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A Classification of Noncircular
Attribute Grammars Based on the
Look-Ahead Behavior

Wuu Yang

Abstract—We propose a family of static evaluators for subclasses of the well-defined (i.e., noncircular) attribute grammars. These
evaluators augment the evaluator for the absolutely noncircular attribute grammars with look-ahead behaviors. Because this family
covers exactly the set of all well-defined attribute grammars, well-defined attribute grammars may be classified into a hierarchy, called
the NC hierarchy, according to their evaluators in the family. The location of a noncircular attribute grammar in the NC hierarchy is an
intrinsic property of the grammar. The NC hierarchy confirms a result of Riis and Skyum, which says that all well-defined attribute
grammars allow a (static) pure multivisit evaluator by actually constructing such an evaluator. We also show that, for any finite m, an
NC(m) attribute grammar can be transformed to an equivalent NC(0) grammar.

Index Terms—Attribute grammars, noncircular attribute grammars, ordered attribute grammars, pure multivisit attribute grammars,
simple multivisit attribute grammars, well-defined attribute grammars, grammar classification.

1 INTRODUCTION

INCE their introduction in 1968 [19], attribute grammars

have attracted much research interest. Attribute gram-
mars are a very convenient and powerful framework for
specifying computations on context-free languages [5].
Attribute evaluation has been extensively studied since then.

In an attribute grammar, there are attribution equations
that specify the rules for computing values of attribute
instances in a syntax tree derived from the attribute
grammar. The attribution equations, thus, induce the
dependencies among attribute instances in syntax trees.
The order of attribute evaluation must be consistent with
the dependencies among attribute instances because an
attribute instance a can be evaluated only if all the attribute
instances used in a’s defining equation are already
evaluated. A circular dependence in a syntax tree, that is,
an attribute instance transitively depending on itself,
implies the impossibility of attribute evaluation in general.
It becomes an important question whether there are circular
dependencies among attribute instances in any syntax tree
derived from a given grammar. This is the well-known
circularity problem of attribute grammars and has been
proven to be a complex problem that takes time exponential
in the size of the grammar in general [12].

A well-defined attribute grammar is one from which no
syntax trees with circular dependencies can be derived. Much
research effort has been devoted to the discovery of efficient
evaluation methods for (subclasses of) the well-defined

o The author is with the Computer and Information Science Department,
National Chiao-Tung University, HsinChu, Taiwan, R.O.C.
E-mail: wuuyang@cis.nctu.edu.tw.

Manuscript received 22 Feb. 1999; revised 18 Aug. 1999; accepted 20 Jan.
2000.

Recommended for acceptance by M. Jazayeri.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 109267.

attribute grammars [19], [7], [1], [22]. There are two categories
of evaluation methods: static and dynamic. Static evaluators
compute evaluation orders based on the grammars alone,
whereas dynamic evaluators establish evaluation orders
based on the dependency information in a particular syntax
tree. Since static evaluation methods make use of information
gathered by analyzing the attribute grammars, they are
usually more efficient than dynamic methods in general [13].

In general, an evaluator for the well-defined attribute
grammars must take into account the exact dependencies in
a particular syntax tree implicitly or explicitly in order to
find an evaluation order. In contrast, an evaluator for the
class of absolutely (or strongly) noncircular attribute grammars
(ANCAG) [18] limits its consideration to the direct
dependencies within a single production and makes a
conservative assumption about transitive dependencies
(that is, dependencies that involve two or more production
instances in a syntax tree). Thus, ANCAG is a proper
subclass of the class of the well-defined attribute grammars
but it allows more efficient evaluators [18].

In this paper, we propose a new family of static
evaluators for the well-defined attribute grammars. These
evaluators turn out to be generalizations of the evaluator for
the absolutely noncircular attribute grammars [18] in that
they look ahead one or more generations of descendants
during evaluation. In contrast, the evaluator for the
absolutely noncircular attribute grammars does not look
ahead to any descendants during evaluation. Intuitively,
evaluators that look ahead more generations of descendants
can evaluate larger subclasses of attribute grammars than
those that look ahead fewer generations. For instance,
circular dependencies that involve a production instance p,
p’s parent production instance, and p’s child production
instances in a syntax tree can be detected by an evaluator
that looks ahead two generations of descendants, but not by
one that looks ahead only one generation.
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Because the family of evaluators covers exactly the set
of the well-defined attribute grammars, we may classify
the well-defined attribute grammars into a hierarchy,
called the NC hierarchy, according to the evaluators for
individual grammars. The NC(m) class, where m >0,
consists of those grammars that can be evaluated with a
static, visit-oriented evaluator that is allowed to look
ahead m generations of descendants in the syntax tree
during evaluation. In particular, the class of the abso-
lutely noncircular attribute grammars is equivalent to the
NC(0) class and the well-defined attribute grammars
coincides with the NC(co) class in our classification.
Proof of this claim is included in Section 8.

It is commonly agreed that most practical attribute
grammars belong to the well-known ordered attribute
grammars (OAG) class [16]. In contrast, this paper presents
efficient static evaluators for grammars that fall out of the
OAG class. The algorithms in this paper can decide the least
number of generations of descendants that an evaluator
needs to look ahead in order to establish an appropriate
evaluation order. Furthermore, we also present a method
that transforms NC(m) grammars, for any positive m, to
equivalent NC(0) grammars by expanding the grammar
rules. The resulting NC(0) grammars can be evaluated with
the efficient evaluators of [18] or it can be further
transformed to [-ordered grammar [6] for evaluation. The
algorithms presented in this paper tells us the least amount
of expansion needed.

Note that, though the NC hierarchy is defined in terms
of the attribute evaluators, the location of a noncircular
attribute grammar in the NC hierarchy is an intrinsic
property of the grammar. Therefore, the NC hierarchy is a
good way to classify noncircular attribute grammars.

To evaluate attribute instances in a syntax tree, the
evaluation order of attribute instances in a production
instance mustbe consistent with three kinds of dependencies:

1. the direct dependencies among attribute instances in
the production instance (enforced by the attribution
equations of the production),

2. the upward transitive dependencies among attribute
instances of the left-hand-side nonterminal of the
production instance (enforced by the context of the
production instance in the syntax tree), and

3. the downward transitive dependencies among attri-
bute instances of the right-hand-side nonterminals of
the production instance (enforced by the subtrees
rooted at the right-hand-side nonterminals in the
syntax tree).

The crux of the NC evaluation algorithms is that we use the
downward transitive dependencies (as well as the direct
dependencies) to determine a set of evaluation plans for
each production. One of the plans is chosen according to the
upward transitive dependencies in the syntax tree during
attribute evaluation.

Deciding whether a given grammar belongs to a class in
the NC hierarchy takes time that is exponential in the size of
the grammar. There are five factors that contribute to the size
of a grammar: the number of terminals, the number of
nonterminals, the number of productions, the number of
attributes associated with a terminal or a nonterminal, and

the length of the right-hand side of a production. We will give
detailed analysis of the time complexity of the algorithms
involving the NC hierarchy in terms of these five factors.

A characteristic of attribute grammars in all the classes in
the NC hierarchy is that they allow static, visit-oriented
evaluators. From this point of view, all the classes in the
NC hierarchy can be viewed as extensions to Kastens’s
ordered attribute grammars (OAG) [16] and l-ordered AG [15].
In all the NC classes, each production is associated with
one or more evaluation plans. A plan consists of a sequence
of instructions of three kinds: evaluating an attribution
equation, visiting the parent production, or visiting one of
the child productions. [-ordered AG consists of those well-
defined attribute grammars for which there is a way to
associate exactly one evaluation plan, rather than a set of
plans, for each production. The attempt to find exactly one
plan for each production needs to examine a lot of
possibilities (that is, the choice of a linear order from a
topological order in the ComputeOrder function in Fig. 6)
and, hence, becomes an NP-complete problem [6]. Kastens
proposes a polynomial-time procedure that is capable of
finding exactly one evaluation plan for each production for
a subclass of [-ordered grammars. This is called the OAG
class. In a previous paper [26], we have further improved
Kastens’s OAG algorithm to cover a larger subclass of I-
ordered AG which still takes polynomial time.

Kastens’s l-ordered AG is also called the class of the simple
multivisit (SMV) attribute grammars [6]. The word simple
implies that every attribute of a nonterminal has a fixed
visit number in the evaluation plans. Dropping this
restriction, we obtain the class of the pure multivisit
(PMYV) attribute grammars [6]. The pure multivisit prop-
erty coincides with the noncircularity property; in fact, Riis
and Skyum prove that, for every well-defined attribute
grammar, there is a tree-walking evaluator that makes a
bounded number of visits to any node of a syntax tree [24].
This paper confirms Riis and Skyum’s result by showing
how to actually construct such a tree-walking evaluator for
all well-defined grammars. As far as we know, there are no
such evaluators in the published literature. Furthermore,
our work has refined PMYV into a hierarchy of classes.

The classification discussed in this paper is a character-
ization of attribute grammars based on the look-ahead
behavior of their static evaluators. Nielson [21] charac-
terizes attribute grammars based on the computation
sequences of their evaluators. Because Nielson did not
consider the look-head behaviors of the evaluators, her
characterization is restricted to subclasses of NC(0)
(i.e., ANCAG). Within the capability of Nielson’s frame-
work, her approach is similar to ours in that the top-down
assignment of partitions in her framework is similar to the
traverse procedure in Fig. 7 without the look-ahead behavior
(actually, this is a common characteristic of all ANCAG
evaluators, including the one in [18].) Our work extends
Nielson’s in that it characterizes all well-defined attribute
grammars and proposes algorithms to construct evaluation
plans and to perform evaluation.

