 1

)
,

by using Theorem 1.
There exists a relation between k consecutive components starting at i = tk + 1 for some t.
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THEOREM 3:
∑tk+k

i=tk+1 psi,q(k, n) = psq(k, n) for each t = 0, 1, . . . , q − 1.

PROOF: We can prove Theorem 3 using Theorem 2; but that would be messy. Instead, we
use a direct argument. Let the tth interval consist of the k positions tk + 1, tk + 2, . . . , tk + k.
A pathset of PSq(k, n) must intersect each interval or it wouldn’t be a pathset. On the other
hand, the pathset has q working components and there are q intervals, so it must intersect each
interval exactly once. Therefore, this pathset is counted in exactly one PSi,q(k, n) for tk +1 ≤ i
≤ tk + k. Theorem 3 follows.

3. COMPARISONS OF RARE-EVENT COMPONENT IMPORTANCE IN THE
CONSECUTIVE-kkk SYSTEM

Recall [6] that the comparisons of the half-line importance Ih between components in a
consecutive-k-out-of-n system {1, 2, . . . , n} are

Ih(1) < Ih(2) < · · · < Ih(k − 1) < Ih(k + 1) < Ih(i) < Ih(2k) < Ih(k)
for all i > k + 1 and i 6= 2k.

Also,

Ih(2k + 2) > Ih(2k + 1), Ih(3k) > Ih(3k + 1), and Ih(i) < Ih(i + 1)
for k + 1 ≤ i ≤ 2k − 1.

The comparisons on IR
i are more restrictive and mostly between components k positions apart,

or between the set of positions {uk + 1} and others. Some of these comparisons go beyond the
comparisons of IR, but others lag behind. In particular, the conjecture I(2k) < I(i) for all i > 2k,
suggested by its validity in Ih, is shattered by the corresponding comparison in IR.

We first compare IR
i with IR

i+k.

THEOREM 4: IR
uk+k is nonincreasing in u. Furthermore, it is decreasing except for r = k−1.

PROOF: By Theorem 2,

psuk+k,q(k, n) =
(

q − u + k − r − 2
k − r − 1

)
.

Therefore,

psuk+k,q(k, n) − ps(u+1)k+k,q(k, n) =




0 if r = k − 1,(
q − u + k − r − 3

k − r − 2

)
if r < k − 1,

≥ 0.

Theorem 4 follows immediately.

LEMMA 5: For k > v ≥ r +1, ps(u+1)k+v,q(k, n) > psuk+v,q(k, n) if q > (u+1)(k − r −
1)/(k − v).

PROOF: By Theorem 2,

ps(u+1)k+v,q(k, n)
psuk+v,q(k, n)

=
(u + 1 + k − v)(q − u − 1)
(u + 1)(q − u + v − r − 2)

.

Hence, ps(u+1)k+v,q(k, n) > psuk+v,q(k, n) if q > (u + 1)(k − r − 1)/(k − v).
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COROLLARY 6: If v = r + 1 6= k, then IR
uk+v is nondecreasing in u.

PROOF: If v = r + 1 6= k, then q > (u + 1)(k − r − 1)/(k − v) = u + 1. It implies, by
Lemma 5, ps(u+1)k+v,q(k, n) > psuk+v,q(k, n). Hence, IR

uk+v is nondecreasing in u.

THEOREM 7: IR
uk+v ≤ IR

(u+1)k+v for 1 ≤ v ≤ (k + 1)/2 and (u + 1)k + v ≤ (n + 1)/2.

PROOF: If v < r + 1, then by Theorem 2, IR
uk+v = 0 for all u and Theorem 7 is trivially

true. Hence we assume v ≥ r + 1. Note that in the range of (u + 1)k + v specified in Theorem 7,

qk + r ≡ n ≥ 2[(u + 1)k + v] − 1 = 2(u + 1)k + 2v − 1.

Since

2v − 1 > v − 1 ≥ r.

necessarily, q ≥ 2u + 3. Finally, v ≤ (k + 1)/2 implies (k − 1)/(k − v) ≤ 2. Hence

(u + 1)(k − r − 1)
k − v

≤ (u + 1)(k − 1)
k − v

≤ 2(u + 1) < q.

Theorem 7 now follows from Lemma 5.
Although Theorem 7 deals with only the first half components, we can compare the second

half by noting IR
i = IR

n+1−i.
The range of v in Theorem 7 cannot be pushed further in general. For example,
EXAMPLE 1: k = 4, n = 32, ps15,8(4, 32) = 60 < ps11,8(4, 32) = 63.

