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Abstract

A �le in a distributed database system is replicated on M sites and may contain corrupted
pages. The purpose of this paper is to apply a group testing technique to detect corrupted pages
in these replicated �les. Our detection scheme, based on the structure of the Reed–Solomon
code as proposed by Abdel-Gha5ar and El Abbadi, is optimal for M¿4 and has performance
guarantee of 7

6 for M = 3. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Group testing has a long history, and from the beginning it has been closely tied to
large-scale blood testing. Modern applications of group testing are made to many im-
portant areas such as experimental designs, coding theory, multiaccess communication,
and computational complexity. The interested readers are referred to the book of Du
and Hwang [6] for more information about this subject. The present paper is devoted
to an application of group testing in distributed database systems, where large �les are
often replicated and stored at remote sites to permit easy access or to prevent acci-
dental loss of information. Since data in a �le can be corrupted due to many reasons,
it is desirable to compare the �les from time to time to detect faults, group testing
techniques are thus employed to meet such needs by various authors. One popular
technique, proposed by Metzner and Abidi [11], is the so-called method of combined
signatures. A �le is divided into pages of standard size; a binary parity sequence,
called a signature, is derived for each page. It is assumed that two copies of a page
agree if and only if their signatures agree. A combined signature is a weighted sum of
a subset of signatures. Group testing is based on combined signatures: all disagreeing
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pages between two sites can be detected by comparing combined signatures, and the
number of combined signatures exchanged is much smaller than the number of pages
in a �le as shown by Metzner and Abidi [11].
Many schemes have been proposed (cf. [1–4] and [6–11]) for detecting disagreeing

pages between two replicated �les. Let N denote the number of pages and let f denote
the number of disagreeing pages which is assumed to be known. Abdel-Gha5ar and El
Abbadi [3], following an idea of Metzner and Kapturowski [12] of using linear block
codes, showed that a one-round exchange of min{N; 2f} combined signatures suKce
and the bound is best possible. Later Abdel-Gha5ar and El Abbadi [1] proposed a
detection scheme for M replicated �les, with M¿3.
In the coordinator-based model, one site is designated as the coordinator, say site 1,

while other sites 2; : : : ; M , are referred to as the participants; the coordinator exchanges
messages with the participants to detect all corrupted pages in the replicated �le. Com-
munication is between the coordinator and the participants, that is, participants do not
exchange any information. Abdel-Gha5ar and El Abbadi [1] gave an optimal detection
scheme which transmits at most (M − 2)min{N;f}+min{N; 2f} combined signatures
to identify f corrupted pages (or faults) under the assumption M¿2f + 1.
In many applications, f is relatively small compared with N , however M can also

be a small number. Thus the condition M¿2f + 1 imposes a severe limit on the
number of detectable faults. For instance, in case M = 3, only one corrupted page
is allowed even though the �le has thousands of pages. In this paper, we replace
the restriction M¿2f + 1 with a much weaker assumption that for each page the
majority of copies are correct. Let us point out that this assumption is needed for
all detection schemes allowing identical errors and not assuming the existence of an
incorruptible site, since otherwise we may not be able to distinguish between the correct
pages and the corrupted pages and thus detection failure occurs. Under this assumption,
we [8] came up with a non-optimal detection scheme for M¿4 that requires the
transmission of at most (M −1)min{N;f}+min{1+�√f�; 1+�(M +1)=2�}min{N −
f;f} signatures.
The purpose of this paper is to present a new two-round scheme for M¿3 for

detecting corrupted pages if the majority of correct copies exist for each page and
declaring detection failure otherwise. Our scheme is optimal if M¿4 and has perfor-
mance guarantee of 7

6 if M = 3.

Theorem. The minimum number of combined signatures that need to be transmitted
in order to identify any f corrupted pages in M copies of a 4le composed of N pages
is (M−2)min{N;f}+min{N; 2f} if M¿4 and at most min{N; �3f=2�}+min{N; 2f}
if M = 3.