In this paper, we will first present the plan generator and
the evaluator for the NC(1) class. Analysis of time
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complexity of each algorithm follows immediately after the
algorithm is presented. Generalizations of NC(1) to NC(m)
should be obvious. Finally, the plan generator and the
evaluator for the NC(o0o) class is proposed. We also show
that, for any finite m, an NC(m) attribute grammar can be
transformed to an equivalent NC(0) grammar. The rest of
this paper is organized as follows: The notations are
introduced in Section 2. Two graph representations for
downward transitive dependencies among attribute occur-
rences in productions are proposed in Sections 3 and 4. The
NC(1) class is defined in Section 4. In Section 5, an
algorithm for computing the evaluation plans for the NC(1)
class is presented together with a discussion of the
correctness of the algorithm. The NC(1) evaluator based
on the plans computed by the algorithm in Section 5 is
described in Section 6. In Section 7, we generalize NC(1) to
other NC(m) classes. The NC(o0) class is discussed in
Section 8. We conclude this paper in the last section,
together with a discussion of related works.

2 NOTATIONS

In this section, we define the notations used in this paper.
Basically, we adopt Kastens’s notations [16]. An attribute
grammar is built from a context-free grammar (N, T, P, 5),
where N is a finite set of nonterminals, T is a finite set of
terminals, S is a distinguished nonterminal, called the start
symbol, and P is a set of productions of the form X — «,
where X is a nonterminal and « is a string of terminals and
nonterminals. For each nonterminal X, there is at least one
production whose left-hand-side symbol is X. In this paper,
a production ¢ will be written as

X() — a0X1a1X2a2 e Xkaka

where X, X, Xs,..., X} are nonterminal symbols and
ap, 1,00, ..., ap are (possibly empty) strings of terminal
symbols. Furthermore, we assume that the start symbol
does not appear in the right-hand side of any production.

As usual, we require that the sets of terminals and
nonterminals be disjoint. In this paper, a symbol refers to a
terminal or a nonterminal. There may be several occurrences
of a symbol in a production. Furthermore, a production
may be applied more than once in a syntax tree. In this case,
we say that there are many instances of a symbol occurrence
in the syntax tree.

Attached to each symbol X of the context-free grammar
is a set of attributes. Intuitively, instances of attributes
describe the properties of specific instances of symbols in a
syntax tree. In order to simplify our presentation, we
assume that attributes of different symbols have different
names. The attributes of a symbol are partitioned into two
disjoint subsets, called the inherited attributes and the
synthesized attributes. We will assume that the start symbol
has no inherited attributes and that a terminal has only a
synthesized attribute that represents the character string
comprising the terminal symbol.

An attribute a of a symbol X is denoted by X.a. Since
there may be many occurrences of a symbol, there may be
many occurrences of an attribute in a production. Similarly,
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since a production may be applied more than once in a
syntax tree, there may be many instances of an attribute
occurrence in a syntax tree.

There are attribution equations defining these attributes.
In a production, there is exactly one attribution equation
defining each synthesized attribute occurrence of the left-
hand-side symbol and each inherited attribute occurrence
of the right-hand-side symbols.

There is still some freedom in specifying the attribution
equations. Therefore, we require that, for each production,
the attribution equations are defined in terms of the
inherited attribute occurrences of the left-hand-side symbol
and the synthesized attribute occurrences of the right-hand-
side symbols of the production. This is called the normal
form in the literature [2], [22]. The advantage of the normal
form is that it specifies the fewest number of dependencies
among attributes. Since dependencies among attributes
enforce an evaluation order, an attribute grammar in the
normal form allows the most freedom in the evaluator. In
this paper, we will assume that all attribute grammars
under discussion are in normal form. An example attribute
grammar is shown in Fig. 1a.

Attribution equations indicate dependencies among
attribute occurrences in a production. The dependency
relations in a production ¢ may be represented in the
dependence graph of g, denoted by DP(g), in which nodes
denote attribute occurrences in production ¢ and edges
dependencies between attribute occurrences. An edge
X.a — Y.b means that the attribute occurrence X.a is a
parameter to the function defining the attribute occurrence
Y.b in production p. Fig. 1b shows the DP graphs for the
example grammar in Fig. la. Fig. 1c and Fig. 1d will be
discussed in the next section.

3 THE DownN GRAPHS

In order to evaluate attribute instances in a syntax tree, the
attribute instances must be evaluated in an order that is
consistent with the dependencies among the attribute
instances. Dependencies among attribute instances in a
syntax tree are derived from the dependencies among
attribute occurrences in individual productions. The attri-
bution equations in an attribute grammar indicate the direct
dependencies among attribute occurrences in the produc-
tions. Based on the direct dependencies, we may calculate
the transitive dependencies among attributes of a symbol.
The transitive dependencies among attributes of a symbol
arise from two different sources: The transitive dependen-
cies may arise due to the context of the symbol or they may
arise due to the derived structure of the symbol.

An instance of a nonterminal X in an attributed syntax
tree T is the interface between the context and the derived
structure of the instance X in 7. The context of X in T is
obtained from T by removing the subtree (but retaining the
node representing X) rooted at X; the derived structure of
X is the subtree rooted at X. The transitive dependencies
among X's attributes due to the context of X are called the
upward transitive dependencies. Similarly, the transitive
dependencies among X’s attributes due to the derived
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Pl: S —>XYZ Ss0=Xsl+Ys2+VYs3+Zs4
X.il:=Ys3
Yi2 =Xsl
Yi3:=Ys2
P2: Y —m Ys2:=Y.i2
Ys3:=1
P3: Y —n Ys2:=2
Ys3:=Y.i3
P4: X—>m Xsl=Xil
P5: Z—>Y Zsd =Ys3
Y.i2:=3
Yi3 =Ys2
(a)
Pl: S sO

!
!

—_—

3
=

P4: il X sl P5: Z s4
3
m i2 s2 Y i3 s3
(b)
Down(X) : il X sl Down(Y): i2 s2 Y i3 s3

- 4 - L4
©

P1: S sO

Fig. 1. An attribute grammar, its DP and Down graphs. This grammar belongs to NC(1) but not to ANCAG (or NC(0)). (a) An attribute grammar.
(b) The DP graphs. (c) The Down graphs. (d) The IDP-ANCAG(P1) graph.

structure of X are called the downward transitive depen- productions (in Sections 3, 4, and 5) and upward transitive
dencies. The crux of our work is that downward transitive =~ dependencies are used for selecting evaluation plans during
dependencies are used to construct evaluation plans for attribute evaluation (in Section 6).
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Algorithm: ComputeDownGraph
for each symbol X do
end for

repeat
changed = false

/* Compute NewDown (X). */

if NewDown (X ) & Down (X,) then
changed = true

end if
end for
until changed = false

G = the transitive closure of G

return the resulting graph G
end function project

/* Initially, Down (X)) = a graph with nodes only, for every symbol X. */

Down (X') = a graph whose nodes are attributes of symbol X and which has no edges

for each production p: X —> 0oX 104, X505 .. X, 0 do
/* Augment DP (p) with Down (X |), Down(X,), ..., Down(X}). */
G =DP(p)wDown(X,)wDown(Xy)w ... vDown(Xy)
NewDown (X ) := project (G, { attributes of X})
/* Check if NewDown (X ) contains new dependencies. */

Down (X,) = Down (X o) v NewDown (X )

function project (G, N) return a new graph
/* G is a graph. N is a set of nodes in G. */

Remove, from G, all the nodes not in N and all edges incident on the deleted nodes.

Fig. 2. The ComputeDownGraph algorithm.

Definition. The downward transitive dependency graph of
a symbol X is a graph in which the nodes are X’s attributes
and the edges, say X.a — X.b, denote a (transitive) depen-
dency of X.b on X.a that exists in a subtree derived from X.

From every subtree derived from a nonterminal X, we
may find a transitive dependence relation among the
attributes of X. The downward transitive dependence
graph of X is the union of the transitive dependence
relations of the subtrees derived from X.

The downward transitive dependency graph of a symbol
is expensive to compute. In the literature, there are several
proposals to compute approximations to the downward
transitive dependency graphs. In particular, Kennedy and
Warren [18] use the Down(X) graph, for each symbol X, to
approximate the downward transitive dependency graphs.
Their Down graphs are defined essentially by the following
mutually recursive equations:

IDP—ANCAG(p) = DP(p) U Down(X;) U Down(X>) U...U Down(Xy),
where p is a production written as Xo—apXj a1 Xoag... Xpay.
Down(X) = U {project(IDP-ANCAG(q),

{X's attributes})| X is the le ft-hand-side nonterminal of production q }.

The term IDP means induced dependency graph for a
production [16]. The project function in the above equations
retains a subset of the nodes in a given dependency graph
and computes the transitive dependencies among nodes in
the retained subset based on the dependency graph. The
Down(X) graph is a safe approximation in the sense that
the Down(X) graph includes all possible transitive
dependencies among X’s attributes in all possible syntax

trees; in addition, it may also include a few spurious
dependencies.

