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This study describes the spatial disorder of one-dimensional Cellular Neural Networks (CNN)
with a biased term by applying the iteration map method. Under certain parameters, the
map is one-dimensional and the spatial entropy of stable stationary solutions can be obtained
explicitly as a staircase function.
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1. Introduction

Cellular neural networks (CNN), a large array of
nonlinear circuits, consists of only locally connected
cells. This work investigates the model of one-
dimensional CNN proposed by Chua and Yang
[1988a, 1988b]. The circuit equation of a cell is

dxi
dt

= −xi + z + αf(xi−1) + af(xi)

+ βf(xi+1) , i ∈ Z1 , (1)

where f(x) is a piecewise-linear output function
defined by

f(x) =


rx+m− r if x ≥ 1,

mx if |x| ≤ 1,

`x+ `−m if x ≤ −1.

(2)

Here r, m and ` are non-negative real constants and
the quantity z is called threshold or biased term,

and is related to independent voltage sources in
electric circuits. The coefficients of output func-
tion α, a and β are real constants and called the
space-invariant A-template denoted by

A ≡ [α, a, β] . (3)

For simplicity, f will be denoted by fr, with ` = r

and m = 1, i.e.

fr(x) =


rx+ 1− r if x ≥ 1,

x if |x| ≤ 1,

rx+ r − 1 if x ≤ −1.

(4)

CNN is applied mainly in image processing and
pattern recognition [Chua & Roska, 1993; Chua &
Yang, 1988a] and [Thiran et al., 1995]. A basic
and important class of solutions of (1) are the sta-
ble stationary solutions of (1). In particular, the
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complexity of stable stationary solutions of (1) must
be investigated. When the output function is f0,
i.e. r = 0 in (4), it is observed that much work has
subsequently been done in the electrical engineer-
ing community, see [Chua & Roska, 1993, 1988a]
and references therein. In addition, [Juang & Lin,
2000; Hsu & Lin, 1999, 2000] and [Hsu et al., 1999]
recently considered mathematical results involving
the complexity of stable stationary solutions and
the multiplicity of traveling wave solutions. [Juang
& Lin, 2000] partitioned the parameters space (a, z)
into a finite number of regions in R2 such that in
each region (1) with f = f0 has the same spatial
entropy.

However, for z = 0 and r ∈ (0, ∞), [Hsu & Lin,
1999] proved that (1) and (4) can release infinite dif-
ferent spatial entropies and the entropy function is a
devil-staircase like function in r. The method used
in [Hsu & Lin, 1999] considers the stationary solu-
tions of (1) as an iteration map. In fact, if output
v = f(x) is taken as the unknown variable, i.e. let

vi = f(xi) and ui+1 = vi . (5)

and if f is invertible with inverse function F , then
the stationary solutions of (1) can be written as one-
or two-dimensional iteration maps as follows,

T (v) =
1

β
(F (v) − z − av) , (6)

when α = 0 and β 6= 0 and

T2(u, v) =

(
v,

1

β
(F (v) − z − αu− av)

)
, (7)

when α 6= 0 and β 6= 0.
For these maps, each bounded trajectory corre-

sponds to the outputs of bounded stationary solu-
tions. In practice, if the maps are chaotic, then the
stationary solutions of (1) are spatially chaos. How-
ever, only stable stationary solutions of (1) should
be considered and the stability results can be found
in [Hsu, 2000] or [Juang & Lin, 2000]. Therefore,
the set of all stable bounded orbits of T must be
considered, denoted by S, and the entropy h of
T |S must be computed. If the entropy is positive,
then the stable stationary solutions of (1) are spa-
tial chaos. For convenience, T |S is denoted herein
as T .

[Hsu & Lin, 1999] considered (6) with z = 0, the
odd symmetry of the map T makes it much easier
to investigate the complexity of T than the case of

z 6= 0. Therefore, this work focuses on the com-
plexity of the one-dimensional map T with z ∈ R1

by some complicated computation. According to
our results, the entropy function is a staircase func-
tion. As for the two-dimensional map T2, when r is
positive and sufficiently small, the Smale Horseshoe
structures of stable stationary solutions of (1) and
(4) are constructed, for details, see [Hsu, 2000].

