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A Constrained Multibody System Dynamics
Avoiding Kinematic Singularities*

Chih-Fang HUANG**, Chang-Dau YAN**,
Shyr-Long JENG*** and Wei-Hua CHEING**

In the analysis of constrained multibody systems, the constraint reaction forces
are normally expressed in terms of the constraint equations and a vector of Lagrange
multipliers. Because it fails to incorporate conservation of momentum, the Lagrange
multiplier method is deficient when the constraint Jacobian matrix is singular. This
paper presents an improved dynamic formulation for the constrained multibody
system. In our formulation, the kinematic constraints are still formulated in terms of
the joint constraint reaction forces and moments; however, the formulations are
based on a second-order Taylor expansion so as to incorporate the rigid body veloc-
ities. Conservation of momentum is included explicitly in this method ; hence the
problems caused by kinematic singularities can be avoided. In addition, the dynamic
formulation is general and applicable to most dynamic analyses. Finally the 3-leg
Stewart platform is used for the example of analysis.

Key Words: Constrained Multibody System, Kinematic Constraints, Kinematic

Singularity, Constraint Reaction Force

1. Introduction

Many dynamic analysis techniques have been
developed for constrained multibody systems; for
example, Hiller™, Wittenburg®, Kane and Levinson®,
and Huston® have all proposed such techniques.
Some of these techniques employ relative coordinates
to generate the equations of motion, some are
based on the Lagrange equation, such as those of
Hollerbach® and William®, some are based on the
Newton-Euler method, asin the cases of Stepanenko'”,
Orin®, Luh®, and Hollerach™®, and others are based
on Kane’s equations, such as those of Wang™? and
Wampler®®, Several computational schemes have
also been introduced. Nikravesh®® formulated the
equations of motion based on the Cartesian coordinate
form. Haug™® presented a variational-vector calculus
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to systematically transform the Cartesian equations
of motion into relative coordinate form. Using the
variational-vector calculus, Bae®® developed a recur-
sive formulation for a constrained multibody system.
In addition, he also introduced the cut joint method®®,
associated with Lagrange multipliers, for finding the
spanning tree of the multibody system. Haug®” fur-
ther simplified the derivation by using a state vector
notation. The kinematic relations can be shown in
terms of the joint-coordinates and the state-vector
notation. The equations of motion can be recursively
derived in terms of relative coordinates. Sheth®®
applied graph theory to analyze the topology of
multibody systems using relative coordinates. The
topological analysis method generates the information
necessary for a recursive dynamic formulation.
Many of the above developments have addressed
the issue of computational efficiency. Hollerbach®
concluded that the recursive Newton-Euler method is
more efficient than the recursive Lagrangian formula-
tion. Kane’s equation is computationally more
efficient than either Lagrange’s equation or Newton-
Euler methods, because it eliminates the inactive
constraint reaction forces. Fewer authors have
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addressed the problem of avoiding kinematic singular-
ities. Liang"® introduced the singular value decompo-
sition (SVD) technique, which can usually convert
singular problems into nonsingular ones. Although
SVD finds the optimum solution based on the least-
squares method, it is a complex technique that
requires a large amount of computing time.

In this paper, an improved dynamic analysis
scheme bhased on the solution of constraint reaction
forces and moments is developed for the constrained
multibody dynamic system. This method is
computationally efficient and avoids the problem of
the kinematic singularity. ‘

Nomenclature

A;: the rotational transformation matrix
between the local coordinate system x:—y:
—2z; to the global coordinate system X-— Y
—Z of the i-th link
B;: body force of the 7-th link; the vector is
given w.r.t. the global coordinate system
df: position vector of point ¢ w.r.t. the global
coordinate system X —Y—Z
di¢: vector df wur.t. the local (link) coordinate
system x:—y:—=z:
d!?: vector df of point q w.r.t. the local (link)
coordinate system x:—y:— z:
Fy: the g-th external force on link 7 ; the vector
is given w.r.t. the global coordinate system
H; : function of the constraint reaction forces and
moments on link 7 ; the vector is given w.r.t.
the global coordinate system
m; . the mass of link 7
J: the g-th constraint reaction moment on
link 7; the vector is given w.r.t. the global
coordinate system
N/ : total moments exerted on link 7 in terms of
the local coordinate system
P;:: function of inertia and external forces/
moments of link 7; the vector is given w.r.t.
the global coordinate system
q:: any arbitrary vector attached on link 7; the
vector is given w.r.t. the global coordinate
system
q:: any arbitrary vector attached on link 7; the
vector is given w.r.t. the local coordinate
system
€):: constraint reaction forces and moments of
link 7; the vector is given w.r.t. the global
coordinate system
r; : position vector of point ¢ of link 7 w.r.t. the
global coordinate
Arf: displacement of point ¢ on link ¢ w.r.t. the
global coordinate
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R?: the g-th constraint reaction force on link 7;
the vector is given w.r.t. the global coordi-
nate system