In Fig. 2, an algorithm is presented that computes the
Down(X) graph. This algorithm is a variation of the
standard algorithm available in the literature [18]. Due to
the assumption that the start symbol and the terminal
symbols have only synthesized attributes, their Down
graphs contain only nodes but no edges. In the algorithm
in Fig. 2, the Down(X) graph for each symbol X is assumed
to be a graph with no edges initially. For each production p,
the DP(p) graph augmented with the Down(X) graph for
each nonterminal X on the right-hand side of p is examined
repeatedly in order to discover new edges in the Down
graphs. The algorithm terminates when no more edges can
be added to the Down graphs.

Example. Fig. 1la is an example attribute grammar and
Fig. 1b is the DP graphs for the productions. The
attribute grammar does not belong to the class of the
absolutely noncircular attribute grammars according to
the characterization in [18]. Fig. 1c shows the Down
graphs for this example. Since the symbols S and Z
contain only one synthesized attribute each, their
Down graphs contain only a node each and no edges
at all. Hence, they are omitted in Fig. 1c. Fig. 1d is the
IDP-ANCAG(P1) graph.

In the discussion of the time complexity of the
ComputeDownGraph algorithm, let | N |, |T|, and | P |
be the numbers of nonterminals, terminals, and produc-
tions, respectively. Let h be the maximum number of
attributes per symbol and [ be the maximum number of
(nonterminal) symbols on the right-hand side of a
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P1: i0
i2 s2
P2: i2 s2 Y i3 s3
J 1
m
Down (S) :
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S sO
Y i3 s3
P3: i2 s2 Y i3 s3
2 l
n
(a)
i0 S sO

Fig. 3. An example in which the Down(S) graph contains a spurious transitive dependency edge.

production. The sizes of the dependency graph DP(p) for a
production p is O(h2(I+ 1)) since there are at most h(l +
1) attribute occurrences in a production p. Hence, comput-
ing the DP(p) graph takes O(h?(I + 1)) time. We will use a
linked-list representation for DP(p). Each element of the
linked list represents an edge. Each Down(X) graph, for a
nonterminal X, is represented both as a linked list (of
edges) and as a Boolean matrix. The size of the graph
Down(X) for each symbol X is O(h?) since there are at
most h attributes associated with the symbol X.

To compute the union of the DP(p) graph and a
Down(X) graph, we simply build a node with two pointers,
each of which points to one of the two graphs. Thus, a
single union operation takes one unit of time. We need to
perform k union operations, where k < [, in each iteration of
the for loop, which takes O(l) time. To project a total or
partial order onto a subset of its nodes, we first transform
the linked-list representation into a Boolean matrix, and
then calculate the transitive closure of the Boolean matrix,
and finally eliminate unnecessary rows and columns.
Computing transitive closure dominates the computation
time, which is O(h*(1+1)*) with the Floyd-Warshall
algorithm. (A slightly better algorithm for computing
transitive closures takes O(n'°¢” logn) time, for an n-node
graph [3].) Comparing the old and the new Down graphs
takes O(h?) time. As soon as a new edge is found in the
NewDown graph, it is added to both the linked-list
representation and the Boolean-matrix representation of
the Down graph. Therefore, each iteration of the inner for
loop in Fig. 2 takes O(h*(I + 1)) time.

There will be | P | iterations of the for loop in each
iteration of the repeat loop. For each symbol X, there are at
most h(h — 1)/2 dependency edges in Down(X) and it takes
at most | N | iterations of the repeat loop to propagate a
dependence edge to all related symbols. Hence, there will
be at most | N | h(h — 1)/2 iterations of the repeat loop. The

total amount of time needed by the ComputeDownGraph
algorithm is O(| P || N | h®3).

The amount of space required is O(] P | h*(I + 1)%) for
the DP graphs and O(| N | h?) for the Down graphs.

The Down(X) graph is a safe approximation to the
downward transitive dependency graph of X. Spurious
downward transitive dependency edges in Down(X) may
occur in two ways. First, certain dependencies in Down(X)
may not occur simultaneously in any instance of X in any
syntax tree. For instance, consider Down(Y") in Fig. 1c. The
two dependencies i2 — s2 and i3 — s3 will never occur in
the same instance of Y in any syntax tree, though they may
occur in different instances of Y in some syntax trees.
Second and more seriously, certain dependencies may
never occur in any syntax tree at all. For instance, in the
example in Fig. 3, the Down(S) graph contains a spurious
transitive dependency edge i0 — s0, which will never occur
in any syntax tree. The edge i0 — s0 is introduced into
Down(S) due to the assumption that the two transitive
dependency edges i2 — s2 and 3 — s3 may occur
simultaneously in an instance of production P1. This
scenario will not happen because only one of the two edges
can occur in any instance of P1.

Some spurious transitive dependency edges may be
gradually removed by looking ahead more and more
generations of descendants. This finite look-ahead beha-
vior results in the NC(m) class of grammars, where m is
a nonnegative integer. The rest of the spurious transitive
dependency edges may be eliminated by looking ahead
as many generations of descendants as there are in a
particular syntax tree. This infinite look-ahead behavior,
in turn, results in the NC(oc0) class of grammars. In the
next section, we will show how to look ahead one
generation of descendants in the computation of the
downward transitive dependencies. In Section 8, we will
discuss the NC(o0) class.
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Algorithm: ComputeDCG
/* Initially, DCG (X, g ) = a graph with nodes only, for every symbol X */
/* and for every production ¢ with X on its left-hand side. */
for each symbol X and every production g with X on its left-hand side do
DCG (X, g) := a graph whose nodes are attributes of symbol X and which has no edges
end for
repeat
changed = false
for each production p: X —> 0pX 104, X500, ... X, ¢ do
for each combination of productions (p |, po, ...
/* Augment DP (p) with DCG (X4, p\), DCG(Xy, po), ..., DCG(X;, pe). */
G =DP(p)uDCGX, p)vDCG Xy, pr)w ... wuDCG(Xy, pr)

, Pe), where p;’s has X;’s on its left-hand sides, respectively do

/* Compute NewDCG (X, p). */

if NewDCG (X(), p ) & DCG (X(), p) then
changed = true

end if
end for
end for
until changed = false

NewDCG (X, p) = project (G, { attributes of Xo})
/* Check if NewDCG (X, p) contains new dependencies. */

DCG (X, p) == DCG (X, p)w NewDCG (X, p)

Fig. 4. The ComputeDCG algorithm.

4 THE DowNWARD CHARACTERISTIC GRAPHS

As discussed in the previous section, the Down graph of a
nonterminal is a conservative estimation to the actual
downward transitive dependencies that may occur in all
derived structures of the nonterminal. It is possible to
compute more accurate estimations by considering the
individual productions separately.

Definition. Let X be the left-hand-side nonterminal of produc-
tion g. The downward characteristic graph of X in the
subtrees derived via production g, denoted by DCGx(q), is
a graph in which the nodes are X's attributes and the edges,
say X.a — X.b, denote a (transitive) dependency of X.b on
X.a in some subtree derived from X wvia production g.
Equivalently, DCGx(q) may be defined as follows: Let ¢

be the production X — apXja1Xos ... X;oy. Let p; be a

production whose left-hand-side nonterminal is X, for all

i=1,2,... k

DCGx(q) =U {project(ADP(q | p1,pa2,.--
{X's attributes}) | p1,p2, .-, Pk

apk)a

are productions whose left-hand-side nonterminals are
X1, Xy, ... X}, respectively, where X is the left-hand-side
nonterminal of production g.

ADP(q | p1,p2;---,px) = DP(q) U DCGx1(p1)
@] DCGXQ(pQ) U...u DCGXA7(pk7).

ADP(q | p1,p2,...,pr) is called the augmented depen-
dency graph of production ¢ with the subtrees derived from
P1,D2, - - -, pr. Furthermore, we define the set of all possible
augmented dependency graphs of g as follows:

SADP(q) = {ADP((] | plap27"'7pk‘) ‘p1:p27"'7pk'

are productions whose left-hand-side nonterminals are
X1, Xs, ... X}, respectively.

The Compute DCG algorithm for computing the DCG x(q)
graphs, shown in Fig. 4, is obtained by modifying the
ComputeDownGraph algorithm in Fig. 2.

Example. Fig. 5 shows three DCG graphs for the example
in Fig. 1. The other DCG graphs contain no edges and,
hence, are not shown here. Note that Down(Y") in Fig. 1c
is divided into DCGy (P2) and DCGy (P3) in Fig. 5. The
grammar in Fig. 1 is not an ANCAG because IDP-
ANCAG(P1), shown in Fig. 1d, contains circular depen-
dencies. Fig. 5 also shows ADP(P1 | P4, P2,P5) and
ADP(P1 | P4, P3, P5), both of which are acyclic.

Comparing the definitions, we can verify the following
observation:

Observation.

U all g whose le ft-hand side is x DCGx(q) C Down(X).

Note the C relation in the above observation. It is possible
that some dependence edges in Down(X) do not appear in
any DCGx/(q), for any production g.

It is obvious that DC'Gx(q) is a more accurate represen-
tation of the downward transitive dependencies than
Down(X) in the sense that DCGx(q) contains fewer
spurious dependency edges. Next we define a new class
of noncircular attribute grammars based on this more
accurate representation.

Definition. An attribute grammar G is an NC(1) grammar if
and only if, for all productions q in G, every graph in
SADP(q) is acyclic.