Carefully examining the orbits of T reveals that
the entropy function h is a staircase function of r
for fixed a, z and β. The main results are

Main Theorem. Assume β = 1, 0 < z < Γ(a)
(see Lemma 3.1). Denote

r∞(z) =
a+ z − 2

a2 − 2 + az
(8)

and h(r) is the entropy function of T in (6). Then
there exists p(z) ∈ Z+ and a strictly decreasing se-
quence {rp,p−1(z)}, p = 3, 4, . . . , p(z) with

r∞(z) < rp,p−1 and rp < rp,p−1 < rp−1

such that

(i) If 3 ≤ p ≤ p(z) and r ∈ [rp,p−1(z), rp−1,p−2(z))
then

h(r; z) = ln λp−1,p−2 .

Where λp,p−1 is the largest root of λ2[λ2p−3 −∑p−3
i=0 λi

∑p−2
j=0 λ

j] = 0.
(ii) If r ∈ (r∞(z), rp(z), p(z)−1) then h(r; z) =

ln λp(z), p(z)−1.
(iii) If r ∈ (r∞(z), r∞(z)] then h(r; z) = 0.
(iv) If r ∈ [0, r∞(z)] then h(r; z) = ln 2.

Moreover, p(z) is a decreasing function of z and
limz→0+ p(z) =∞.

The above results or the proof of the main the-
orem in Sec. 3 indicate that the nonzero bias z
causes a situation in which map T does not have
enough periodic orbits when r ∈ (r∞(z), r∞(z)] and
it makes the entropy equal to zero. Therefore, the
entropy function of T has a staircase structure as
shown in Fig. 1. This differs from those results of
a devil-staircase like function in [Hsu & Lin, 1999]
with z = 0 as shown in Fig. 2. Additionally, the re-
sults of [Hsu & Lin, 1999] recalled in the following
corollary can be considered as the limiting case of
the main theorem when z tends to 0.

Corollary. Assume β > 0, z = 0 and a > β + 1.
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Fig. 1. Entropy of T with z 6= 0.
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Fig. 2. Entropy of T with z = 0.

Denote

r∞ = r∞(a, β) =
a− β − 1

a(a− 1) + β(a− 2)
,

r2 = r2(a, β) =
a− β − 1

a(a− 1) + β(β − 1)
,

and h(r) is the entropy function of T in (6) with
F = Fr = f−1

r , r > 0. Then there exists a strictly
decreasing sequence {rp}, p = 2, 3, . . . , with

lim
p→∞

rp = r∞ ,

such that

(i) If r2 ≤ r < (1/a+ β), then h(r) = 0.
(ii) If r ∈ [rp, rp−1), p = 3, 4, . . . , then h(r) is

ln λp where λp is the largest root of λ2p−2 −

(
∑p−2
i=0 λi)2 = 0. Moreover, λp is strictly in-

creasing in p with

1 +
√

5

2
= λ3 < λp < 2 , for p = 4, 5, . . .

(iii) If r ∈ [0, r∞], then h(r) = ln 2.

The rest of this paper is organized as follows.
Section 2 introduces the basic properties of the one-
dimensional map T in some range of parameters.
Section 3 proves the main theorem by symbolic dy-
namics, indicating that the entropy function h(r) is
a step function under certain parameters range.

2. Iteration Map

This section considers the one-dimensional map T
in (6) with z 6= 0. If a > 1, β > 0, and m = 1, then
the inverse function F of fr is

F (v; r) =



1

r
v − 1

r
+ 1 if v ≥ 1,

v if |v| ≤ 1,

1

r
v − 1 +

1

r
if v ≤ −1,

(9)

and the map T can be rewritten as

T (v; a, β, r)

=



1

β

(
1

r
v − 1

r
+ 1− av − z

)
if v ≥ 1,

1

β
(v − av − z) if |v| ≤ 1,

1

β

(
1

r
v +

1

r
− 1− av − z

)
if v ≤ −1.

(10)

Instead of F (v; r) and T (v; a, β, r), F (v) and T (v)
will be used if it does not cause any confusion. For
simplicity, assume that β = 1 and z ≥ 0 hereinafter.
The graph of T can be found in the following figure.