Let us introduce some notions before presenting our scheme. Throughout, we shall
let fm stand for the number of corrupted pages at site m, let Pn;m, with 16n6N
and 16m6M , stand for the nth page of the copy residing in site m, and let pn;m

stand for the signature of Pn;m. Each signature is composed of b bits and thus can
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be considered as an element in GF(2b). Since usually b is much larger than log2 N ,
we may assume that di5erent pages have distinct signatures. Let � be a primitive
element in the �nite �eld GF(2b). Then �j, j = 1; 2; : : : ; N , are pairwise distinct as
b¿ log2 N . For each site m and each positive integer j, de�ne the combined signature
sigj;m =

∑N
n=1 pn;m�jn, which is the syndrome of a Reed–Solomon code corresponding

to the vector (p1;m; p2;m; : : : ; pN;m) [5]. Finally, for any vector (e1; e2; : : : ; eN ), its weight
is de�ned to be the number of non-zero entries. Our detection model is based on the
following three facts.

Fact 1. For any given E1; E2; : : : ; EN ∈ GF(2b); the system of equations
∑N

n=1 en�
jn=

Ej; where j = 1; 2; : : : ; N; has a unique solution.

Fact 2. If (e1; e2; : : : ; eN ) has weight at most f and if
∑N

n=1 en�
jn = 0; where j =

1; 2; : : : ; f; then en = 0 for each n= 1; 2; : : : ; N .

Fact 3. For any given E1; E2; : : : ; EJ ∈ GF(2b); where 16J6N; the system of equa-
tions

∑N
n=1 en�

jn = Ej for j = 1; 2; : : : ; J; has at most one solution of (e1; e2; : : : ; eN )
with weight less than or equal to �J=2�. This solution can be obtained using a Reed–
Solomon decoder [5].

It follows from Fact 3 that if the number of disagreeing pages between a pair of
sites i and j is at most �f=2�, then (e1; e2; : : : ; eN ) = (p1; i −p1; j ; p2; i −p2; j ; : : : ; pN; i −
pN;j) is the unique solution with weight at most �f=2� to the system of equations∑N

n=1 en�
qn= sigq; i − sigq; j for q=1; 2; : : : ; f and the set of disagreeing pages between

i and j is precisely the set of non-zero entries in (e1; e2; : : : ; eN ).

2. An optimal scheme for M¿4

Suppose that faults are randomly distributed in the M replicated �les. Then as M
grows, the probability that any two replicated �les contain more than half of the faults
becomes small. Abdel-Gha5ar and El Abbadi [1] took advantage of this observation to
reduce the number of combined signatures needed to be transmitted in the �rst round,
with the possibility of transmitting a few more combined signature in the second round
in case the small-probability event occurs. We employ the same idea here for M¿4.
In the case f¿N , our algorithm goes as follows: each participant m sends all its N

pages signatures p1;m; p2;m; : : : ; pN;m to the coordinator. For each page n and each pair
of sites i and j, set en;i; j = pn; i − pn;j, where 16n6N and 16i; j6M . Let Gn be a
graph with vertex-set {1; 2; : : : ; M} such that [i; j] is an edge in Gn i5 en;i; j = 0. Then
each connected component of Gn is a clique since for any three sites i, j and k, we
have en;i; k = 0 whenever en;i; j = 0 and en;j; k = 0, so the maximum clique problem on
Gn can be solved in linear time by the depth-�rst search [13]. Let Cn be a maximum
clique in Gn for n= 1; 2; : : : ; N . If |Cn|¿�(M + 1)=2� holds for each page n, then the
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majority of sites agree on each page, and thus Ft = {n : t 
∈ Cn} is the set of faults at
site t for t = 1; 2; : : : ; M . Otherwise, |Cn|¡ �(M + 1)=2� holds for some page n, we
declare detection failure. The total number of signatures sent is (M − 1)N .
Let us now proceed to the case f¡N . Our algorithm, followed by detailed analysis,

is given below.