The time complexity for computing the DCG graphs (as
well as the ADP graphs) is analyzed as follows: The size of
a DP(p) graph, for each production p, is O(h*(l + 1)%). There
are | P | such graphs. The size of DCGx(p) is O(h?). There
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DCGy(P2): i2 s2 Y i3 s3
DCGy(P3): i2 s2 Y i3 s3
DCGx(P4): il X sl
ADP(P1 | P4,P2,P5): S sO
=
(T Vv ¥ )
il X sl i2 s2 Y i3 s3 Z s4
ADP(P1 | P4,P3,P5): S sO
=
==
il X sl i2 s2 Y i3 s3 V4 s4

Fig. 5. The DCG graphs and the ADP graphs for the example in Fig. 1.

are O(| P|| N |) such graphs. The union operations take
O(1l) time. A projection operation takes O(h?(I 4 1)) time. A
comparison operation takes O(h?) time. Thus, an iteration of
the inner for loop in the ComputeDCG algorithm takes
O(h3(1 +1)*) time. There are at most | P |*1) iterations of
the inner for loop in each iteration of the repeat loop. Each
iteration adds at least one edge to a DCGx(p) graph.
Therefore, there are O(| P || N | h?) iterations of the repeat
loop. The total amount of time required by the
ComputeDCG algorithm is O(| P |+2)| N | h°1%).

The amount of space required is O(| P | h3(I +1)%) for
the DP graphs and O(| P || N | h?) for the DCG graphs.

To determine whether G € NC(1), it is necessary to check
every graph in SADP(q), for every production g. For each
production ¢, the number of graphs in SADP(q) may be
O(] P |'), where [, as defined in Section 3, is the maximum
number of (nonterminal) symbols on the right-hand side of a
production. The transitive closure of ADP(q | p1,p2, ..., pi)is
already computed by the Compute DCG algorithm. It suffices
to check only the diagonal elements in the Boolean matrix for
each ADP(q | p1,p2,---,pr), which takes O(h(l 4 1)) time.
Therefore, it is possible to determine G € NC(1) in at most
O(| P %! h(l+ 1)) time.

The fundamental property of the NC(1) class is that all
NC(1) grammars are well-defined attribute grammars.

Theorem. Every NC(1) grammar is a well-defined attribute

grammar (that is, every attributed syntax tree derived from an
NC(1) grammar contains no circular dependencies).

Proof. Suppose that the theorem is wrong. There must be a
syntax tree 7' derived from an NC(1) grammar with
circular dependencies. The circular dependencies in T
must include one or more instances of productions. Let g
be the production instance involved in the circular
dependencies that is located nearest to the root of T'. Let
P1,D2,--.,pr be the productions applied to the right-
hand-side nonterminals of the production instance ¢ in
T. Since the syntax tree contains circular dependencies,
ADP(q | p1,p2,---,pr) must also contain corresponding
circular dependencies because ADP(q | p1,po,...,pr) is a
safe approximation to the actual transitive dependencies
in the production instance ¢ in 7. This contradicts the
definition of NC(1) O

It is interesting to compare the NC(1) class with other
classes of attribute grammars. According to the character-
ization of the absolutely noncircular attribute grammars
(ANCAG) in [18], an attribute grammar is an ANCAG if
and only if IDP-ANCAG(g), for every production ¢, is
acyclic. NC(1) differs from ANCAG in that the DCG
graphs are used instead of the Down graphs. Because the
DCG graphs are subgraphs of the corresponding Down
graphs, NC(1) is strictly larger than ANCAG.

Theorem. | JSADP(q) C IDP-ANCAGI(q), for every produc-
tion q.

Theorem. Every ANCAG grammar is an NC(1) grammar, but
not vice versa.
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Proof. Note that DCGx(p) is a subgraph of Down(X) for all
nonterminals X and all appropriate productions p. If
ADP(q | p1,p2,---,pr) contains a cycle, so too does IDP-
ANCAG(q). Thus, every ANCAG grammar is an NC(1)
grammar. That the NC(1) class is not equivalent to the
ANCAG class is witnessed by the example in Fig. 1. O

5 [EVALUATION ORDERS FOR THE N(/(1) CLASS

Similar to the ordered attribute grammars [16], NC(1)
grammars can be evaluated with evaluation plans that are
computed purely from the grammar (not from any
particular syntax trees). The only difference is that, in
OAG, there is an evaluation plan for each production. In
contrast, in NC(1), there is a set of evaluation plans for each
production. During evaluation, one plan of the set is chosen
based on the contexts and derived structures of instances of
the production.

To find evaluation plans for a production is essentially to
find the evaluation orders of attribute occurrences of the
production [16], [17]. The evaluation orders must be
consistent with the dependencies among the attribute
occurrences. There are three kinds of dependencies among
the attribute occurrences in a production: the direct
dependencies due to the attribution equations in the
production, the upward transitive dependencies among
attributes occurrences of the left-hand-side nonterminal of
the production, and the downward transitive dependencies
among attribute occurrences of the right-hand-side non-
terminals. The evaluation orders are computed from
ADP(q| p1,p2,--.,pr), which contains both the direct
dependencies and approximations to the downward tran-
sitive dependencies. The upward transitive dependencies
are implicitly used to choose an evaluation order among the
set of evaluation orders associated with a production
during attribute evaluation (see Section 6).

Suppose that an attribute grammar G belongs to the
NC(1) class. According to the definition of NC(1), every
ADP(q | p1,p2,--.,pr) in G is acyclic. Any topological order
derived from ADP(q|p1,p2,-..,pr) could be a feasible
evaluation order for attribute occurrences in production gq.
However, the context of an individual instance of produc-
tion g in a syntax tree may further enforce constraints on the
evaluation order of attribute occurrences of the left-hand-
side nonterminal of g¢.

We will use the Greek letter w to denote a constraint on
the evaluation order of attributes of a symbol and ¢ to
denote an evaluation order of attribute occurrences of a
production in what follows. A constraint w is actually a total
order among the attributes of a symbol and 1) is a total order
among the attribute occurrences of a production. Examples
of w and 1 are given at the end of this section.

Fig. 6 is an algorithm for computing the evaluation plans
for productions. The algorithm follows a work-list scheme.
The elements of the work list are tuples of the form (¢, w),
where 1) ¢ is a production and 2) w is a total evaluation
order of the attributes of the left-hand-side nonterminal of
production g¢.

Let S be the start symbol of the attribute grammar.
First, we need to determine an evaluation order for S’s
attributes. Because the attribute grammar is assumed to

be in normal form, there will be no outgoing edges from
S’s attribute instances in any syntax tree. Hence, any
arbitrarily chosen evaluation order of the (synthesized)
attributes of the start symbol will never cause circular
evaluation order in a syntax tree. Let p be an arbitrarily
chosen evaluation order of S’s attributes. Initially, the
work list WL contains a tuple (g, ), for each production
q whose left-hand-side nonterminal is S.

The elements of the work list are picked up one by
one. When an element (q,w) is picked up, let the
production ¢ be denoted by Xy — apXiai1Xoaw ... Xpoy.
The algorithm computes a total evaluation order 1 of the
attribute occurrences in ADP(q| p1,p2,...,pr), for each
ADP(q| p1,p2,---,p1) € SADP(q) under the constraint
that 1 must be compatible with w, that is, the projection
of 1 onto the attribute occurrences of the left-hand-side
nonterminal of production ¢ is identical to w. That we can
always find such an evaluation order 1 is supported by
the theorem discussed later in this section.

The II function in the ComputePlan algorithm is used to
avoid repeated processing of a tuple. In Fig. 6, II(q,w) is
undefined initially for every ¢ and w. II(g,w) becomes defined
when the pair (¢,w) is added to the work list W L.

The ComputePlan algorithm also builds a selection
function I" and a projection function © when computing
the evaluation orders. (The two functions are represented as
two arrays in Fig. 6.) The I" function will be used to select a
plan from the set of plans associated with a production
during the evaluation of attribute instances in a syntax tree.
Tlg,w,p1,p2,...,pk] is the evaluation order of attribute
occurrences in production ¢ when the attribute occurrences
of the left-hand-side nonterminal of ¢ must be evaluated in
the w order (this is a constraint) and the productions applied
at the right-hand-side nonterminals are pi,ps,...,ps re-
spectively. The projection function Olg,w, i, p1,po, ..., pgl is
the projection of I'[q,w,pi1,p2,...,pr] onto the attribute
occurrences of the ith nonterminal on the right-hand side
of production ¢. A projection of a total order of some nodes
onto a subset of the nodes is to restrict the total order to the
subset of the nodes. Examples of projection are given at the
end of this section.

Note that I'[q,w, p1,p2,...,pi] is a total order derived
from a partial order in the ComputeOrder function.
Obviously, there could be more than one total order
compatible with a given partial order. The ComputeOrder
function chooses one of the compatible total orders
arbitrarily.

There is a small notational misuse in I'[q, w, p1, P2, - - - , Pk]
and O[q,w, i, p1,p2, ..., pi]. Note that the symbol k denotes
the number of nonterminal symbols on the right-hand side
of production ¢. Because different productions may have
different numbers of nonterminals on the right-hand sides,
the values of k vary from production to production. This
misuse could have been remedied with one more level of
indexing notations. For the sake of simplicity, we omit that
level of indexing and bear in mind that k£ means different
constants for different productions.

