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This study describes the spatial disorder of one-dimensional Cellular Neural Networks (CNN)
with a biased term by applying the iteration map method. Under certain parameters, the
map is one-dimensional and the spatial entropy of stable stationary solutions can be obtained

explicitly as a staircase function.
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1. Introduction

Cellular neural networks (CNN), a large array of
nonlinear circuits, consists of only locally connected
cells. This work investigates the model of one-
dimensional CNN proposed by Chua and Yang
[1988a, 1988b]. The circuit equation of a cell is

dx 3
dt

=—x;+z+af(xi—1) + af(z;)

+ Bf(zit1),

where f(z) is a piecewise-linear output function
defined by

icZt, (1)

re+m—r if x>1,
f(z) = mx if |z| <1, (2)
b +6—m if x < —1.

Here r, m and ¢ are non-negative real constants and
the quantity z is called threshold or biased term,

and is related to independent voltage sources in
electric circuits. The coefficients of output func-
tion «, a and G are real constants and called the
space-invariant A-template denoted by

A=la,a, . (3)

For simplicity, f will be denoted by f,, with £ =1r
and m =1, i.e.

re+1—r if x>1,
fr(z) =Xz if |z <1, (4)
re+r—1 if x < -1.

CNN is applied mainly in image processing and
pattern recognition [Chua & Roska, 1993; Chua &
Yang, 1988a] and [Thiran et al., 1995]. A basic
and important class of solutions of (1) are the sta-
ble stationary solutions of (1). In particular, the
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complexity of stable stationary solutions of (1) must
be investigated. When the output function is fy,
i.e. r =01n (4), it is observed that much work has
subsequently been done in the electrical engineer-
ing community, see [Chua & Roska, 1993, 1988a]
and references therein. In addition, [Juang & Lin,
2000; Hsu & Lin, 1999, 2000] and [Hsu et al., 1999]
recently considered mathematical results involving
the complexity of stable stationary solutions and
the multiplicity of traveling wave solutions. [Juang
& Lin, 2000] partitioned the parameters space (a, 2)
into a finite number of regions in R? such that in
each region (1) with f = fy has the same spatial
entropy.

However, for z = 0 and r € (0, c0), [Hsu & Lin,
1999] proved that (1) and (4) can release infinite dif-
ferent spatial entropies and the entropy function is a
devil-staircase like function in r. The method used
in [Hsu & Lin, 1999] considers the stationary solu-
tions of (1) as an iteration map. In fact, if output
v = f(x) is taken as the unknown variable, i.e. let

v = f(a?l) and Uij+1 = Uy - (5)
and if f is invertible with inverse function F', then
the stationary solutions of (1) can be written as one-
or two-dimensional iteration maps as follows,

when a = 0 and 3 # 0 and

1
B
when a # 0 and 3 # 0.

For these maps, each bounded trajectory corre-
sponds to the outputs of bounded stationary solu-
tions. In practice, if the maps are chaotic, then the
stationary solutions of (1) are spatially chaos. How-
ever, only stable stationary solutions of (1) should
be considered and the stability results can be found
in [Hsu, 2000] or [Juang & Lin, 2000]. Therefore,
the set of all stable bounded orbits of T' must be
considered, denoted by S, and the entropy h of
T'|s must be computed. If the entropy is positive,
then the stable stationary solutions of (1) are spa-
tial chaos. For convenience, T'|s is denoted herein
as T

[Hsu & Lin, 1999] considered (6) with z = 0, the
odd symmetry of the map T makes it much easier
to investigate the complexity of T than the case of

To(u, v) = (U, (F(v) —z—au — av)) , (7

z # 0. Therefore, this work focuses on the com-
plexity of the one-dimensional map T with z € R!
by some complicated computation. According to
our results, the entropy function is a staircase func-
tion. As for the two-dimensional map 15, when r is
positive and sufficiently small, the Smale Horseshoe
structures of stable stationary solutions of (1) and
(4) are constructed, for details, see [Hsu, 2000].

Carefully examining the orbits of T" reveals that
the entropy function h is a staircase function of r
for fixed a, z and 8. The main results are

Main Theorem. Assume f =1, 0 < z < I'(a)
(see Lemma 3.1). Denote

a+z—2
a? —2+az

(®)

and h(r) is the entropy function of T in (6). Then
there exists p(z) € Z and a strictly decreasing se-

quence {rpp—1(2)}, p=3,4,..., p(2) with

Too(2) =

Too(2) <Tpp—1 and 1, <rpp_1 <Tp_1

such that

(i) If3<p<p(z) and r € [rpp-1(2), Tp-1p-2(2))

then
h(’l’; Z) =In )‘p—l,p—Q .