An elementary computation produces that

A = (A1, A2) =

(
rz − r + 1

1− ra− r ,
rz − r + 1

1− ra− r

)
,

B = (B1, B2) = (1, 1− a− z) ,

C = (C1, C2) = (−1, a− 1− z) ,

D = (D1, D2) =

(
rz + r − 1

1− ra− r ,
rz + r − 1

1− ra− r

)
.
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According to [Hsu, 2000] and [Juang & Lin, 2000],
any orbit {T k(v)} of T with |T k(v)| ≤ 1 for some
k ≥ 0 is unstable. Hence, only trajectories of T ly-
ing outside the unit rectangle in (u, v) plane should
be considered. Therefore, assume that B2 < −1
and C2 > 1 while these conditions are equivalent to
2−a < z < a−2. For further computation, we give
the following notations.

Definition 2.1. Assume a > 2.

(i) Define functions r∞(z) and r∞(z) by

r∞(z)=
a+z−2

a2−2+az
and r∞(z)=

a−z−2

a2−2−az .

(11)

(ii) Let m, n ∈ Z+, if the slope of f , r = rm,n
satisfies

Tm−1(B2) = −1 and Tn−1(C2) = 1 , (12)

then we call map T is of (m, n)-type and de-
note rm,m, km,n and ξm,n by

rm,m = rm ,

km,n = 1
rm,n
− a and ξm,n = k−1

m,n .

(iii) Define polynomials E(x; m) and U(x; m) by

E(x; m) = a
m∑
i=1

xi − a+ 2 , (13)

U(x; m, n) = (a+ z)
m∑

i=n+1

xi

+ 2a
n∑
i=1

xi − 2a+ 4 . (14)

From Fig. 3, the relative positions of A, B, C and
D are easily obtained in the following.

Lemma 2.1. Assume a > 2, then r∞(z) and r∞(z)
are increasing and decreasing functions of z, respec-
tively. Moreover, we have

(1) If r ∈ (r∞(z), ∞), then A2 > C2 and B2 > D2.
(2) If r = r∞(z) then A2 > C2 and B2 = D2.
(3) If r ∈ (r∞(z), r∞(z)), then A2 > C2 and

D2 > B2.
(4) If r = r∞(z), then A2 = C2 and D2 > B2.
(5) If r ∈ (0, r∞(z)), then A2 < C2 and D2 > B2.

u=T(v)�
u=v�

v�

u�

A

BD

C
�

1-1 0
�

Fig. 3. Graph of T .

Proof. By elementary computation, we have

r′∞(z) =
2a− 2

(a2 − 2 + az)2

and

r′∞(z) =
2− 2a

(a2 − 2− az)2

and r∞(z) and r∞(z) are increasing and decreasing
functions of z respectively. The proofs from (1) to
(5) are also simple and omitted. �

The proof of the main theorem in Sec. 3 in-
dicates that the case of (1) in Lemma 2.2 is more
interesting and complicated.

3. Proof of Main Theorem

In this section, we prove the main theorem by in-
troducing some lemmas. If z > 0, the following
lemmas will show that unique rm,m−1 lies between
rm,m and rm−1,m−1 such that (12) holds.

Lemma 3.1. Assume m ≥ 3 and define Γ(a) by

Γ(a) ≡ min

{
a− 2,

−a3 + 6a2 − 4a

3a2 − 6a+ 4

}
.

If 0 < z < Γ(a), p > q and rp,q satisfies (12) with
rm,m < rp,q < rm−1,m−1, then p = m and q = m−1.

Proof. First, we claim that U(ξp,q; p, q) = 0 and
E(ξm,m; m) = 0. By simple computation, it is ob-
vious that

T−1(1)=
rz+1

1−ra and T−1(−1)=
rz−1

1−ra . (15)
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Define R and L by

R = T−1(1) − 1 and L = 1− T−1(−1) . (16)

If p > q and r = rp,q satisfies (12), then it is not
difficult to compute that ξp,q satisfies

L(1− ξqp,q)
1− ξp,q

+
R(1− ξpp,q)

1− ξp,q
= 2a− 4 . (17)

By (15) and (16), we know that

R+ L =
2ξp,q
rp,q

− 2 , R =
rp,q(z + a)

1− rp,qa
,

and (17) can be rewritten as

(
2ξp,q
rp,q
−2

) q−1∑
j=0

ξjp,q+R
p−1∑
j=0

ξjp,q=2a−4 ,

(18)

ξp,q(a+z)
p−1∑
j=q

ξjp,q+

(
2ξp,q
rp,q
−2

) q−1∑
j=0

ξjp,q=2a−4 .