For each nonterminal X; on the right-hand side of
production g, let w; be the projection of ¢ onto X;’s attributes.
If TI(p;, w;) is not already defined, the tuple (p;, w;) is added to
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Algorithm: ComputePlan
WL =

(g, W) = defined
WL :=WLou {{(g,)}
end for
repeat
(g, ®) = an element of WL
WL =WL - {(g, w)}

Tg, o, pi,po....op] =y

Olg, . i,pipo....p]l =0

if [(p;, ®;) = undefined then
I(p;, ®;) :=defined
WL :=WLou {(pi, &)}

end if

end for
end for
until WL =&

for i from 1 to m — 1 do
G =G v {the edge a; — a;y1 }
end for

return
end function ComputeOrder

return the resulting total order
end function project

IT := a function that is undefined in every place
W ;= an arbitrarily chosen evaluation order of the start symbol’s attributes
for each production ¢ whose left-hand-side non-terminal is the start symbol S do

Let production ¢ be the production X —> 0oX 104,X 50 . . . X Oty .
for each ADP(q | py, pa,..., px)€ SADP(gq) do
= ComputeOrder (ADP (g | p1, po, ...

for each non-terminal X; appearing on the right-hand-side of production ¢ do
; = project (W, { X;’s attribute occurrences })

function ComputeOrder(G, ®) return a new total order

/* G is an ADP graph of a production. ® is a total order */

/¥ of the attributes of the left-hand-side non-terminal in the production. */
Let @ denote the total order a,—2a,—> ... —2 ap,.

Y = any total order compatible with the partial order represented by the graph G.

function project (¢, N) return a new total order

/*  is a total order of certain attribute occurrences in a production. */
/* N is a subset of the attribute occurrences appearing in y. */
Remove, from w, all the attribute occurrences not in N

s Pi)s )

Fig. 6. The ComputePlan algorithm.

the work list. The ComputePlan algorithm examines tuples in
the work list one by one, possibly adding new tuples to the list
until the list becomes empty.

Definition. Let i be a (total or partial) order of certain
attributes. Let w be a (total or partial) order of a subset of
attributes in +p. We say that + is compatible with w if every
edge a — b in w is an edge in 1.

The following lemma is similar to Lemma 1 of [21].

Lemma. Let g be the production Xy — ap X101 X209 ... Xjay.
In ComputeOrder(ADP(q | p1,p2,---,pk),w) in Fig. 6, if
ADP(q | p1,p2; - - -, pr) contains no cycles and w is compatible
with DCGx(q), then 1) the introduction of the edges {a; —
ait1 |i=1,...,m—1} in the ComputeOrder function in
Fig. 6 will not introduce cycles into ADP(q | p1,p2,..-,Dk)
and 2) the resulting total order 1 is compatible with

DCGx;(pi), for each right-hand-side nonterminal X, of
production gq.

Proof. Note that, in ComputeOrder(ADP(q | p1,p2,

..,Pk),w) in Fig. 6, the total order w is represented by

the set of edges {a; — a;11 | i =1,...,m — 1}, where {qa; |
i=1,...,m} are X,'s attribute occurrences. If the
introduction of the edges {a; — aj+1 |i=1,...,m—1}

does introduce a cycle into ADP(q | p1,p2;--.,Pk), w is
incompatible with the projection of ADP(q|
p1,P2,--.,pr) onto Xy's attribute occurrences, which is a
subgraph of DCGx(q). Hence, w must be incompatible
with DCGx(q), which contradicts an assumption in the
lemma. This proves the first assertion in the lemma.
The total order i computed by the ComputeOrder
function is compatible with ADP(q | p1,ps,- .., pr). Note
that DCG;(p;), for each right-hand-side nonterminal X;,
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is a subgraph of ADP(q|pi,p2,...,pr). Hence, 9 is
compatible with DCGx;(p;), for each right-hand-side
nonterminal Xj;. O

Theorem. The ComputePlan algorithm in Fig. 6 correctly
computes a set of evaluation orders for every production.

Proof. It suffices to show that 1) every ADP(q|
P1,D2,- - -, px) is acyclic and 2) in every call to

ComputeOrder(ADP(q | p1,p2, .-, Pk), W)

in Fig. 6, w is compatible with DCGx(q), where X, is the
left-hand-side nonterminal of production gq.

That every ADP(q | p1,p2, ..., px) is acyclic is a direct
consequence of the definition of NC(1).

We will use an informal argument for the second
assertion. We will prove the following invariant of the
algorithm: If (q,w) € WL, then w is compatible with
DCGxo(q). The ComputePlan algorithm is an iterative
method. The first w considered is the arbitrarily chosen
order p of the attributes of the start symbol S. Since there
are no dependencies among S’s attribute occurrences, 1
is trivially compatible with DCGg(q). The w order
considered in the later iterations of the ComputePlan
algorithm is the projection of 1 onto the attribute
occurrences of the right-hand-side nonterminal X of
production p, where p is the parent production of
production ¢ in syntax trees (note that X is a nonterminal
on the right-hand side of production p and is the left-
hand-side nonterminal of production ¢) and v is an
evaluation order of attribute occurrences in production p.
By the above lemma, this projection of ¢ onto X’s
attributes is compatible with DCGx(q).

Due to 1) and 2) above, every evaluation order
computed by ComputeOrder is a topological order
compatible with the partial order ADP(q | p1,p2,- - -, Pk)
U w and, hence, is a feasible evaluation for production ¢
when the attribute occurrences of the left-hand-side
nonterminal of ¢ are evaluated in the w order and
D1, D2, - - -, and py, are the productions applied at the right-
hand-side nonterminals of q.

Because the ComputePlan algorithm is an exhaustive
method, we claim that all productions g and all necessary
orders w are examined by the algorithm. The detailed
proof of this claim should be obvious and is omitted for
the sake of brevity. O

Example. For the example in Fig. 1, we need to compute the
following seven ADP graphs: ADP(P1| P4, P2,P5),
ADP(P1 | P4,P3, P5), ADP(P2), (which is the same as
DP(P2)), ADP(P3) (which is the same as DP(P3)),
ADP(P4) (which is the same as DP(P4)), ADP(P5 | P2)
, and ADP(P5 | P3). The start symbol has only one
attribute s0. Choose pu=< S.s0>. For ADP(P1|
P4, P2, P5) and p, we may compute the evaluation order

P =< Y.s3, X.il, X.s1,Y.i2,Y.s2,Y.i3, Z.s4,5.50 > .
For ADP(P1| P4,P3,P5) and p, we may compute the
evaluation order.

1y =< Y.s2,Y.i3,Y.s3, X.il, X.s1,Y.i2, Z.s4,5.50 > .

The projections of ¢; and %, onto X’s attributes are
wy =< X.i1,X.s1>. For ADP(P4) and w;, we may
compute the evaluation order ¢35 =< X.i1, X.s1 > .

The projections of 1, and 1, onto Y’s attributes are
wy =<Y.83,Y.i2)Y.s2,Y.i3 >
and
w3y =<Y.s2,Y.i3,Y.s3,Y.i2 >,

respectively. For ADP(P2) and w,, we may compute the
evaluation order

Yy =<Y.s3,Y.i2,Y.s2,Y.i3 > .

For ADP(P3) and ws, we may compute the evaluation
order 5 =< Y.s2, Y.i3, Y.s3, Y.i2 > .

The projections of ; and > onto Z’s attribute is
wy =< Z.s4>. For ADP(P5|P2) and ws;, we may
compute the evaluation order

P =< Y.83,Y.i2,Y.s2,Y.i3,Z.s4 > .

For ADP(P5|P3) and ws;, we may compute the

evaluation order ¢; =< Y.s2,Y.i3,Y.s3,Y.i2, Z.s4 > .

The projections of 15 and 17 onto Y’s attributes are w
and w3, respectively. Since w; and w; are already
processed, the work list becomes empty and, hence, the
ComputePlan algorithm terminates.

There are two evaluation orders 17 and 1 for
production P1 and two evaluation orders s and ; for
production P5. There is only one evaluation order for
each of the remaining productions, that is, 14 for P2, ¢
for P3, and )3 for P4.

There are other possible sets of evaluation orders
depending on the choices of the topological sorting of a
partial order in the ComputeOrder function in Fig. 6. For
instance, instead of the two evaluation orders 15 and 7
for production P5, we may use the following evaluation
order ¢ =< Y.i2, Y.s2, Y43, Y.s3, Z.s4 > for produc-
tion P5. The projection of 13 onto Y’s attributes is w5 =
<Y.2, Y.s2,Y.i3,Y.s3 > . For ADP(P2) and wy and for
ADP(P3) and w5, we may compute the evaluation order
g =< Y.i2, Y.s2,Y.i3,Y.s3 > . In this set of evaluation
orders, the number of evaluation orders for P5 is
reduced by one; however, the numbers of evaluation
orders for P2 and P3 are increased by one each.

It is possible to reduce the number of evaluation plans by
choosing an appropriate total order that is compatible with
the partial order represented by the graph G in the
ComputeOrder function in Fig. 6. Techniques for similar
issues are discussed in [13], [14].

To analyze the time complexity of the ComputePlan
algorithm, first note that the maximum number of
potential evaluation orders of a symbol’s attributes is hl,
where h, as defined in Section 3, is the maximum number
of attributes per symbol. Thus, the number of iterations of
the outer repeat loop is at most | P | h! since there are at
most | P | h! distinct tuples. For a fixed production ¢, the
number of potential ADP(q|pi,p2,...,pr) graphs is at
most | P |Z , where [, as defined in Section 3, is the
maximum number of nonterminal symbols on the right-
hand side of a production. Thus, in each iteration of the
outer repeat loop, there will be at most | P |! iterations of
the middle for loop. Furthermore, in each iteration of the
middle for loop, there will be at most [ iterations of the
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Algorithm: EvaluateAttributes
algorithm eval (T)
/* T is an unevaluated syntax tree. */

traverse (root of T', |L)

procedure traverse (n, ®)
/* n is a non-terminal node in the syntax tree. */

g := the production applied at node n

Let my, mo,. ..