Algorithm (Two-Round with f¡N )
SEND (REQUEST sig1;m; : : : ; sigf;m) to all participants m
RECEIVE (sig1;m; : : : ; sigf;m) from all participants m
FOR each pair of sites i and j, where 16i; j6M

Try to compute a vector ei; j = (e1;i; j ; : : : ; eN ;i; j) of weight at most �f=2�
as a solution of the system of equations∑N

n=1 en;i; j�
qn = sigq; i − sigq; j, where q= 1; 2; : : : ; f (1)

Let wi;j denote the weight of the vector (e1;i; j ; : : : ; eN ;i; j) if such a solution
exists, and let � be the set of all pairs {i; j} of sites such that either
(a) no solution of (1) with weight at most �f=2� exists or
(b) there is a solution of (1) with weight wi;j at most �f=2� satisfying

wi;j ¿ws; t for any pair {s; t} of sites disjoint from {i; j}
END(*FOR*)
IF � = ∅ THEN

FOR each page n, where 16n6N
CONSTRUCT a graph Gn with vertex-set {1; 2; : : : ; M} such that

[s; t] is an edge in Gn i5 en;s; t = 0
FIND a maximum clique Cn in Gn

END(*FOR*)
ELSE � 
= ∅

IF � = {{i; j}; {j; k}; {k; i}} for some three sites i, j and k THEN
Let m be a site outside {i; j; k}
FOR each page n and each pair {s; t} ∈ �

Replace en;s; t by en;s;m − en;t;m
END(*FOR*)
FOR each page n, where 16n6N

CONSTRUCT a graph Gn with vertex-set {1; 2; : : : ; M} such that
[s; t] is an edge in Gn i5 en;s; t = 0

FIND a maximum clique Cn in Gn

END(*FOR*)
ELSE some site i is contained in each pair in �

FOR each page n, where 16n6N
CONSTRUCT a graph Gn − {i} with vertex-set {1; 2; : : : ; M} − {i}

such that [s; t] is an edge in Gn − {i} i5 en;s; t = 0
FIND a maximum clique Cn in Gn − {i}

END(*FOR*)
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IF |Cn|¿(M − 1)=2 holds for each page n THEN
IF i = 1 THEN
Let m be an arbitrary site other than 1
SEND (REQUEST sigf+1;m; : : : ; sigmin{N;2f};m) to site m
RECEIVE ( sigf+1;m; : : : ; sigmin{N;2f};m) from site m
FOR each page n, where 16n6N
Let f(n) be a site in Cn and set en;m;f(n) = 0 if f(n) = m
Replace en;1;f(n) by the solution with weight at most f of
the following system of equations∑N

n=1 en;1;f(n)�
qn = sigq;1 − sigq;m +

∑N
n=1 en;m;f(n)�

qn (2)
where q= 1; 2; : : : ;min{N; 2f}

END(*FOR*)
ELSE i 
= 1
SEND (REQUEST sigf+1; i ; : : : ; sigmin{N;2f}; i) to site i
RECEIVE (sigf+1; i ; : : : ; sigmin{N;2f}; i) from site i
FOR each page n, where 16n6N
Let f(n) be a site in Cn and set en;1;f(n) = 0 if f(n) = 1
Replace en;i;f(n) by the solution with weight at most f of
the following system of equations∑N

n=1 en;i;f(n)�
qn = sigq; i − sigq;1 +

∑N
n=1 en;1;f(n)�

qn (3)
where q= 1; 2; : : : ;min{N; 2f}

END(*FOR*)
FOR each page n with |Cn|¿(M − 1)=2 and en;i;f(n) = 0
SET Cn = Cn ∪ {i}

END(*FOR*)
END(*IF*)
FOR each page n with |Cn|= (M − 1)=2 and en;i;f(n) 
= 0, where 16n6N
IF C = {1; 2; : : : ; M} − (Cn ∪ {i}) is a clique in Gn − {i} THEN
Let g(n) be a site in C
SET Cn = C ∪ {i} if en;i;f(n) = en;g(n);f(n)

END(*IF*)
END(*FOR*)

END(*IF*)
END(*IF*)

END(*IF*)
IF |Cn|¿�(M + 1)=2� for each page n THEN
FOR each site t, where 16t6M
RETURN Ft = {n: t 
∈ Cn} (*Ft is the set of corrupted pages at site t*)