(19)

According to the definition of ξp,q, we have
U(ξp,q; p, q) = 0. Similarly, we have E(ξm,m; m) =
0. Next, we show that rm,m−1 satisfies (12) and
rm,m < rm,m−1 < rm−1,m−1. Since z > 0 and
ξm,m−1 > 0, by (13), (14) and (19), we have

a
m−1∑
i=1

ξim,m−1 < a− 2 , a
m−1∑
i=1

ξim−1,m−1 = a− 2 ,

(20)
and

a
m∑
i=1

ξim,m−1 > a− 2 , a
m∑
i=1

ξim,m = a− 2 .

(21)

From (20) and (21), rm,m−1 satisfies (12) and
rm,m < rm,m−1 < rm−1,m−1, for m > 2.

Now, we claim that no rp,q satisfies (12) and
rm,m < rp,q < rm−1,m−1 except for p = m and q =
m−1. For convenience, let h = rm−1,m−1, k = rm,m
and ξ = rp,q, where p = m+ n, q = m− n− 1 and
1 ≤ n < m− 2. By (14) and elementary computa-
tion, we have

U(h; p, q) < 0 if and only if

2a− (a+ z)hn + (z − a)h−(n+1) < 0 (22)

and

U(k; p, q) < 0 if and only if

2a− (a+ z)kn+1 + (z − a)k−n < 0 . (23)

Obviously U ′(x; p, q) > 0 and if U(h; p, q)U(k;
p, q) > 0; by intermediate value theorem, no ξ lies
between h and k and satisfies (12). Therefore, we
claim that U(h; p, q) < 0 and U(k; p, q) < 0, if a,
z satisfy 0 < z < Γ(a). Denote P (x) and Q(x) by

P (x) = 2a− (a+ z)xn+1 + (z − a)x−n

and

Q(x) = 2a− (a+ z)xn + (z − a)x−(n+1) ,

then P (x) and Q(x) are concave functions in (0, 1]
and P (1) = Q(1) = 0. By elementary computation
or [Hsu & Lin, 1999], we know that r2,2 = r2 =
(a− 2)/(a2 − a) and

0 < k < h <
1

1

r2,2
− a

=
a− 2

a
. (24)

If a, z satisfy 0 < z < Γ(a), we have P ((a − 2)/
a) < 0. Since P (x) is concave, by (23) we ob-
tain that U(k; p, q) < 0. Furthermore, the zero
of Q(x) is obviously larger than the zero of P (x)
in (0, 1). By the concavity of Q(x), we also obtain
P ((a − 2)/a) < 0 and this implies U(h; p, q) < 0.
Hence, the proof is complete. �

Corollary 3.1. Under the same assumptions of
Lemma 3.1, we have rm+1,m < rm,m−1 for all in-
teger m > 1.

Now, if z is fixed, since limp→∞ rp = r∞
and r∞(z) is an increasing function of z, by
Lemma 3.1, we obtain that there exists a maxi-
mal positive integer p(z) such that (12) holds for
sequence {rp,p−1(z)} with p = 3, 4, . . . , p(z) and no
rm,m−1(z) satisfies (12) with m > p(z). As demon-
strated later this observation reveals the staircase
structure of entropy function h of T . For complete-
ness, this study recalls the definitions and some re-
sults of entropy for a dynamical system. Details can
be found in [Bowen, 1973] or [Afraimovich & Hsu,
1998, Sec. 6].

Definition 3.1. Let G : X → X be a dynamical
system on the complete metric space X and S ⊂ X
be an invairant set.
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530 J.-C. Ban et al.