Letp, pa...

plan[n] =Tlg, ®, p1. pa,.... pi]

for each non-terminal child m; of n do
traverse (im;, Olg, ®, i, p1, P2y Pr1)

end for

end procedure fraverse

/* Choose a plan for each non-terminal node in 7. */
/* W is the evaluation order of the attributes of the start symbol chosen in ComputePlan (Figure 6). */

Use any traditional visit-oriented evaluator to evaluate attribute instances in 7.

/* @ is the evaluation order of attributes of the left-hand-side non-terminal located at node n. */

, my be the non-terminal child nodes of n in T.
, pr be the productions applied at my, m., ...

, my, respectively.

Fig. 7. The EvaluateAttribute algorithm for the NC(1) class.

inner for loop. The total number of iterations of the inner
for loop is, thus, at most |P|h!|P|'l. The project
function simply removes unnecessary attributes in a
linked list, which takes O(h) time. Each iteration of the
inner for loop takes O(h) time. The ComputeOrder
function needs to calculate a transitive closure in order
to find a total order. Computing transitive closure takes
O(h3(1+1)*) time. The ComputePlan algorithm takes O
P |1 hlhl) for the inner for loop plus O(] P |"1 hIA3(1 +
1)*) for the cumulative ComputeOrder operations. Thus,
the total time is O(| P |"*! A!h*(1+1)*). Note that no
duplicate tuples (q,w) will be inserted into the work list.

We may also analyze the space requirement as follows:
There are | P|' ADP graphs. Each ADP(q | p1,p2,. .-, Dk)
graph contains O(h(l+ 1)) attribute occurrences and can
induce O((h(l+1))!) evaluation orders. Each evaluation
order needs O(h(l+ 1)) space. Thus, the total amount of
space for plans is O(| P |' (h(l+ 1))!h(l + 1)). The space for
storing the constraints w is O(] N | h!). The space for the T’
table is O(] P |*Y| N | h!) and the space for the © table is
O(| P |V N | All).

Every evaluation order for a production corresponds to
an evaluation plan [16], [17]. An evaluation order for a
production is a total order of all the attribute occurrences
in the production. In this total order, we simply replace
each consecutive block of the inherited attributes of the
left-hand-side nonterminal of the production with a visit-
parent operation, and replace each consecutive block of the
synthesized attributes of the symbols on the right-hand
side of the production with a visit-child operation, and
replace the remaining attribute occurrences in the total
order with corresponding compute operations. Thus, a plan
is a sequence of wvisit-parent, visit-child, and compute
operations. In this paper, the two terms evaluation order
for a production and evaluation plan for a production are used
as synonyms for each other. The evaluation plans are used
by the attribute evaluator, which is discussed in the next
section.

6 THE EVALUATOR FOR NC/(1)

An input sentence is transformed into an attributed syntax
tree based on the attribute grammar, in which all attribute
instances are not evaluated yet. These attribute instances are
evaluated according to the plans for the productions. There
is a set of evaluation plans for each production. For each
nonterminal node n in the syntax tree, a plan is chosen from
the set of plans for the production that is applied at n based
on the productions applied at the parent and child nodes of
n. Once a plan is chosen for a nonterminal node in the
syntax tree, it will be used throughout the evaluation
process. Hence, a top-down traversal over the unevaluated
syntax tree will select appropriate plans for the nonterminal
nodes in the tree. Further evaluation may proceed as
traditional visit-oriented evaluators [16], [17].

Fig. 7 is the evaluation algorithm for NC(1). The
evaluation algorithm first calls the traverse procedure to
select a plan for each nonterminal node. The plan for the
root node is I'[g, i1, p1,p2,...,px], Where ¢ is the topmost
production instance (that is, the production instance
applied at the root node) of the syntax tree, p is the
arbitrarily chosen order in Fig. 6, and pi,ps,...,py are the
production instances applied at the nonterminal child
nodes of the root. I'[g,u,p1,p2,...,px] actually is, the
evaluation order of all attribute occurrences in
production ¢. This evaluation order corresponds to an
evaluation plan. ©q,w,%,p1,ps,...,ps] is the projection of
Tlg,w,p1,p2,-..,pr] onto X;’s attribute occurrences in gq.
After the plan for the nonterminal node n is chosen, the
traverse procedure selects a plan for each nonterminal child
X, of n by a recursive call to itself.

Though the EvaluateAttributes algorithm is presented in
two passes, a top-down traversal for selecting plans and
another for evaluation, the two passes can be fused
together. It is for the sake of simplicity that the algorithm
is presented in two passes.

The traverse procedure takes time proportional to the
number of nodes in a syntax tree. A traditional, visit-oriented
evaluator usually takes a comparable amount of time under
the assumption that evaluating each attribute instance takes
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a constant amount of time. The whole FvaluateAttributes
algorithm takes time O(size of the syntax tree).

Example. Consider the syntax trees corresponding to the
two derivations S — XYZ —* mmm and S — XY Z —*
mnm using the grammar in Fig. 1. The evaluation order
for the production instance S — XY Z in the first tree is
11, whereas that for the second tree is v (¢; and 1)y are
computed in the example in the previous section).

Correctness of the FEwvaluateAttributes algorithm is
established by the I' and © functions. For each production
instance ¢ in a syntax tree, let w be the evaluation order of
the attribute instances of the left-hand-side nonterminal of ¢
and let py,ps,. .., pi be the child production instances of ¢.
Based on w and pi,po,...,pr, the T' function selects an
appropriate plan for the production instance g. Further-
more, the © function recalls the projection of the plan for ¢
onto the attribute instances of each nonterminal on the
right-hand side of ¢. Repeating the selection and projection
operations, a plan is selected for every production instance
in the syntax tree.

7 THE NC HIERARCHY

The NC(1) class and the ANCAG class are generalizations
of Kastens’s OAG class in that the DS graphs (dependence
graphs for a symbol’s attributes) used in Kastens’s OAG
algorithm is divided into the Down graphs (used in this
paper) and corresponding Up graphs (not defined nor used
in this paper). The Down graphs are further refined into the
DCG graphs. The Down graphs are used in the ANCAG
algorithm whereas the DCG graphs are used in the NC(1)
algorithm. The Down graphs are more accurate estimations
of downward transitive dependencies than the DS graphs;
the DCG graphs are still more accurate. Hence, OAG is a
subclass of ANC AG, which, in turn, is a subclass of NC(1).

Compare the two graphs, which are used in computing
plans for productions in NC(1) and ANCAG, respectively:

ADP(q | p1,p2;--- k) =

DP(q) UDCGx1(p1) UDCGx2(p2) U...UDCGx(pr)
IDP-ANCAG(q)

= DP(q) U Down(X;) U Down(Xs) U...U Down(X}).

The Down graphs are replaced with the corresponding
DCG graphs in the above definitions. The ADP graphs are
more accurate than the IDP-ANCAG graphs in that the ADP
graphs look ahead one generation of production instances
(that is, the production instances py, ps, . . ., p; applied at the
child nodes) due to the use of the DCG graphs. From this
point of view, NC(1) can be further generalized by looking
ahead more generations of production instances.

From this look-ahead behavior, we may define a new
family of attribute-grammar classes. The NC(m) class
(noncircular attribute grammars with m-generation look-ahead)
consists of those attribute grammars for which a set of static
evaluation plans for each production may be found by
looking ahead at most m generations of production
instances. The name NC signifies that all such grammars
are noncircular. In particular, NC(0) is the same as
ANCAG; NC(o0) is the class of the well-defined attribute
grammars. We may show that, for any finite m, NC(m) is a
proper subclass of NC(m + 1).

In order to define the NC(m) class precisely, we need to
extend the definitions of the downward characteristic
graphs.

Definition. Let X be a nonterminal and m be a nonnegative
integer. An < X, m > -phrase tree, denoted by T.x >, is a
(potentially incomplete) derivation tree in which 1) the root is
the nonterminal X, 2) the height of the tree (that is, the length
of a longest path from the root to a leaf) is at most m and 3) the
length of the path from the root to every nonterminal leaf is
exactly m.

Definition. Let m be a nonnegative integer. Given a tree T, the
restriction of T to the topmost m levels, denoted by T,
is a subgraph of T' obtained by removing from T all nodes
below the mth level (by our convention, the root of a tree
resides on level 0 and level k + 1 is below level k). Thus, T~
consists of the root and its children, which is essentially the
production applied at the root.

Definition. Let m be a nonnegative integer. Let T be an
< X,m > -phrase tree. The m-generation downward
characteristic graph of nonterminal X with respect to 7,
denoted by DCGx(7), is a graph in which the nodes are X's
attributes and the edges, say X.a — X.b, denote a (transitive)
dependency of X.b on X.a in some subtree T derived from X
such that T.,,~ is identical to T.

DCGx(q) defined in Section 4 is a 1-generation down-
ward characteristic graph of the nonterminal X with respect
to ¢. Down(X) is for the 0-generation case.

Equivalently, DCGx(7) may be defined as follows. Let m
be a nonnegative integer. Let 7 be an < X, m > -phrase tree.
Let ¢ be the production applied at the root of 7. We may
write ¢ as X — apXja; Xsas ... Xpap. Let 7, be an
< X;,m > -phrase tree, for all i = 1,2,... k.