TY: the g-th external moment on link 7; the
vector is given w.r.t. the global coordinate
system

U: . vector function of the inertia and external

- forces/moments of link 7 ; the vector is given
w.r.t. the global coordinate system

W:: vector function of the constraint reaction
forces and moments on link 7; the vector is
given w.r.t. the global coordinate system

Z : the mXn coordinate transform matrix to let

i=2Z7Q

w;: angular velocity of link 7 w.r.t. the global
coordinate system

w7: angular velocity of link 7 wr.t. the local
coordinate sfystem X~ Yi— Zi

a; : angular acceleration of link 7 w.r.t. the global
coordinate system

a; . angular acceleration of link 7 w.r.t. the local

coordinate system x:—y:—z:

2. Foundation of the Kinematic Singularity-Free
Formulation

For a constrained multibody system with m
kinematic constraints @=[¢1 ¢» - ¢ul’, # general-
ized coordinates ¢=[q: ¢2 -~ ¢»)", the Lagrange
multiplier formulation leads to the following algebraic
equations of motion®?.

o, o115 o

where M denotes the m X #n mass matrix, § denotes
the acceleration vector, A is the mX1 vector of
Lagrange multiplier, @, denotes the # X n constraint
Jacobian matrix, g denotes the # X1 vector of general-
ized forces and y=—(@.¢)q.q. Unfortunately, the
method of Lagrange multipliers, embodied in the
classical Lagrange’s method, Newton-Euler's method
and various forms of Hamilton’s principle, is deficient
when the constraint Jacobian matrix @, is singular.
Our proposed formulation allows the insertion of
the constraints directly into the equation of motion
without introducing Lagrange undetermined multi-
pliers. Taking the Taylor expansion on the general-
ized coordinate g for a coordinate increment A¢g and,
the constraint equations can be written as follows :
O(q)=@(dq, q, q, 4t)=0 (2.a)
The acceleration vector ¢ can be expressed in
terms of the generalized active force vector g and the
unknown constraint reaction forces/moments vector
Q as follows:
G=M Y g+Z"Q) (2.b)
where Z is the mX#n matrix and Z7Q is the m X1
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. vector of generalized constraint reaction forces/
moments. Thus, Eq.(2.a) can be rewritten as follows :

o(Q, g, q, 4t)=0 (3)

Moreover, the dynamic equation, based on the
solution of constraint reaction forces and moments of
Eq.(3), can be derived for the constrained multibody
dynamic system as follows:

O=d(Q, ¢, q, 4t)|a=0+ Palo=0Q

+ higher order terms=0

When the higher order terms are negligibly small,
and the generalized active force g is constant during
time interval 4¢, we reach a linear expression for the
solution of @ for small 4t as follows:

Q=— D' o= ¥ (4)
where :
T=d(Q, ¢, q, 4t)le=o
— @q[ 4t +M~1g%m2]

1

2
—7<qu[th+M‘lg%At2]

and

Oelocv=1 4PM27] - @, @..| qdt
+M‘1(g+ZTQ)%At2ﬂ

(refer to Appendix A)

The importance of the above derivation lies in the
fact that Eq.(4) is a form of the conventional
momentum conservation equation. The momentum

Y

(a) Kinematic singularity which det(®4)=0,
det(@qg+ @ogx)+0 and det(@o)=+0

Y

(b) Static indetermination which det(®@4)=0, det(®,
+ @y 3)=0 and det(Pe)=0, x :[tjdt+M‘1(g

+Z TQ)%AL‘Z} (see Appendix A)

Fig. 1 Two examples of planar 4R mechanisms
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conservation employs the force as an unknown vari-
able subjected to the kinematic constraint. In the
following, we demonstrate that partial derivative
matrix @, cannot be singular even if the correspond-
An example of planar four-bar
linkage is shown in Fig.1(a). Since the constraint
Jacobian matrix @ is deficient at this singular point,
the output velocity . ¢z can undergo infinitesimal
motion even if the input is locked, ie. ¢:1=0. For
simplicity, we assume that =0 of Eq.(4) in the
above mechanism at the singular point. Since @q is
not deficient, a unique solution, i.e. @ =0, is obtained.
Accordingly, we can obtain the solution for output
velocity as.

ing @, is singular.