(i) The set Γn(x) = {Gk(x)}n−1
k=0 is called an orbit

segment of temporal length n. Two segments
Γn(x) and Γn(y) are said to be (n, ε)-separated
if there exists k ∈ Z1, 0 ≤ k ≤ n− 1, such that
dist(Gk(x), Gk(y)) ≥ ε.

(ii) Let Sn,ε be a set of segments of temporal length
n such that

(a) if Γn(x), Γn(y) ∈ Sn,ε, then they are (n, ε)-
separated;

(b) if w ∈ S and Γn(w) /∈ Sn,ε, then there
is x ∈ S such that Γn(x) ∈ Sn,ε and
dist(Gkx, Gkw) < ε for each k = 0, 1, . . . ,
n− 1.

Define C̃n,ε = ]Sn,ε, the number of elements
of the set Sn,ε and Cn,ε = infSn,ε C̃n,ε. Then,
the entropy function of G, denoted by h(G), is
defined as follows:

h(G) = lim
ε→0

lim
n→∞

ln Cn,ε
n

. (25)

Proposition 3.1. ([Afraimovich & Hsu, 1998,
Sec. 2.4; Robinson, 1995]). Let σM : ΣM → ΣM

be a subshift of finite type with the transition ma-
trix M on N symbols. Denoted by Kn the number
of admissible words of length n + 1, the entropy of
σM is equal to

h(σM ) = lim
n→∞

ln Kn

n
= ln |λ1| ,

where λ1 is the real eigenvalue of M such that
|λ1| ≥ |λj | for all other eigenvalues λj of M .

By Proposition 3.4, we must find a subshift of
finite type such that T is topologically conjugate
to the subshift. The subshift can be constructed
by finding some subintervals of I\(−1, 1) with the
covering relation as shown in the proof of the main
theorem later.

Definition 3.2. An interval I1 T -covers an interval
I2 provided I2 ⊆ T (I1). This study writes I1 → I2.

Proof of Main Theorem. First, we consider the case
r > r∞(z), i.e. A2 > C2 and B2 > D2. Let R+

1 (r)
and R−1 (r) be the first components of the inter-
section points of AB with u = +1 and u = −1,

respectively. A simple computation produces

R−1 (r) =
1− 2r + rz

1− ra and R+
1 (r) =

1 + rz

1− ra .

(26)

Then, the continuity of T (v; r) with respect to r

and Lemma 3.1 make it easy to prove that for
any positive integer 2 < p ≤ p(z), there exists a
unique rp,p−1 > 0 such that {T i(C2; rp,p−1)}i=∞i=−∞
is a 2p − 1-periodic orbit, i.e. of (p, p − 1) type,
where p(z) is the largest integer such that rp(z)
less than r∞(z). Restated, after 2p − 1 itera-
tion, (v, T (v; rp,p−1)) maps C to B and B to C,
respectively.

Denote

R+ = (R+
1 , R

+
2 ) = AB ∩ {u = 1} ,

R− = (R−1 , R
−
2 ) = AB ∩ {u = −1} ,

L+ = (L+
1 , L

+
2 ) = CD ∩ {u = 1} ,

L− = (L−1 , L
−
2 ) = CD ∩ {u = −1} ,

Ωr =

{
(v, u)| |v| ≤ ra− 2r + 1

1− ra

and |u| ≤ ra− 2r + 1

1− ra

}
,

here {u = D2}∩CD = (((2r−ra−1)/(1−ra)), 1−
a − z) and Ωr ⊂ Ω. Figures 4 and 5 give the five-
periodic orbit and seven-periodic orbit of T at r3,2

and r4,3, respectively. Now, if 3 ≤ p ≤ p(z) and
rp,p−1 ≤ r < rp−1,p−2 or r∞(z) < r < rp(z),p(z)−1,
define the 2p− 1 stable subintervals by

Ip+1 =(1, R−2 ) ,

Ip+k=(T−k+1(R+
2 ), T−k(R−2 )) for k=1 to p−2 .

and

Ip=(L+
2 , −1) ,

Ip−k=(T−k(L+
2 ), T−k+1(L−2 )) for k=1 to p−1 .