DCGx(r) =

U {project(ADP.,~(q | 71,72, ...,7), {X's attributes}) |
(qUnUnU...Um)_,. =T}

ADP. s (q | T, 72y oy TR) =

DP(q) U DCGXl(Tl) U DCGXQ(TQ) U...u DCGXk(Tk)

The notation ¢U 7 Uy U...U 7, denotes a tree obtained by
grafting the trees 7;s onto the corresponding X;s in the tree
representing the production q. ADP.,,~(q | 71,72, ...,7)) is
called the m-generation augmented dependency graph of
production ¢ with the phrase trees 7, 7,..., 7. Further-
more, we define the set of all possible augmented
dependency graphs of ¢ as follows:

SADP_ 5 (q) = {ADP =~ (q | 11,72y -, T) | T3

is an < X;,m > -phrase tree, for all i = 1,2,...,k }.
Definition. An attribute grammar G is an NC(m) grammar if

and only if, for all productions q in G, every graph in
SADP._,,~(q) is acyclic.

The algorithms for generating plans and for evaluating
attributes for the NC(m) class are extensions of the
algorithms in Figs. 6 and 7.
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Fig. 8. The DP graphs of an attribute grammar. This grammar belongs to the NC(~o) class.

It is interesting to see how an evaluator can look ahead a
potentially infinite number of generations of production
instances for the NC(o0) class. In the next section, we will
discuss the NC(o0) class.

7.1 Transforming NC(m) Grammars to NC(0)

Grammars

The union of a production and appropriate phrase trees at
the right-hand-side nonterminals, gUm U U... U, that
is used in the definition of the DCG graph can be viewed as
an extended form of a production. From this point of view,
an attribute grammar in the NC(m) class is equivalent to an
attribute grammar in the NC(0) class. In this section, we
show a method to transform an NC(m) grammar, for any
finite m, into an equivalent NC(0) grammar.

Let tree T be the union qU U U...UT,. We first
remove all the internal nodes of T, except the root, and
make all the leaf nodes the children of the root (of course,
the left-to-right order of the leaf nodes must be maintained).
The resulting flat tree, thus, becomes a new production. The
dependency relations among attribute occurrences of the
new production are the transitive dependency relations
among attributes of the root and the leaf nodes in 7. The
collection of all new productions forms a new grammar.
Obviously, the new grammar is equivalent to the original
grammar. Furthermore, the new grammar belongs to the
NC(0) class.

Though every NC(m) grammar can be transformed into
an equivalent NC(0) grammar, the number of productions
increases dramatically. The number of productions in the
equivalent NC(0) grammar could be O(| P || N |'™), where
| P| is the number of productions, | N | is the number of
nonterminals, and [ is the maximal length of a production in
the NC(m) grammar. The number of attribute occurrences
per production increases similarly.

8 THE NC(oc0) CLASS

There are attribute grammars that cannot be evaluated with
NC(m), for any finite m. The example in Fig. 8, which is the
same as the one in Fig. 1 with the addition of productions
P6 and P7, does not belong to NC(m), for any finite m.
Fig. 9 is the DCG graphs for this example. The grammar is
not NC(m) for any finite m because the two nonterminals
Y and @ are mutually recursive. A syntax tree may contain
the derivations Y — @ — Y for any number of repetitions.
On the other hand, an NC(m) evaluator is allowed to look
ahead at most m generations down the syntax tree.
Therefore, we observe that the grammar is not circular; it
belongs to the class NC(o0) and can be evaluated with an
evaluator similar to that for NC(1).

The evaluator for the NC(co0) grammars needs to look
ahead a potentially (not actually) infinite number of
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Fig. 9. The DCG graphs for the example in Fig. 8.

generations of descendants for the purpose of evaluation.
In terms of a fixed syntax tree, this means that the evaluator
needs to look ahead the syntax tree down to the leaves
before it can choose an evaluation plan for a nonterminal
node. To perform this infinite-look-ahead behavior, we find
that it suffices to add a bottom-up traversal to the evaluator
that records appropriate information (that is, Alg|
61,062,...,0, | in the mark procedure in Fig. 11, which is
the actual downward transitive dependencies of each
node’s attribute instances) of the syntax tree in the nodes.
Following this bottom-up traversal, a top-down traversal,
similar to the traverse procedure in Fig. 7, chooses plans for
the nonterminal nodes. Finally, a traditional visit-oriented
evaluator will perform the actual evaluation.

Each nonterminal X is associated with a set A(X) of
possible dependency graphs among its attributes. Since
every nonterminal has only a finite number of attributes,
the set A(X) is finite. An element § of A(X) denotes the
actual downward transitive dependencies among X’s
attributes in a subtree whose root is the symbol X. ¢
will play the role of DCG in the plan generation for
NC(c0). The InfiniteLookAhead algorithm in Fig. 10
computes all possible downward transitive dependencies
of the attributes of all nonterminals in a grammar.
Initially, the set A(X) for every nonterminal X is an
empty set. By examining the productions repeatedly, new
members of A(X) for each nonterminal X may be found.
The algorithm terminates when all possible downward
transitive dependencies of all nonterminals are found. The
InfiniteLookAhead algorithm also constructs the Afg |
61,09,...,6, ] function (which is represented as an array).
Let ¢ be the production Xy — apXjai1Xoas ... X0y, Let
6; € A(Xy), for i=1,2,...,k Alg|b1,00,...,6;] denotes
the dependency relation (as a graph) among X’s
attributes if the production applied at X, is production
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Algorithm: InfiniteLookAhead
/* A(X), for each symbol X, is the set of all */
/* possible dependency graphs of X ’s attributes. */
/* Initially, A(X) = &, for all symbols X. */
for each non-terminal X do
AX) =D
end for
repeat
changed = false
for each production g: Xy — 0,oX 10, X505 .. X, 0 do
for each 8, € A(X)), 8, A(Xy), ..., & € A(X,) do
G =DP(g)ududu...ud
S = project (G, {atiributes of Xy})
Alg 18,,65...,8,1:=9
if 8¢ A(X,) then
changed = true
AXp) = AXg)v {8}
end if
end for
end for
until changed = false

Fig. 10. The In finiteLookAhead algorithm.

g and the downward transitive dependency relations
among X;’s attributes is §; for i =1,2,... k.

The InfiniteLookAhead algorithm turns out to be
essentially the same as Knuth's corrected algorithm [19]
with one addition: It also computes Afg | 61,02,...,6; ],
which is used in the evaluator for NC(o0). As far as we
know, there are no static NC(oo) evaluators in the
published literature.

To analyze the time complexity of the
InfiniteLookAhead algorithm, note that each symbol X
has at most h attributes. Thus, | A(X) |= O(h!). Since there
are | N| nonterminals, the sum of all |A(X)| is
O(| N | h!). This implies that the repeat loop executes O(|
N | h!) iterations because at least one new 6 must be
added in each iteration. The outer for loop executes | P |
times in each iteration of the repeat loop. The inner for
loop executes O((h!)) times in each iteration of the outer
for loop. The union operation DP(q)Ué UbU...Ud
takes O(l) time since k <I. The project operation takes
O(h*(1+1)%) time since a transitive closure must be
performed. Assuming all other operations take one unit
time, the total time needed is O(| N || P | (h)""'3h3).

To compute plans for the NC(co) grammars, we need
one definition.

Definition. Let g be the production
X(] — a()XlalXQOzg . XkOtk

Let 6; € A(X;), for i =1,2,... k. Define the look-ahead
dependency graph of production ¢ with respect to
o1,09, ..., 06y as follows:

LDP((]| 61,62,...,6k) :DP(q)UélLJ(SQU...U(Sk-.

Similarly, we define the set of all possible look-ahead
dependency graphs of q as follows:

SLDP(q) = {LDP(q| 61,6, ..
fori=1,2,... k}.

J0p) | 6 € A(XY),
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Algorithm: EvaluateAttributes
algorithm eval(T)
/* T is an unevaluated syntax tree. */

mark (root of T)
traverse (root of T', L)

procedure fraverse (n, ®)
/* n is a non-terminal node in the syntax tree. */

g := the production applied at node n

Let my, mo,. ..

Let 61, 62, .

plan[n] =Tlg, ®, &, 5,,..., &]

for each non-terminal child m; of n do
traverse (m;, ©[g, o, i, 8, 8y,..., & 1)

end for

end procedure traverse

procedure mark (n)
/* n is a non-terminal node in the syntax tree. */
g := the production applied at node n

mark the node n with Alg | §,,0,..
end procedure ma rk

0 ]

/* Choose a plan for each non-terminal node in 7. */
/* W is the evaluation order of the attributes of the start symbol chosen in ComputePlan (Figure 6). */

Use any traditional visit-oriented evaluator to evaluate attribute instances in 7'.

/* @ is the evaluation order of attributes of the left-hand-side non-terminal located at node n. */

, my be the non-terminal child nodes of n in T.
.., O, be the marks associated with m, m»,...

Let my, m,,..., m; be the non-terminal child nodes of n in T.
for each non-terminal child m; of n do
mark (m;)
end for
Let 9y, 8,,..., O; be the marks associated with m |, m,,..., my, respectively.

, my,, respectively.

Fig. 11. The Evaluate Atrribute algorithm for the NC(co) class.

To compute the plans, we use the ComputePlan
algorithm in Fig. 6 with five simple modifications:

1. ADP(q|pi,p2,---,px) is replaced with

LDP(q | 61a627~"76k);

2. SADP(q) is replaced with SLDP(q),
3. Tg,w,p1,p2,...,ps is replaced with

F[q7w7 517627' .. 76]@}7

, k] is replaced with

76k]a

4' ®[q7w’i7p17p27"'
@[Q7w7i7617527' s

and
5. the work list WL is a set of constraints w rather than
a set of pairs (q,w).