é2|t:o+:l}2|t:0~. '

Equation (4) can be used to determine the joint
reactions @ that acted on joints to produce con-
strained dynamic motion. This process is similar to
the kinetostatic (kinematic-to-static) analysis“® in
which the determination of joint reactions can be
transformed into a static analysis problem where a
specific motion is sought. For the statics, the solution
for joint reactions is uniquely determined unless the
problem is statically indeterminate, as shown in Fig. 1
(b). More detailed examples using our formulation
will be provided in the later sections.

3. Spatial System

The forces and moments on the link, say linkz,
may be classified into three kinds: the constraint
reaction forces and moments @, the external forces
(or moments) F; (or T:), and the body forces, such as
gravity, denoted by B:. Q:is a column vector consist-
ing of the constraint reaction force Rf and moment
MF for all the joints £ on link i, as shown in Fig. 2.
The forces and moments are all given in terms of the

R M

Fig. 2 Free-body diagram of a constrained body
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global coordinate system.

The rotational transformation matrix A maps
from the local x—y —z frame to the global X — Y —Z
frame. Define a superscript operator’ which converts
a vector o from the global coordinates into the local
coordinates @, i.e. ®=Aw’. An overhead operator
which transforms the vector @ into a skew-symmetric
matrix is as follows:

0 —Wz Wy
O=| Wz 0 — Wx ‘
— Wy Wx 0

The Poisson kinematic equation can be stated as
follows :

Ai:(f)iAi:Ai@;’ (53)
where A; is the rotational transformation matrix of
the x;—y:— 2: frame relative to the X — Y —Z frame.
The second derivative is

A= A8+ A.@/6" ‘ (5.b)
where a: and a; denote the angular acceleration in
terms of the global coordinate system and the local
coordinate system, respectively. For detailed proofs
of Egs.(5.a) and (5.b), the reader may refer to Refs.
(13) and (20).

An x;—y:—z: frame is fixed in the mass center of
a moving body. Let c be a point fixed in the x.—y;— 2:
frame, as shown in Fig. 2. The position vector of the
point ¢ with respect to the X — Y —Z frame can then
be obtained as follows :

ri=ri+A.di°¢ : (6)
where r; denotes the position of the mass center of the
moving body and d/¢ denotes the position of point ¢ in
the local x:—y:—2: coordinates. Since the orientation
of the body will change as time progresses, the r: and
A, are functions of time. The absolute velocity can be
obtained from the time derivative of the above equa-
tion as follows:

f'f:: i‘i‘!—Aié)\/idi/c. (7)
Using Eq.(5 ), the second derivatives of the position
vector can be written as follows:

Fi= it Aud i o+ A@@idiC. (8)

4. Equations of Motion

From Newton’s second law of motion, the linear
acceleration vector of the mass center, in terms of
global coordinates, can be expressed as follows:

Lo SIFi+B) (9)

where the vectors Rf, F7 and B: are as defined previ-
ously and m: denotes the mass of the i-th link.

By the Euler’s equations of motion, the angular
acceleration is

ai= o =J(N! — @i w’) (10)
where Ji denotes the local inertia matrix of link 7.
Since the local coordinate system is chosen to coincide

fi:
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with the principal axes of inertia at the mass center,
Ji is a diagonal matrix. V{ denotes the total moments

exerted on link 7 w.r.t. the local coordinate system,
Ni=3Z{d* AIRE+ ATMF + 2" ATF + ATTH
q

(11)
Because the time interval 4¢ is very small, the transla-
tion of point ¢ can be derived by the Taylor expansion
to the second order as follows :

Arfx ﬁm+% ¥ a2

~ Pl AdiC At +EF

77‘

LAdrcar
(12)

However, Taylor expansion method with a finite
number of terms is not an exact method, but rather an
approximate method. The integration step 4¢ can be
tuned according to the required analysis precision. In
general, the accumulation error for second-order
Taylor expansion of the constraint function is
0483y, By first substituting Eq.(11) into Egq.(10),
then carrying the result into Eq.( 8 ), and lastly apply-
ing the result along with Eq.(9) and (7) into Eq.
(12), we obtain

Arf=UF+W¥F (13.a)
where UF is independent of the constraint reaction
forces and moments Q: and W is a function of Q..