END(*FOR*)
ELSE(* |Cn|¡ �(M + 1)=2� for some page n*)
DECLARE detection failure

END(*IF*)
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In the present case, f combined signatures sigq;m =
∑N

n=1 pn;m�qn, are transmitted
from each participant m to the coordinator, where 16q6f. If a pair of sites contains
no more than f=2 disagreeing pages, then the comparison of f combined signatures
between the pair is suKcient to detect all the disagreeing pages. Any pair satisfying
this condition is called normal and other pairs are called abnormal.
For each pair of sites i and j, the coordinator tries to compute a vector (e1;i; j ; : : : ; eN ;i; j)

with weight at most �f=2� as a solution of (1). Recall the algorithm, � is the set
of all pairs {i; j} of sites such that either (a) no solution of (1) with weight at most
�f=2� exists or (b) there is a solution of (1) with weight wi;j at most �f=2� satisfying
wi;j ¿ws; t for any pair {s; t} of sites disjoint from {i; j}. In connection with �, the
following facts were �rst established in [8]. For completeness, we furnish the proofs
here.

Fact 4. If {i; j} is an abnormal pair; then {i; j} is in �.

Proof. We aim to prove that either (a) or (b) stated in the algorithm holds for {i; j}.
Let A denote the non-empty set of all abnormal pairs. Then A cannot contain two

disjoint pairs for otherwise the total number of faults would be greater than f. If
{i; j} is an abnormal pair, then each pair {s; t} disjoint from {i; j} is normal, and thus
there is a solution with weight ws; t at most �f=2� of (2) with {s; t} in place of {i; j}.
Assume that (e1;i; j ; : : : ; eN ;i; j) is a solution of (2) with weight no more than �f=2�.
Since (p1; i −p1; j ; : : : ; pN; i −pN;j) is a solution of (2) with weight greater than �f=2�,
these two solutions are di5erent. Note that

∑N
n=1 [en;i; j − (pn; i − pn;j)]�qn = 0, where

q=1; 2; : : : ; f. By Fact 2, there are at least f+1 values of n for which en;i; j 
= pn; i−pn;j.
For each two sites k and l, let dk;l denote the number of disagreeing pages between
them. Then wi;j + di;j¿f + 1, whence wi;j + fi + fj¿f + 1. So for each pair {s; t}
disjoint from {i; j}, we have wi;j¿f−fi−fj+1¿fs+ft¿ds; t=ws; t , the last equality
holds for {i; j} is an abnormal pair, fi +fj ¿ �f=2�, implying ds; t6fs +ft6�f=2�.

Since � contains no two disjoint pairs, the following statement holds.

Fact 5. Let {i; j} be an arbitrary pair of sites in �. Then one of the following three
cases occurs.
Case 1. There is a site k outside {i; j} such that � = {{i; j}; {j; k}; {k; i}}.
Case 2. Each pair in � contains site i.
Case 3. Each pair in � contains site j.

Let us consider Case 1. According to Fact 4, any pair of sites outside � is normal. So
by Fact 3 all the disagreeing pages between the two sites in this pair have already been
detected. Let m be a site outside {i; j; k}, this site is available as M¿4. Now for each
page n and for each pair {s; t} ∈ �, replace en;s; t by en;s;m − en;t;m (the coordinator has
this information). Since both {s; m} and {t; m} are outside �, we have en;s;m=pn;s−pn;m
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and en;t;m=pn; t−pn;m. Thus en;s; t=pn;s−pn; t , which is the genuine di5erence between
the signatures of pages Pn;s and Pn; t . Let Gn be the graph constructed in the algorithm
and let Cn be the maximum clique of Gn. If |Cn|¿�(M + 1)=2� for each page n, then
Ft = {n : t 
∈ Cn} is the set of corrupted pages at site t; otherwise, we declare detection
failure.
Let us turn to consider Case 2. (Case 3 is a mirror image of Case 2, which can be

handled similarly.) Let Gn − {i} be the graph constructed in the algorithm and let Cn

be a maximum clique in Gn − {i}. If |Cn|¡ (M − 1)=2 for some n, then fewer than
�(M +1)=2� sites agree on page n, so detection failure occurs. Now we proceed to the
case when |Cn|¿(M − 1)=2 for each page n.
Subcase 2.1. i is the coordinator, namely i = 1. Let m be an arbitrary site dif-

ferent from 1. For each page n, let f(n) be a site in Cn, since |Cn|¿(M − 1)=2
and M¿4; f(n) is available. If f(n) = m then set en;m;f(n) = 0; if f(n) 
= m then
en;m;f(n) =pn;m−pn;f(n) as {m;f(n)} is a pair outside �. Now transmit min{N −f;f}
additional combined signatures from site m, and replace en;1;f(n) by the solution with
weight at most f of (2). Since the coordinator has already had en;m;f(n), the right-most
term in (2) makes sense.