Next, we compare the rare-event importance of position uk + 1 with the others.

THEOREM 8: IR
uk+1 < IR

uk for all u satisfying uk + 1 ≤ (n + 1)/2.

PROOF: By Theorem 2,

psuk+1,q(k, n) =
(

u + k − 1
k − 1

) (
q − u + 1 − r − 2

1 − r − 1

)

=




(
u + k − 1

k − 1

)
if r = 0,

0 otherwise.

For r = 0, uk + 1 ≤ (n + 1)/2 implies q ≥ 2u + 1.

psuk,q(k, n) =
(

q − u + k − r − 1
k − r − 1

)

> psuk+1,q(k, n).

Hence IR
uk+1 < IR

uk for all u.

REMARK: Theorem 8 is not true for uniform Birnbaum importance [6].
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THEOREM 9: IR
uk+1 ≤ IR

j for all uk + 1 < j ≤ (n + 1)/2.

PROOF: If r 6= 0, then by Theorem 2, IR
uk+1 = 0 for all u, and Theorem 9 is trivially true.

Consider r = 0. First, we compare IR
uk+1 with IR

uk+v for 2 ≤ v ≤ k:

psuk+v,q(k, n)
psuk+1,q(k, n)

=
(k − v + 1)(k − v + 2) · · · (k − 1)(q − u)(q − u + 1) · · · (q − u + v − 2)

(u + k − v + 1)(u + k − v + 2) · · · (u + k − 1) · 1 · 2 · · · (v − 1)
.

Since the ratio is increasing in q, and q ≥ 2u + 1, we only need to consider q = 2u + 1:

psuk+v,q(k, n)
psuk+1,q(k, n)

=
(k − v + 1)(k − v + 2) · · · (k − 1)(u + 1)(u + 2) · · · (u + v − 1)
(u + k − v + 1)(u + k − v + 2) · · · (u + k − 1) · 1 · 2 · · · (v − 1)

.

Since

(k − v + l)(u + l) ≥ l(u + k − v + l) for 1 ≤ l ≤ v − 1,

IR
uk+1 < IR

uk+v . By Theorem 7, IR
uk+1 is nondecreasing. Hence IR

uk+1 ≤ IR
j for all j > uk+1.

REMARK: Theorem 9 holds for half-line importance only for u = 1 [6].
We illustrate the above results by the consecutive 5-out-of-25 system {1, 2, . . . , 25}. We only

compare the first thirteen components and use i → j to indicate IR
i > IR

j .
By Theorem 4, we have 5 → 10. By Corollary 6, we have 11 → 6 → 1. By Theorem 7, we

have 12 → 7 → 2 and 13 → 8 → 3. By Theorem 9, we have 7, 8, 9, 10, 11, 12, 13 → 6 and 12,
13 → 11. We also know the following from comparisons of uniform Birnbaum importance [6]:

5 → 4 → 3 → 2 → 1, 5 → i for all i, 10 → 11, 7 → 6, 10 → 9.

Combining, we have

For comparison, the graph for Ih is

I2k > Ii for all i > 2k was proved [6] for the half-line importance, and its holding for the
uniform case was conjectured there. By showing IR

2k < IR
i for some k and i > 2k, we disprove

the conjecture:
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EXAMPLE 2: For k = 5, n = 25, ps10,5(5, 25) = 35 < ps13,5(5, 25) = 36.

4. SOME CONCLUDING REMARKS

While the concept of importance index is universal for all systems, it can be extremely difficult
to compute efficiently for most systems. A notable exception is the consecutive-k system for
which some break-throughs in comparing component importance have been recently obtained [6,
9]. In this paper we provide one more such comparison, but from the other end of the p-spectrum
for which no general method is known. This new piece of information has allowed us [4, 6] to
determine the uniform-Birnbaum-importance comparability in several cases.

The background system does not have to be an engineering system. It could be a human orga-
nization where the components are various agents. For example, the agents can be the president,
the senate, and the congress in a study of their relative power of passing a bill. Of course, in
this particular example, the geometric structure existing in a consecutive-k system is not there.
We hope that our study of component importance with the simple geometric structure here can
be extended to more complicated geometric structure, and, perhaps, can shed light to problems
where the structures are not geometric.
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