Where A\, p—1 is the largest root of A2[\%P73 —
YPTSA YRR M) = 0.

(i) If r € (reo(2), Tp(z),p(z)—1) then h(r; z) =
I Ap(z), p(z)-1-

(iii) Ifr € (Foo(2), reo(2)] then h(r; z) = 0.

(iv) If r € |0, Too(2)] then h(r; z) =1n 2.

Moreover, p(z) is a decreasing function of z and
hmz%O“‘ p(z) = 00.

The above results or the proof of the main the-
orem in Sec. 3 indicate that the nonzero bias z
causes a situation in which map T does not have
enough periodic orbits when r € (Foo(2), Too(2)] and
it makes the entropy equal to zero. Therefore, the
entropy function of 7" has a staircase structure as
shown in Fig. 1. This differs from those results of
a devil-staircase like function in [Hsu & Lin, 1999]
with z = 0 as shown in Fig. 2. Additionally, the re-
sults of [Hsu & Lin, 1999] recalled in the following
corollary can be considered as the limiting case of
the main theorem when z tends to 0.

Corollary. Assume 8 >0, z=0 and a > 6+ 1.
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Fig. 1. Entropy of T' with z # 0.

In2 ——o
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Fig. 2. Entropy of T with z = 0.
Denote
a—0F—1
Too = TOO(a? ﬁ) - a(a_ 1) +ﬁ(a _ 2) 9
a—pFB—1
ro = Tra2\a, /8 = )
B = @D+ 8- 1)

and h(r) is the entropy function of T in (6) with
F=F,=f1 r>0. Then there exists a strictly
decreasing sequence {rp}, p =2, 3,..., with

lim r,=7r
p—oo P oo

such that

(i) Ifra <r < (1/a+ B), then h(r) = 0.
(i) If r € [rp, mp—1), p = 3,4,..., then h(r) is
In A\, where X\, is the largest root of \2P—2

(Z?;OQ A2 = 0. Moreover, )\, is strictly in-
creasing in p with

1+5
2
(iii) If r € [0, roo), then h(r) =In 2.

=A< A <2, forp=4,5,...

The rest of this paper is organized as follows.
Section 2 introduces the basic properties of the one-
dimensional map T in some range of parameters.
Section 3 proves the main theorem by symbolic dy-
namics, indicating that the entropy function h(r) is
a step function under certain parameters range.

2. Iteration Map

This section considers the one-dimensional map T
in (6) with z #0. If a > 1, > 0, and m = 1, then
the inverse function F' of f, is

1 1
—v——-+4+1 ifv>1,
r r
Fo;r)=4qw if [v| <1, 9)
1 1 .
—v—14- ifv< -1,
T r

and the map 7" can be rewritten as

T(v; a, B, 1)
l(11)—1—|—1—cw—2:> if v >1,
B \r r
~ ( ) if o] < 1
=< =-(v—av—2z if v ,
3 <
1/1 1
—(—v—l———l—av—z) if v<-1.
B \r r
(10)

Instead of F'(v; ) and T'(v; a, B, 1), F(v) and T (v)

will be used if it does not cause any confusion. For

simplicity, assume that 3 = 1 and z > 0 hereinafter.

The graph of T' can be found in the following figure.
An elementary computation produces that

re—r+1 rz—r+1
A= (1, 42) = ( ).

l—ra—r 1—ra—r
B:(Bl, Bg):(l,l—a—z),
C=(Ch,C0y)=(-1,a—-1-2),

D=(D D)_<7’z+7’—1 rz—i—r—l)
VLR T ra—r 1—ra—1r)"
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According to [Hsu, 2000] and [Juang & Lin, 2000],
any orbit {T%(v)} of T with |T*(v)| < 1 for some
k > 0 is unstable. Hence, only trajectories of T" ly-
ing outside the unit rectangle in (u, v) plane should
be considered. Therefore, assume that By < —1
and C5 > 1 while these conditions are equivalent to
2—a < z < a—2. For further computation, we give
the following notations.