The ComputePlan algorithm for the NC(oo) class also
adopts a work-list approach. Initially, an arbitrary con-
straint u is chosen for the attributes of the start symbol of
the grammar. An evaluation order is computed for each
LDP(q| 61,09,...,6,) Uw, where ¢ is a production, LDP(q |
81,09,...,06;) is a look-ahead dependency graph of produc-
tion ¢, and w is a constraint on the evaluation order of the
attributes of the left-hand-side nonterminal of production gq.
Such an evaluation order also imposes a constraint on the
evaluation order of the attributes of each nonterminal on the

right-hand side of ¢. Thus, new evaluation orders are
generated from existing constraints and new constraints are
generated from existing evaluation orders. This process
terminates when no new evaluation orders are generated.
The analysis of the time complexity of the modified
ComputePlan algorithm is similar to that of the original
ComputePlan algorithm discussed in Section 3.

Example. The result of applying the InfiniteLookAhead
algorithm to the example in Fig. 8 is as follows: (A pair of
square brackets [...] represents a dependence graph,
which is also given a name such as 63.)

A(S) = {61 = [s0]}.
A(Y) = {8 = [i2 — 52 i3 3], 65 = [i2 2 i3 — s3]}
A(X) = {64 =[i1 — s1]}.

A(Z) = {65 = [s4]}.

A(Q) = {86 = [i5 — 55 6 6], 67 = [i5 s5 i6 — 56]}.

The evaluation orders for the productions computed by
the Compute Plan algorithm are as follows: (A pair of angle
brackets < ... > represents a total order.) p =< s > .

T[P1, p, 64, 62,65] =< s3,i1, 51,42, 52,13, 54,50 > .
Let wy =< il,s51 >,
wy =< 83,12, 52,13 >,

and w3 =< s4 > .
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F[Pl,uaéﬁh&iaéf)]
=< 52,13,83,11,51,12,54,50 > .

Let wy =< il,s1 >,
ws =< 52,13, 83,12 >,

and

we =< s4 > .
[[P2,wy] =< 83,12,82,13 > .
[[P2,ws] =< 42, 52,13,53,i2 >,

which contains a cycle.
[[P3,ws] =< 83,42, 52,13, 53 >,
which contains a cycle.

T[P3,ws] =< s2,i3,53,i2 > .

[[P4,w ] =<il, sl >.

[[P4,w,] =< il,sl >.

L[P5,ws, 8] = T'[P5,wg, 02] =< 83,12, 52,13, 54 > .
[P5,ws, 63] = T'[P5,ws, 03] =< $2,13,83,12,s4 > .
T[P6,ws, 6] =< 56, 53,72, 15, 5, 52, i3,i6 > .

Let

w7 =< $6,15,55,16 > .
[[P6,ws, 67] =< 13,6, $6, 83,12, 15, $5, $2,i3 >,

which contains a cycle.
I'[P6,ws, 6] =< 41,45, s5,12,13, 16, 56, s3,91 >,
which contains a cycle.
[[P6,ws, 67] =< $5, $2,13,16, $6, $3,12,15 > .
Let

wg =< 55,16, 56,15 > .
[[P7,wr, 8] =< 83, $6,15,42, $2, $5,16,13 > .
T[P7,ws, 8] =< 5,42, s2, s5, 6,13, 3, 56,15 >,

which contains a cycle.
L[P7,ws, 2] =< 15,42, 52, 55,16,13, s3, 56,95 >,
which contains a cycle.
I'[P7,ws, 63] =< $2,55,16,13, s3, 56,145,712 > .

Note that, in the ComputePlan algorithm for the NC(1)
class, the work listis a set of pairs (¢, w), which means that the
constraint w is applicable to production g. When the
ComputePlan algorithm is generalized to NC(m), the work
list becomes a set of pairs (7,w), which means that the
constraint w is applicable to the phrase tree 7. When the
ComputePlan algorithm is further generalized to NC(c0),
the work list should be a set of pairs (T,w), where T is a
subtree with an appropriate root symbol, say X. However,
there could be an infinite number of subtrees whose roots are
X. The ComputePlan algorithm would not terminate. Thus,
the work list for the NC(00) case is a set of constraints w. And
we will assume that wis applicable to all subtrees with root X..

Due to this modification, the ComputePlan algorithm may
compute some spurious plans, that is, plans that will never be
used in any evaluation. For instance, in the above example, a
plan I'[P2, ws] will never be used because the constraint wy is
generated by projecting the plan I'[P1,pu, 64,683,065 to Y's
attributes. The plan I'[P1, i, 64, 83, 65] is generated under the
assumption that production P3 will be applied at the
nonterminal Y. Thus, P2 will not be applied at Y. Hence,
I'[P2, ws] is spurious.

Sometimes, circular dependencies may occur in a
spurious plan, for example, I'[P2,ws] and I'[P3,w,]. Such
spurious circular dependencies may be safely discarded.

Definition. An attribute grammar belongs to the NC(oo) class
if and only if, for every production q, every graph in the set
SLDP(q) is acyclic.

We can easily prove the following theorem.

Theorem. The NC(oo) class is exactly the same as the class of
the well-defined attribute grammars.

Proof. Suppose that the attribute grammar G is circular.
There must exist a syntax tree T with circular depen-
dencies. Due to the tree structure, the circular depen-
dencies must be confined in a subtree of T'. Let ¢ be the
production instance in T that is part of the circular
dependencies and that is closest to the root of 7. We may
write ¢ as Xy — ayXja1 Xoan ... Xpap. Let T; be the
subtree rooted at X;, for i =1,2,...,k Let §; be the
transitive dependence graph of the attribute instances of
X; in the subtree T;. Obviously, § € A(X;), for
1=1,2,...,k, due to the exhaustive nature of the
InfiniteLookAhead algorithm in Fig. 10. Thus, DP(q) U
6 UbU... U, must be a member of SLDP(q). How-
ever, DP(q) Ué; UdyU...U ¥, contains circular depen-
dencies. Thus, the grammar G does not belong to the
NC(o0) class.

On the other hand, assume that G belongs to the
NC(o0) class. Let T be any syntax tree derived from G
and ¢ be any production instance in 7. We may write g as
X() — agXquXQOéQ .. .XkO[k.

Let T; be the subtree rooted at X;, for i =1,2,...,k.
Let 6; be the transitive dependence graph of the attribute
instances of X; in the subtree T;. Obviously, §; € A(X;),
for i1 =1,2,...,k due to the exhaustive nature of the
In finiteLookAhead algorithm in Fig. 10. Thus, DP(q) U
6UbU...Ud, must be a member of SLDP(q) and,
hence, it must be acyclic. This implies that there are no
circular dependencies in every syntax tree derived from
G. Hence, G is a well-defined attribute grammar. O

The evaluator for NC(o0), which is a general, static, visit-
oriented evaluator for all well-defined attribute grammars,
is shown in Fig. 11. There are three steps in the evaluator:
First, the mark procedure traverses the syntax tree from
bottom up. It marks each nonterminal node in the syntax
tree with the downward transitive dependencies derived
from the subtree rooted at the node. Note that it is not
necessary to compute the downward transitive dependen-
cies in the mark procedure because all the necessary
information is already encoded in the A function, which is
built in the In finiteLookAhead algorithm.
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After all the nonterminal nodes are marked, the traverse
procedure traverses the syntax tree from the top down and
chooses a plan for each nonterminal node. The traverse
procedure in Fig. 11 is identical to that in Fig. 7, except that
the downward transitive dependency graphs of the non-
terminals, ds, are used in the selection of plans. Finally, when
a plan is chosen for each nonterminal node, an ordinary
visit-oriented evaluator actually evaluates the attribute
instances in the syntax tree. The extra cost of the NC(c0)
evaluator is the bottom-up traversal (the mark procedure),
which takes time linear in the size of the syntax tree.

9 CONCLUSION AND RELATED WORK

We have identified a new classification, the NC' hierarchy,
of the well-defined attribute grammars. The classification is
based on the look-ahead behaviors of the evaluators. Based
on the generators and the evaluators for the NC classes, we
have confirmed a result of Riis and Skyum, which says that
all well-defined attribute grammars allows a (static) pure
multivisit evaluator.

The evaluators for the NC classes are extensions of the
visit-oriented evaluators. A well-known result of Deransart
[4] showed that a well-defined attribute grammar can be
transformed into an equivalent l-ordered AG (but with
exponential increase in grammar size). In contrast, the
approach taken in this paper does not attempt to transform
the grammar. Rather, a set of plans is generated for every
production. To transform a grammar and to add a selection of
plans serve the same purpose: for evaluating well-defined
attribute grammars. Engelfriet and Filé [6] also propose a
method to transform ANCAG to l-ordered grammars.

The Down graph introduced in Section 3 has been used
under different names in the literature [18], [8], [13], [9].
Variations of the Down graphs have been used in the
incremental updates to attributed trees [23] and in the
computation of transitive dependencies in the linkage
grammars [10].

There are many other classes of attribute grammars, such
as doubly noncircular grammars [6], m alternating-pass
grammars [11], n-left-to-right-pass grammars [2], L-AG [20],
and S-AG [20]. All these classes of grammars are subsets of
NC(0) and can be evaluated efficiently.
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