The 2p− 1 subintervals have the following covering
relation:

Ii → Ii+1 for i = 1 to p− 1 ,

Ip → Ij for j = p+ 1 to 2p− 2 ,

Ip+1 → Ik for k = 2 to p ,

Il → Il−1 for l = p+ 2 to 2p− 1 .
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  u=v

v�

 u

-1 0
�

1

    B

  C

D

  R+   L +

L- R-

  I5
�I4    I 3    I 2   I 1

Fig. 4. Graph of T in (3, 2) type and its stable
subintervals.
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Fig. 5. Graph of T in (4, 3) type and its stable
subintervals.

Therefore, we obtain the following transition matrix M ≡ M [p, p − 1] of the 2p − 1 subshifts of
finite type.

M =



0 1 0 • • • • • 0

0 0 1 0 • • • • • 0

• • • • • • • •
• • • • • • • •
0 • • 0 1 0 • • 0

• • • • 0 1 • • 1 0

0 1 • • • 1 0 • • 0

0 • • • 0 1 0 • • 0

• • • • • • • •
• • • • • • • •
0 • • • • • 0 1 0 0

0 • • • • • 0 1 0



pth row with p− 2 terms of 1

J |
J |
(p+ 1)th row with p− 1 terms of 1

(2p− 1)× (2p− 1)

This study defines spaces Σ2p−1 and ΣM by

Σ2p−1 ={1, 2, . . . , 2p− 1, 2p− 1}N ,
ΣM ={s∈Σ2p−1 : Msksk+1

=1 for k=0, 1, 2, . . .} ,

with a metric on ΣM by

d(s, t) =
∞∑
k=0

δ(sk, tk)

3k
,

for s = (s0, s1, . . .) and t = (t0, t1, . . .) in ΣM ,
where

δ(i, j) =

{
0 if i = j,

1 if i 6= j.

Let σM : ΣM → ΣM be the subshift of finite type
for the matrix M , i.e. σ(s) = t where tk = sk+1.
Therefore, if rp,p−1 ≤ r < rp−1,p−2 then there exists
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an invariant subset Λp in Ω such that T |Λp is topo-
logical conjugate to the 2p − 1 subshift (ΣM , σM )
with entropy h equal to ln λp,p−1, where λp,p−1 is
the positive maximal root of characteristic polyno-
mial of M . To derive λp,p−1, we need the following
lemma.

Lemma 3.2. Given p ∈ Z1 and p > 1, then the
characteristic polynomial g(x; p, p−1) of transition
matrix M [p, p− 1] is

g(x; p, p− 1) = x2

(
x2p−3 −

p−3∑
i=0

xi
p−2∑
j=0

xj
)
.

Proof. By elementary matrix computation, see
Appendix A, we obtain

g(x; p, p− 1) = xg(x; p− 1, p− 1)− x2
p−3∑
i=0

xi ,

where, g(x; p− 1, p− 1) is the characteristic poly-
nomial of M with z = 0, for details see [Hsu &
Lin, 1999]. In [Hsu & Lin, 1999], we also have g(x;

p− 1, p− 1) = x2[x2p−4 − (
∑p−3
i=0 xi)2]. Therefore,

the result follows by simple computation. �

By Lemmas 3.1 and 3.6, we prove results (i)
and (ii) of the main theorem. As for the assump-
tion (iii) of the main theorem, it is equivalent to
the conditions of (2) and (3) in Lemma 2.2. By the
same arguments, we obtain the entropy h of T is
zero, see e.g. Fig. 6. In case (iv), which is equiva-
lent to the conditions of (4) and (5) in Lemma 2.2,
we know that D2 > B2 and C2 ≥ A2 in Fig. 7 such
that the behavior of the map T resembles that of
the logistic map as discussed in [Robinson, 1995,
Theorem 5.2]. Therefore, there exists an invari-
ant Cantor set such that T is topologically con-
jugate to a one-sided Bernoulli shift of two sym-
bols. Since the entropy of the one-sided Bernoulli
shift of two symbols is ln 2, the result follows by
Proposition 3.4.