Definition 2.1. Assume a > 2.

(i) Define functions 7+ (2) and 7o (2) by

at+z—2 a—z—2
Too(2)=

= orar 0 Tw(®)=

a?—2—az’

(11)

(i) Let m, n € Z™, if the slope of f, 7 = rpn,
satisfies

T Y By) = -1 and TN 1(Cy) =1, (12)

then we call map 7' is of (m, n)-type and de-
note Tm.m, kmn and &y, by
Tmm = Tm

_ -1
—a and &mn =k, -

1

Tm,n

km,n =

(iii) Define polynomials E(x; m) and U(z; m) by

E(w;m):aZmi—a-i-Q, (13)
i=1
U(z; m,n)=(a+ z) Z x*
i=n-+1

n
+2a ) o' —2a+4. (14)
=1

From Fig. 3, the relative positions of A, B, C' and
D are easily obtained in the following.

Lemma 2.1. Assumea > 2, then ro(2) and Too(2)
are increasing and decreasing functions of z, respec-
tively. Moreover, we have

(1) If r € (ro(2), ), then Ay > Cy and By > Ds.

(2) If r = roo(z) then Az > Co and By = Ds.

(3) If r € (TFo(2), Teo(2)), then Ay > Co and
Dy > Bs.

(4) If r =Too(2), then Ay = Cy and Dy > Bs.

(5) If r € (0, Too(2)), then Az < Cy and Dy > Bs.

TV ey
A A

C

1 o n/ ™V

Fig. 3. Graph of T'.

Proof. By elementary computation, we have
2a — 2
- (a®> — 2+ az)?
and
2—2a
(a2 — 2 — az)?
and 7 (2) and Too(2) are increasing and decreasing

functions of z respectively. The proofs from (1) to
(5) are also simple and omitted. W

7 (2) =

The proof of the main theorem in Sec. 3 in-
dicates that the case of (1) in Lemma 2.2 is more
interesting and complicated.

3. Proof of Main Theorem

In this section, we prove the main theorem by in-
troducing some lemmas. If z > 0, the following
lemmas will show that unique ry, ,,—1 lies between
Tm,m and rpy_1 m—1 such that (12) holds.

Lemma 3.1. Assume m > 3 and define I'(a) by

R 2 _
F(a)Emin{a—Q, o+ ba 4a}'

3a2 —6a+4

If0 < z < T'(a), p > q and ryp 4 satisfies (12) with
Tmm < Tpg < P'm—1,m—1, thenp =m and ¢ = m—1.

Proof. First, we claim that U(,4; p, ¢) = 0 and
E(&m,m; m) = 0. By simple computation, it is ob-
vious that

rz+1
— d T71(-1)= . (15
—ra an ( ) 1—ra ( )

(1)
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Define R and L by
R=T7'1)-1 and L=1-T"%-1). (16)

If p > q and r = 1,4 satisfies (12), then it is not
difficult to compute that &, , satisfies

L(1-¢&,) R1-€,)
1 - §P7‘1 1 - gpaq

By (15) and (16), we know that

=2 —4. (17)

2
R+L: 5]%‘1_2’ R:TP,q(z+a)

)

Tp,q 1 —rpqa

and (17) can be rewritten as

2.4 ol p]
(T—’—2> Z &R Z ¢, =2a—4,
P.q =0 j=0
(18)
q-1
qua+ZZ§;]3q (5@_)25]7— —
j=q "
(19)
According to the definition of &,, we have

U(&p,q; P, ¢) = 0. Similarly, we have E(&ym; m) =
0. Next, we show that r,, ,,—1 satisfies (12) and
Tmm < Tmm—1 < Tm—1m—1. oince z > 0 and

Em,m—1 > 0, by (13), (14) and (19), we have

m—1
, a Z §:n71,m71:a_2’
=1
(20)

m—1 ]

a Z §in,m71 <a-—2
=1

and

azgn’m,1>a—2, aZfﬁmm:a—Z
i=1 i=1
(21)

From (20) and (21), 7p,m—1 satisfies (12) and
Tmm < Tmm—1 < Tm—1,m—1, for m > 2.