Fact 6. en;1;f(n) =pn;1 −pn;f(n); for n= 1; 2; : : : ; N , is the unique solution of (2) with
weight at most f.

Proof. Since {m;f(n)} is a pair outside �, we have en;m;f(n) = pn;m − pn;f(n). Thus

sigq;m −
N∑

n=1

en;m;f(n)�qn

=
N∑

n=1

pn;m�qn −
N∑

n=1

en;m;f(n)�qn

=
N∑

n=1

(pn;m − en;m;f(n))�qn

=
N∑

n=1

pn;f(n)�qn:

Hence (2) is equivalent to
N∑

n=1

en;1;f(n)�qn = sigq;1 −
N∑

n=1

pn;f(n)�qn; where q= 1; 2; : : : ;min{N; 2f}: (4)

By Fact 3, en;1;f(n) = pn;1 − pn;f(n), for n = 1; 2; : : : ; N , is the unique solution of (4)
with weight at most f, so the statement follows.

Subcase 2.2. i is not the coordinator, namely i 
= 1. For each page n, let f(n)
be a site in Cn, since |Cn|¿(M − 1)=2 and M¿4, f(n) is available. If f(n) = 1



238 F.K. Hwang, W. Zang /Discrete Applied Mathematics 116 (2002) 231–242

then set en;1;f(n) = 0; if f(n) 
= 1 then en;1;f(n) = pn;1 − pn;f(n) as {1; f(n)} is a pair
outside �. Now transmit min{N−f;f} additional combined signatures from site i, and
replace en;i;f(n) by the solution of (3). Since the coordinator has already had en;1;f(n),
the right-most term in (3) makes sense. Imitating the proof of Fact 6, we see that (3)
is equivalent to

N∑

n=1

en;i;f(n)�qn = sigq; i −
N∑

n=1

pn;f(n)�qn; where q= 1; 2; : : : ;min{N; 2f}: (5)

From Fact 3 and (5), we conclude the following statement.

Fact 7. en;i;f(n) = pn; i − pn;f(n), for n= 1; 2; : : : ; N , is the unique solution of (3) with
weight at most f.

It follows from Facts 6 and 7 that for each page n, we have en;i;f(n) =pn; i −pn;f(n),
which is the real di5erence between the signatures of the pages Pn; i and Pn;f(n). Now
we are ready to output all the corrupted pages.
For each page n, in case Cn¿(M − 1)=2 and en;i;f(n) = 0, set Cn =Cn ∪ {i}; in case

Cn=(M−1)=2 and en;i;f(n) 
= 0, let us check if C={1; 2; : : : ; M}−(Cn∪{i}) is a clique
in Gn−{i}. If yes, let g(n) be a site in C and set Cn=C ∪{i} if en;i;f(n) = en;g(n);f(n).
After obtaining Cn for each page n, let us check the size of Cn. If |Cn|¿�(M + 1)=2�
holds for each page n, then Ft = {n : t 
∈ Cn} is the set of corrupted pages at site t;
otherwise we declare detection failure. The total number of combined signatures sent
is (M − 1)f +min{N − f;f}.
Combining the result that holds for N ¿f with the result obtained in the case

N6f where (M − 1)N signatures are transmitted, we see that our algorithm requires
the transmission of at most (M − 2)min{N;f}+min{N; 2f} signatures.
One popular method for �le replication is the primary site model, where a designated

copy is called the primary copy, while the other (M − 1) copies are referred to as the
secondary copies. All up-dates are directed to the primary copy, which is responsible
for updating the secondary copies. The goal is to eKciently compare the secondary
copies with the primary copy in order to detect any corruptions in the data stored
at the secondary sites. It is assumed that the primary site has the correct copy. In
spite of this assumption, Abdel-Gha5ar and El Abbadi [2] showed that at least (M −
2)min{N;f}+min{N; 2f} signatures need to be transmitted in order to identify up to
f corrupted pages. This observation as well as its proof [2] will imply the optimality
of our scheme.