Uf=(r:+A:@0:d°) At

+(Ai¢i;CTCi+Aia'a'fd;C +%§Fﬁ

A+

2
41 B,-) 4t
Y/ 2
and
R 2
Wf=(Aid;C’D,~+i2Rf> 4t (13.b)
mi: & 2
where
Ci=Ji (DA ATF+ AT — aidie)) (13.0)
q
and h

D,.:J;—lg{J;kAfzeﬂAsz} (13.d)

Note that rf, the position vector of point ¢ at time ¢,
is independent of the joint constraint reaction forces
or moments within the time interval [¢, t+4¢]. By
Egs.(13.b) and (13.d), we obtain

c c 2 . -
%‘l’; — %zk :"zf [ilg*mLAid{”J{‘ld{"Aﬂ
(14.a)

where Is+3 is a 3 by 3 identity matrix, and
(o C 2
oo =5 [Adie T AT
The components of a vector ¢: on link 7 are
transformed from the x:—y:—2: coordinate system to
the X — Y —Z coordinate system as follows :
q:=A.qi (15)
Vector ¢: is the local components of vector g: on link
7 defined in the x;— y:—z: coordinate system, and

(14.b)
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d:i—Aqi=A.@'q: (16)”
Differentiating Eq.(16) with respect to time yields

di=Aqi=A{a+ @707 q: a7
Incorporating a small time increment 4¢, we have

Aqi% Qidf“l’%ijidfzzpi‘f‘ﬂi (18)
Where by Eq.(8), we obtain

P=d:A; qzdt+(A gi'Ci+A; cﬁ’cﬁ’qz)— (19.2)
and

H=A, (iiTD (19.b)

where C; and D; are defined as in Eqgs.(13.c) and (13.
d). Since q:{#) stands for the vector at time # strictly,
which is independent of the joint constraint reaction

forces or moments in the interval [ £, £+ 4t], we obtain
adqi . BHZ _ ATZ

Vil

SRoRE =g AGTICArAL 20w
and
Y faarson o

5. Spherical Joint

A spherical joint that coincides two links 7 and J,
as shown in Fig. 3, must be subject to the following
three kinematic constraints due to the joint position c :

Arf+ri=drf+rf (21)
“When Eq. (13) is substituted into the above equation, it
yields

— Wi=(rf—rd)+(UF—US) (22)
As indicated previously, Q: and Q; are used to denote
the constraint reaction force and moment vectors on
link 7 and link 7, respectively, during the time interval
[¢, t+4t]. Vector Q: consists of the constraint reac-
tion forces RF and moments M/ for all the joints % on
link 7, and vector Q; consists of the forces and
moments for the joints on link j. According to Egs.
(13.b) and (13.d), the function WFis a linear function
of individual constraint reaction force R¥ and moment
M!. By Eq.(14), Eq.(22) can be expressed in terms of

Fig. 3 A spherical joint
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the constraint reaction forces and moments on link ¢
and link ; as the following linear relation:

c c
Lo @—pQ=(rf =) U~ UH (22)

The partial derivative terms for the above equation
are given in Egs.(14.2) and (14.b). On the right-hand
side of Eq.(23), the vectors US and US contain the
linear velocity, the angular velocity, the body force,
and the external forces/moments. Both are known at
time ¢ and they embody the momentum conservation
law for each individual link 7 and ;.

6. Spatial Revolute Joint

" Five kinematic constraint equations are needed to
define a revolute joint. A revolute joint between link
7 and J is shown in Fig. 4. Similar to the spherical
joint, the revolute joint must also be subject to three
translational constraint equations in Eq.(23).
Furthermore, the unit vector g: of link 7 and unit
vector g; of link / on the revolute joint must remain
parallel, hence we have two independent equations as
follows :

(q:+4q:) < (q;+4g;)=0 (25)
When we substitute Eq.(18) into the above equation,
the resultant equation in matrix form becomes:

(@:+H.+P)(q;+H;+ P;)=0 (26)
Since
ﬁjPi: _PiHj

By neglecting the second order term ﬁiHj, we can
expand Eq. (26) into
J+ i b P ¥
(@ P)Sa@(ar P)5g 0

=(g:+ P)(q;+ P) (27)
The partial derivatives in Eq.(27) can be expressed in
terms of the derivatives, as shown in Eq.(20).