Now, we claim that no r,, satisfies (12) and
Tmm < Tpg < "m—1,m—1 except for p = m and ¢ =
m—1. For convenience, let h = 7y, _1.m—1, K = T"mm
and £ = rp 4, wherep=m+mn,¢g=m—n—1 and
1 <n < m—2. By (14) and elementary computa-
tion, we have

U(h; p, q) < 0 if and only if
2 — (a+2)h" + (z —a)h~ "D <0 (22)

and

U(k; p, q) <0 if and only if

2a — (a+ 2)k" ™ + (z —a)k™™ < 0. (23)

Obviously U'(z; p, q) > 0 and if U(h; p, ¢)U(k;
p, q) > 0; by intermediate value theorem, no £ lies
between h and k and satisfies (12). Therefore, we
claim that U(h; p, ¢) < 0 and U(k; p, q) < 0, if a,
z satisfy 0 < z < I'(a). Denote P(z) and Q(x) by

P(z)=2a— (a+2)2"™ + (2 —a)z™
and
Q) =2a — (a+ 2)z" + (z — a)z~ "+ |

then P(z) and Q(z) are concave functions in (0, 1]
and P(1) = Q(1) = 0. By elementary computation
or [Hsu & Lin, 1999], we know that roo = 71y =
(a— 2)/(a® — a) and
1 a—?2
0<k<h<— = (24)
——a
2,2

If a, z satisfy 0 < z < I'(a), we have P((a — 2)/
a) < 0. Since P(x) is concave, by (23) we ob-
tain that U(k; p, q) < 0. Furthermore, the zero
of Q(x) is obviously larger than the zero of P(x)
n (0, 1). By the concavity of Q(z), we also obtain
P((a —2)/a) < 0 and this implies U(h; p, q) < 0.
Hence, the proof is complete. W

Corollary 3.1. Under the same assumptions of
Lemma 3.1, we have Tmi1m < Tmm—1 for all in-
teger m > 1.

Now, if z is fixed, since lim, oo 7p = Too
and 7o (z) is an increasing function of z, by
Lemma 3.1, we obtain that there exists a maxi-
mal positive integer p(z) such that (12) holds for
sequence {1, ,—1(2)} withp =3, 4,..., p(z) and no
Tm,m—1(%) satisfies (12) with m > p(z). As demon-
strated later this observation reveals the staircase
structure of entropy function A of T'. For complete-
ness, this study recalls the definitions and some re-
sults of entropy for a dynamical system. Details can
be found in [Bowen, 1973] or [Afraimovich & Hsu,
1998, Sec. 6].

Definition 3.1. Let G : X — X be a dynamical
system on the complete metric space X and S C X
be an invairant set.
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(i) The set T, (z) = {G*(x)}}y is called an orbit
segment of temporal length n. Two segments
I, (z) and T'y,(y) are said to be (n, €)-separated
if there exists k € Z', 0 < k < n — 1, such that
dist(G*(z), GF(y)) > e.

(ii) Let Sy . be a set of segments of temporal length
n such that

(a) ifI'y(z), T'n(y) € She, then they are (n, €)-
separated;

(b) if w € S and I',(w) ¢ Sp., then there
is « € § such that I')(x) € S, and
dist(G*z, GFw) < € for each k =0, 1,...,

n—1.
Define CN'n,E = #Sy,c, the number 9f elements
of the set S,. and C, . = infg, . Cp.. Then,
the entropy function of G, denoted by h(G), is

defined as follows:

h(G) = lim lim %

e—0 n—oo n

(25)

Proposition 3.1.  ([Afraimovich & Hsu, 1998,
Sec. 2.4; Robinson, 1995]). Let opr : Xy — X
be a subshift of finite type with the transition ma-
tric M on N symbols. Denoted by K, the number
of admissible words of length n + 1, the entropy of
o 18 equal to

In K,
h(oar) = lim 1 on

=In |)\1| s

n—00 n

where A1 s the real eigenvalue of M such that
|A1] > |A;j| for all other eigenvalues \j of M.

By Proposition 3.4, we must find a subshift of
finite type such that T is topologically conjugate
to the subshift. The subshift can be constructed
by finding some subintervals of I'\(—1, 1) with the
covering relation as shown in the proof of the main
theorem later.

Definition 3.2. An interval I; T-covers an interval
I provided I, C T'(I1). This study writes I; — Is.