Finally, since limz→0 r∞(z) = r∞, by
Lemma 3.1 we obtain that p(z) is a decreasing
function of z with limz→0 p(z) = 0. The proof is
complete. �

Remark

(i) If we consider the output function is not sym-
metric, i.e. r 6= ` in (2), then Lemma 3.1 is

no longer valid. In fact, there exists many dif-
ferent m, n such that r = rm,n lies between
rp and rp−1 for any p ≥ 3 and T is of (m, n)
type. Hence, by similar arguments in the proof
of the main theorem, we also obtain transition
matrix M [m, n] such that the corresponding

Fig. 6. Graph of T with r = r∞(z) and its stable
subintervals.

A

 B
 C

  D

   I 1   I 2     I 3
   I 4

10
�

-1
v�

   u

u=T(v)� u=v�

Fig. 7. Graph of T with r = r∞(z) and its stable
subintervals.
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characteristic ploynomial g(x; m, n) is

g(x; m, n) = x2

(
xm+n−2 −

m−2∑
i=0

xi
n−2∑
j=0

xj
)
.

(27)

(ii) By some further computation, the ordering re-
lation of the maximal root λm,n of g(x; m, n)
can also be obtained as following lemma.

Lemma 3.3. Given (m1, n), (m2, n + 1) and
m1 > m2, then g(λm1,n; m2, n+ 1) < 0. Moreover,
we have

(1) If n1 > n2 then λm1,n1 > λm2,n2.
(2) If n1 = n2 and m1 > m2 then λm1,n1 > λm2,n2.

Proof. Since

xm1−m2+ng(λm1,n; m2, n+ 1)

=
n−2∑
i=0

xi
[
m1−m2+n−1∑

i=n+1

xi −
m1−2∑
i=0

xi
]

−
m1+n−3∑

m1−m2+2n−1

xi < 0 ,

the results follows. �
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Appendix

To compute the g(λ; p, p− 1) of M in the proof of
the main theorem, this work only computes the spe-
cial case when m = 6. For other m, g(λ; p, p − 1)
can be obtained analogously.
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If m = 6 then

det[M(6, 5)] = det



−λ 1 0 0 0 0 0 0 0 0 0

0 −λ 1 0 0 0 0 0 0 0 0

0 0 −λ 1 0 0 0 0 0 0 0

0 0 0 −λ 1 0 0 0 0 0 0

0 0 0 0 −λ 1 0 0 0 0 0

0 0 0 0 0 −λ 1 1 1 1 0

0 1 1 1 1 1 −λ 0 0 0 0

0 0 0 0 0 0 1 −λ 0 0 0

0 0 0 0 0 0 0 1 −λ 0 0

0 0 0 0 0 0 0 0 1 −λ 0

0 0 0 0 0 0 0 0 0 1 −λ



= det



−λ 1 0 0 0 0 0 0 0 0 0

0 −λ 1 0 0 0 0 0 0 0 0

0 0 −λ 1 0 0 0 0 0 0 0

0 0 0 −λ 1 0 0 0 0 0 0

0 0 0 0 −λ 1 0 0 0 0 0

0 0 0 0 0 −λ 1 1 1 1 0

λ 0 1 1 1 1 −λ 0 0 0 0

0 0 0 0 0 0 1 −λ 0 0 0

0 0 0 0 0 0 0 1 −λ 0 0

0 0 0 0 0 0 0 0 1 −λ 0

0 0 0 0 0 0 0 0 0 1 −λ



= −λg(λ; 5, 5) + λ2 det


1 1 1 1

1 −λ 0 0

0 1 −λ 0

0 0 1 −λ



= −λg(λ; 5, 5) + λ2 det

[
−1− λ− λ2 −1

1 −λ

]

Hence g(λ; 6, 5) = det[M(6, 5)] = −λg(λ; 5, 5) + λ2 ∑3
i=0 λ

i. Induction produces

g(λ; p, p− 1) = −λg(λ; p− 1, p− 1) + λ2 det

[
−λp−4 − λp−2 · · · − 1 −1

1 −λ

]

= −λg(λ; p− 1, p− 1) + λ2
p−3∑
i=0

λi.

By [Hsu & Lin, 1999], we know that

g(λ; p− 1, p− 1) = λ2

[
λ2p−4 −

(
p−3∑
i=0

λi
)2]

,

and the formula of Lemma 3.6 is obtained by simple computation.
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