Fig. 4 A revolute joint
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Fig. 5 A cylindrical joint

7. Spatial Cylindrical Joint

In Fig. 5, the vectors q: and q; are located on the
common axis of rotation. The variable d denotes the
distance vector from point ¢; of link ¢ to point ¢; of
link 7. Since the vector g: of link 7 and the vector g;
of link j are parallel, the constraint equations of Eq.
(27) must hold. In addition, the vectors q: and d are
parallel, so we have

(q:+Adq:) < (d+4d)=0 (28)
where by definition
d+A4d=r—r¥)+(drf—Arf) (29)

Substituting Eqs. (13) and (19) into Eq.(28), we obtain
(qit+ P+ H) X [(r&—r@)+(UF— Uf) .
+(WF —W#)]=0 (30)
Substituting Egs.(14) and (20) into Eq.(30), we obtain
the following matrix form:

(1(re— 7o)+ (O~ OV~ a1+ P2 @
+{(art Py @=1(re— 9)
+(UF = U] (q:+ Py (31)

Equations (27) and (31) yield four linear equations in
terms of the constraint reaction force and moment
vectors Q; and Q;.

8. Spatial Prismatic Joint

As shown in Fig. 6, the prismatic joint is similar
to the cylindrical joint except that the two adjacent
links are not allowed to have relative rotation.
Therefore, the prismatic joint requires one more
kinematic constraint equation; for instance, the
vector h; on link 7 and the vector h; on link j must

JSME' International Journal

Fig. 6 A prismatic joint

remain perpendicular at all times. The constraint
equation can be derived from the vector inner product
condition as follows :

(hi+4dh:)(h;~+4h;)=0 (32)
Substituting Eqgs.(19) and (20) into Eq (32), we have
r0H;\ o L pyrOH;) 4
{(h;‘l‘P;) an}Qz+{(hz+Pz) 8Q7}QJ
=—(hs+P)"(h;+ Py) (33)

where the partial derivatives have been derived in
Egs.(14.a) and (14.h).
Vectors h;, h;, P;, and P; are known at time £.

9. Constraint Reaction Force and Moment Balance

For all types of kinematic pairs, the constraint
reaction force and moments must be balanced within
the pairs. The .constraint reaction force balance
equation for joint % is written as follows :

Ri=—R} ’ (34)
and the constraint reaction moment balance equation

18 :
M; :_Mjk (35)

10. Dynamic Equation of Motion and Analysis
Recursion :

The joint constraint force and moments, for
multibody dynamics as shown in Eqgs.(23), (27), (31
and (33) may be formulated as the following linear
relation :

()]

(%Q'H)) (Q)Jzomt .

Joint n
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Link geometry

Initial conditions
T=0

Kinematic constraints .| Balance equations
eqgs. (14)&(20) eqs. (34)&(35)

Assemble matrix

Acceleration
Egs.(9) & (10)

A

External force
& moment

|<_

Velocity
Eqs.(7)

Position
Egs.(5)&(6)

i

Yes

;

+N0

t=t+At

Fig. 7 Flow chart of the dynamic simulation

(w(r: U, q, P))]Oint 1

- (W(r, U, q, P))Joim‘ n (36)

where subscript Jfoint n denotes the #z-th joint in the
multibody system. The algorithm for the dynamic
analysis is illustrated in Fig.7. Based on the
Gaussian-elimination method, a unique set of con-
straint forces @ is obtained when these constraint
equations are considered simultaneously. Further-
more, the acceleration, velocity and position analyses
can be accomplished in a straightforward manner
using Eqs.(5)-(10).