Proof of Main Theorem. First, we consider the case
T > Too(2), ie. Az > Cy and By > Dy. Let R ()
and R; (r) be the first components of the inter-
section points of AB with u = +1 and u = —1,

respectively. A simple computation produces

1—2r+rz 147z
R_ = - = .
1 () 1—ra

(26)

Then, the continuity of T'(v; r) with respect to r
and Lemma 3.1 make it easy to prove that for
any positive integer 2 < p < p(z), there exists a
unique 7,1 > 0 such that {T%(Ca; rpp—1) =
is a 2p — l-periodic orbit, i.e. of (p, p — 1) type,
where p(z) is the largest integer such that rp,)
less than 7o (z). Restated, after 2p — 1 itera-
tion, (v, T'(v; rpp—1)) maps C to B and B to C,
respectively.

Denote

Rt =(R{,R})=ABn{u=1},

and Rf(r)

1—ra

R = (R, Ry)=ABn{u= -1},
LT =(L],L7)=CDn{u=1},

L™ =(L{,Ly)=CDn{u= -1},

ra—2r+1

Q, = S
= { i < T
—2 1

and|u|§u},
1—ra

here {u = D2}NCD = (((2r—ra—1)/(1—ra)), 1—
a —z) and Q, C Q. Figures 4 and 5 give the five-
periodic orbit and seven-periodic orbit of T" at 732
and 743, respectively. Now, if 3 < p < p(z) and
Tpp—1 ST < Tp1p-2 OF To(2) < 7 < Tp(2)p(z)—1
define the 2p — 1 stable subintervals by

IP+1 = (1’ RQ_) )

Ly =(T"YRS), T"*(Ry)) for k=1 to p—2.
and

IP:(L;—? _1) ’

I, ,=(T%(L3), T*Y(Ly)) for k=1top—1.

The 2p — 1 subintervals have the following covering
relation:

I; - I;4q fori=1top—1,

I, — I; forj=p+1to2p—2,
I — Iy for k=2 to p,

I, —-1I;_1 forl=p+2to2p—1.
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A u=T(v)
u=v
YR*
>V
L-
D “
1,1, Iy l, s

Fig. 4. Graph of T in (3,2) type and its stable
subintervals.

4 u=T(v) u=v

Fig. 5. Graph of T in (4,3) type and its stable
subintervals.

Therefore, we obtain the following transition matrix M = M|[p, p — 1] of the 2p — 1 subshifts of

finite type.
0 1 0 o o ° °
01 0 e e ° °
° ° o o ° °
° ° o o ° °
0 . ° 1 0 °
M- . ° ° 0 1 °
0 1 e e ¢ 1 0 °
0 ° e o« 01 0 e
° ° o o ° °
° ° o o ° °
° o o ° e 0
0 ° o o ° °

This study defines spaces Ya,_1 and X7 by
Yop-1={1,2,...,2p—1,2p— 1}V,
Yu={s€¥y 1: Mg, , =1 for k=0,1,2,...},

with a metric on s by

d(s, t) _ i 5(Sku tk) ’

k
k=0 3

0
0
[ ]
® | pth row with p — 2 terms of 1
0
1 0
0
0| (p+ 1)th row with p — 1 terms of 1
[ ]
[ ]
0 0
L0l op—1)x@p-1
for s = (sg, $1,...) and t = (to, t1,...) in Xy,
where

0 if ¢ =j,
S(i. 1) —
(i, J) {1 if § # j.
Let oy @ X — X be the subshift of finite type

for the matrix M, ie. o(s) = t where t = Sgy1.
Therefore, if r, ,_1 <1 < 7rp_1p—2 then there exists
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an invariant subset A, in Q such that T'|,, is topo-
logical conjugate to the 2p — 1 subshift (X7, oar)
with entropy h equal to In A\, ,_1, where A, , 1 is
the positive maximal root of characteristic polyno-
mial of M. To derive A, ,_1, we need the following
lemma.