11. Planar System EXample

Figure 8 depicts a double pendulum mechanism.
The joint reaction-force vectors of link 1 and 2 are @:
=[Ri; Riy Rsr Roy]” and Qo=[—Rsr — Roy]” respec-
tively. Note that we have ignored the z-component
reaction force to ensure a planar motion. From Eq.
(14.a), we obtain '

odrt _ oWt

Q1 0@
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4" Tnitial condition: 6,=0 8,=0

Link1 Link 2
Mass m (kg) ' 14.59 14.59
Inertia J (kg-m?) o o 1.36] o o 1.36]
—0.61 0.61 -0.61
Position vecior d;f (m) | g1 _| ¢ at=| o dt=! o
1 1
0 0 0
C. G. position At the middle position of each link
At=0.001 s

Fig. 8 A planar double pendulum

_ A2[1+4sin® 6 2sin26
2| 2sin26 1+4cos® &
1—4sin® 6 —2sin 26, }
—2sin 261 1—4cos® 6,
where the subscript Wi denotes the link number and
the superscript represents the joint number. Similar-
ly, we obtain
OWZ A2 [1—4sinz 6 —2sin26

37

0@ 2 | —2sin26 1—4cos® 6
1+4sin® 6, 2sin 26, } (38.2)
2sin 26, 1+4cos? 64 a
oWz _ At* [1 +4sin® 8, 2sin 26, } (38.b)
0Q: 2 | 2sin26, 1-+4cos® b, '

In order to solve for all the joint reaction forces @ =
[Riz Riy Ror Roy]”, we can obtain the following con-
straint equations according to Eq.(36) :

[%@?’)]4“[6}]4“:[@"(1", U)]4><1 (39)

where the partial derivative matrix can be assembled
from Egs.(37) to (38) that
[ of (W) ]
oQ
1+4sin® 6 2sin 26
A2 2sin26, 1+4cos® 6
2 1—4sin® 6 —2sin 26,
—2sin 26, 1—4cos” 6
1—4sin® 6 —2sin 26
—2sin 26 1—4cos® &
4sin® 6 —4sin®* 8, 2sin 26,—sin 26,
2sin 26— 2sin 26, 4cos® 61 —4cos® G
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110
00 | exact solution [19]
| —— singularity-free
70

Ang. Accel. (rad/s?)

(a) The 3 leg Stewart platform mechanism

Z

0 05 1 15 2 25 3

Time (s) time step — 10ms

(between numerical and exact solution)

Accuracy of Ang. Accel. (rad/s?)

Fig. 9 Numerical analysis for link 2 of the planar
double pendulum

At the known kinematic singularity éi= 6, it can be
verified from the above equation that

det(?—é) =%At2

the matrix % is not singular for any non-zero inte-

. . . (b) The Photograph of the 3 leg Stewart platform
gration step 4¢. Thus, we ensure a singularity-free srap € P

“ . . . . . . Link Lt L2 L3 L4 L5 L6 L7
condition. The results listed in Fig. 9 are identical to - = - Py - 1 o E—
wiass
those given in Ref.(19), which uses the SVD algo- Iertia | I, | 007] 007] 007| o001| 001| 001] 25
rithm. However, we will only require the normal Gemy I | o7] o7] o7| ot| o1 o1 s
. - - . . L 0.7 0.7 0.7 0.1 0.1 0.1 25
Gaussian-elimination method to solve the linear equa- z
. . . . . . Mass X 0 0.39 -0.39 0 0.292 | -0.292 0
tions in Eq.(39). It presents a significant improvement Center | 0a50 | 0225 | 0225 | 0337 | 0168 | o168 | 0
in computational simplicity and efficiency. @) z [ 0355 0355 | 0355 -0.013 | -0.013 | -0013| 071
. (¢) Link parameters
12. Spatial System Example bat
' Joint n 12 3 14 I5 J6 17 I8 19
- A 3 leg Stewart platform is shown in Fig. 10, Joint type- s sl s|&g|®R ] rR | ®r | R | ®
where the joints J7, J8, and J9 are replaced by motors. Position x | 0] 053] -053) 0| 025| -025| 033 0} -033
L . . 0.61 031 | - .29 -0.14 | -0. -0. . -0.
The joint reaction force and moment vector @; of link i il il | 0] 0I9] 039 019 )
. . . . . ) 3 ' z 0.71 0.71 0.71 ¢ 0 0 0.03 -0.03 0.03
7, consisting of the constraint reaction force Rf and ,
% L. ) R Direction 0, 1 -0.5 -0.5 0 -0.84 0.84
moment M:* for all the joints £ on link 7, can be 5 ol o7 [ oser | 007 | oms | o
rewritten as follows : o, 0 0 o] 026 o026 o026
. i i i i+3 i+3 )
Q:=[Ri, Ry, R, R, RES, (d) Joint parameters
R;;—3 {_‘?—3 %'y+3 _z;—.'i]T "
2, k2 ) z, iz . . » .
: ia iis 43 i+3 43 Fig. 10 Link and joint parameters for the 3 leg Stewart
Qi+3:[_Rlz ’ ~Rly ’ —RZ y Mz, T My o,
platform
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Fig. 11 Numerical analysis for link 7 of the 3 leg Stewart platform

— ME?, Rz, RE Yy, RG e MGz, MGy,
M ‘
Q.-=[— R, —Rl,, — Ry, — R}, — R}, — R%,
—R%:, — RS, — R3:]”
where 7=1~3. Moreover, the partial derivative
matrix can be assembled from Eq.(36) as follows:

[%Q,II)] [Qlismn=[T(r, U, q, P)ls

45%45

Each motor generates a constant torque of 10 N-m
counterclockwise. The rotor shafts are L4, L5, and
L6, respectively. The analysis is performed using an
integration step of 0.002 seconds. Following the analy-
sis procedure shown in Fig. 7, the dynamic result for
link 7 (the upper platform) is obtained, as shown in
Fig. 11. In Fig. 11, the derivative of linear velocity vz
is discontinuous at times of 0.76, 1.32 and 1.72 seconds,
where the kinematic singularity occurs. At these
positions, our dynamic formulation has successfully
surpassed the rank deficiency problem.
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13. Conclusion

We have presented an improved dynamic formu-
lation based on a second-order Taylor expansion with
a given integration step, which may be tuned accord-
ing to the required analysis precision. In our formula-
tion, the constraint reaction force and moment must
simultaneously account for the conservation of
momentum of the rigid bodies. Therefore, the
proposed formulation avoids the kinematic singularity
found in previous dynamic analysis methods. In
addition, all the kinematic constraint equations and
constraint reaction force and moment balance equa-
tions are formulated in terms of linear algebraic
equations, thus simplifying the computations com-
pared with the SVD methods involved in the analysis.
The number of unknowns in our formulation is equal
to the number of total joint constraints in the system
and the computational efficiency is also attained.

JSME International Journal



Acknowledgments

This research was supported via the ROC
National Science Council under grant NSC89-2212-E-
009-025.

Appendix

For a system with » kinematic constraints @, we
may obtain m constraint equations as follows :

DP=0(q)=0 (A1)

The Taylor series expansion of Eq. (Al) about ¢
is

O(q+dq)= D(q)+ Do dg+ o dq)?

+ highey-ovder terms ‘ (A2)
Using @(g+4g)=0 and eliminating the higher-
order terms for small dq, we find that

O(q)~ ~ B.dg—— Pos( )’ (A3)

Similarly, taking the Taylor series expansion of ¢
about ¢ and neglecting the high-order terms for a time
increment 4¢, we may obtain

gt 4+ 20 () + At +%th2 (A4)

We note that ,

dg=q(t+4t)—q(1) (A5)

Substituting Eqs. (A4) and (A5) into Eq.(A3), the
constraint equation @(q) yields ‘

O(q)~ @ 441+ 440 )~ oo a1

1. 2
+5-d4r?) (A6)

Thus, the constraint.equation @(q) may be
evaluated by the acceleration ¢, velocity ¢ and time
increment A4¢.

According to the Lagrange equation, the accelera-
tion vector ¢ may be expressed in terms of the
generalized forces g and the unknown constraint
reaction forces/moment vector @ as follows: @2

G=M g+ ®iA)=M(g+27Q) (A7)
where Z is the coordinate transform matrix and @A
=7Z7q. :

Substituting Eq.(A7) into Eq.(A6), the constraint
equation @(g) may be expressed by @ as follows.

®(q)—— (pq[ th+M’1(g+ZTQ)%AtZ}

2
—%d)qq[qdz‘JrM“l(gﬁ-ZTQ)%Atz] (A8)

Thus,
Dl o-o
_do
=dQ

—— @ (M2 - @qq[ Gt Mg
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+27Qy A8 (M 2 LA
:%AtzM‘IZT[ o, @q({ G4t +M~1g%m2ﬂ

- —%AtzM‘IZT[ @+ Dyorc] (A9)
where
w=| dat+ Mg+ 27Q) } 47

Since Eq.(A8) is 2nd order function of Q, and Q>
is associated with 4¢* which is concerned small and
can be ignored.

T=0(Q, ¢, q, 4t)|e=0

:ﬂpq[q'AHM*g%AzZJ

_1 . gl o]
Dyq| gAt+M QZAt

D) (A10)
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