Lemma 3.2. Given p € Z' and p > 1, then the
characteristic polynomial g(z; p, p—1) of transition
matriz M[p, p — 1] is

p—3 p=2
g(z; p, p—1) 2932(372”_3 -y 7 mJ) :
i=0  j=0

Proof. By elementary matrix computation, see
Appendix A, we obtain
p—3
glaspp—1)=agla;p—1,p—1)—a® Y a',
i=0

where, g(x; p— 1, p — 1) is the characteristic poly-
nomial of M with z = 0, for details see [Hsu &
Lin, 1999]. In [Hsu & Lin, 1999], we also have g(z;
p—1,p—1) = 22z%* — (2P 2%)?]. Therefore,
the result follows by simple computation. W

By Lemmas 3.1 and 3.6, we prove results (i)
and (ii) of the main theorem. As for the assump-
tion (iii) of the main theorem, it is equivalent to
the conditions of (2) and (3) in Lemma 2.2. By the
same arguments, we obtain the entropy h of T' is
zero, see e.g. Fig. 6. In case (iv), which is equiva-
lent to the conditions of (4) and (5) in Lemma 2.2,
we know that Dy > By and Cy > A, in Fig. 7 such
that the behavior of the map T resembles that of
the logistic map as discussed in [Robinson, 1995,
Theorem 5.2]. Therefore, there exists an invari-
ant Cantor set such that T is topologically con-
jugate to a one-sided Bernoulli shift of two sym-
bols. Since the entropy of the one-sided Bernoulli
shift of two symbols is In 2, the result follows by
Proposition 3.4.

Finally, since lim, .0 7e0(2) = 7T, by
Lemma 3.1 we obtain that p(z) is a decreasing
function of z with lim, ,o p(z) = 0. The proof is
complete. W

Remark

(i) If we consider the output function is not sym-
metric, i.e. 7 # ¢ in (2), then Lemma 3.1 is

no longer valid. In fact, there exists many dif-
ferent m, n such that r = r,,, lies between
rp and rp_q for any p > 3 and T is of (m, n)
type. Hence, by similar arguments in the proof
of the main theorem, we also obtain transition
matrix M[m, n] such that the corresponding

u
A
u=T(I\9u=v
A
0 1 "
DL C
LI, L I,
Fig. 6. Graph of T with » = ro(z) and its stable
subintervals.
u
A
u=v
u=T(Vv)
A
> V
0
ol o
0, 1,0,
Fig. 7. Graph of T with r = To(z) and its stable
subintervals.
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characteristic ploynomial g(x; m, n) is

m—2 n—2
g(z; m, n) = * (wm+n_2 - Z z' Z mj> .
j=0

1=0
(27)

(ii) By some further computation, the ordering re-
lation of the maximal root A, , of g(z; m, n)
can also be obtained as following lemma.

Given (mi, n), (mg,n + 1) and
my > ma, then g(Am, n; m2,n+ 1) < 0. Moreover,
we have

Lemma 3.3.

(1) If ny > ng then Aming > Ama,ng-
(2) If n1 = na and my > ma then Amyny > Ay, -

Proof. Since

mi1—mao+n

T 9( Ay mo,n+1)

n—2 ) m1—mo+n—1 ) mi1—2 )
— Z zt Z b — Z It
=0 i=n+1 =0

mi1+n—3

-2

mi1—mo+2n—1

' <0,
the results follows. M
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Appendix

To compute the g(A; p, p— 1) of M in the proof of
the main theorem, this work only computes the spe-
cial case when m = 6. For other m, g(A; p, p — 1)
can be obtained analogously.
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If m = 6 then

0

0

det

det[M (6, 5)]

Scoococo oo o |~
\A
Scococoocoo oo ~o
\A
Scocooco o 4o o
r 1T T 1
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001\_A0010000_1100___
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01\_A00010000 « ~
~< ~<
< + +
1_000000000 —~ —~
0 0
< 3 3
O o oc oo <o oo o 2 2
< <
1 ~— ~—
> >
7 7

det

*Aluo asn feuossed 104 ‘¥T/L2/y0 U0 ALISHIAINN ONNL OVIHO TYNOILVYN A9
Wi0J"31}NUS 13SP [IOM" MMM W0} PIPEO JUMOQ 17€5-G2S-¢T'¢00¢ SCeyD uoieainiig T U]

o A% Induction produces

3

det[M (6, 5)] = —Ag(\; 5, 5) + A2 Y7

Hence g(A; 6, 5)

N

=1

1

_\P4 _ 2.

g\ p—1,p—1)+ Adet [

gxip,p—1)

p—3

=-XAgAp—1,p—1)+A2 D AL

0

)\2 [)\2])4 _ (

]

By [Hsu & Lin, 1999], we know that

)

T

)

p—3
>N
1=0

gNp—-1,p—1)

and the formula of Lemma 3.6 is obtained by simple computation.
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