Proof of the Theorem. From our algorithm, it follows that to identify f corrupted
pages, it suKces to transmit (M − 2)min{N;f}+min{N; 2f} signatures.
To see the optimality of our scheme, let us appeal to the following fact which was

proved by Abdel-Gha5ar and El Abbadi [2] for the primary site model: in the case
of f6N , even under the assumption that all faults reside in a participant (but not
knowing which one), (M − 2)min{N;f} + min{N; 2f} is still the minimum number
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of combined signatures required to be transmitted. Since this assumption is consistent
with our assumption that the majority copies of every page are correct, their lower
bound remains to be a lower bound of our model.
As our model is based on Facts 1–3, it is easy to see that any scheme for detecting

f corrupted pages can be employed to detect f′ corrupted pages for any f′¡f. Since
(M −2)min{N;f}+min{N; 2f} is a valid lower bound for the case f=N , it remains
valid for the case f¿N . This completes the proof of our theorem for M¿4.

3. A scheme for M = 3

Note that under the assumption, we have N¿f. Moreover, each page has at least
two correct copies. In the case N ¡ �3f=2�, each participant m sends all its N pages
signatures p1;m; p2;m; : : : ; pN;m to the coordinator, and the remainder of the algorithm
is precisely the same as the case f¿N for M¿4. The total number of signatures
transmitted is 2N . Let us proceed to the case when N¿�3f=2�.

Algorithm
SEND (REQUEST sig1;m; : : : ; sig�3f=2�;m) to participants m= 2 and 3
RECEIVE (sig1;m; : : : ; sig�3f=2�;m) from participants m= 2 and 3
FOR each pair of sites i and j, where 16i; j63

Try to compute a vector ei; j = (e1;i; j ; : : : ; eN ;i; j) of weight at most �3f=2�=2
as a solution of the system of equations∑N

n=1 en;i; j�
qn = sigq; i − sigq; j, where q= 1; 2; : : :, �3f=2� (6)

Let wi;j denote the weight of the vector (e1;i; j ; : : : ; eN ;i; j) if such a solution
exists, and let {i; j} be the pair of sites with the smallest wi;j

END(*FOR*)
IF 1 
= i; j THEN

SEND (REQUEST sig�3f=2�+1; i ; : : : ; sigmin{N;2f}; i) to participant i
RECEIVE (sig�3f=2�+1; i ; : : : ; sigmin{N;2f}; i) from participant i
Replace e1; i by a solution (e1;1; i ; : : : ; eN ;1; i) of weight at most f to the system∑N

n=1 en;1; i�qn = sigq;1 − sigq; i; where = 1; 2; : : : ; min{N; 2f}
FOR each page n

Replace en;1; j by en;1; i + en;i; j
END(*FOR*)

ELSE i = 1
SEND (REQUEST sig�3f=2�+1; k ; : : : ; sigmin{N;2f}; k) to participant k with k 
= i; j
RECEIVE (sig�3f=2�+1; k ; : : : ; sigmin{N;2f}; k) from participant k
Replace e1; k by a solution (e1;1; k ; : : : ; eN ;1; k) of weight at most f to the system∑N

n=1 en;1; k�qn = sigq;1 − sigq;k ; where = 1; 2; : : : ; min{N; 2f}
FOR each page n

Replace en;j; k by en;1; k − en;1; j
END(*FOR*)
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END(*IF*)
FOR each page n, where 16n6N

CONSTRUCT a graph Gn with vertex-set {1; 2; 3} such that
[s; t] is an edge in Gn i5 en;s; t = 0

FIND a maximum clique Cn in Gn

END(*FOR*)
IF |Cn|¿2 for each page n THEN

FOR each site t, where 16t6M
RETURN Ft = {n : t 
∈ Cn} (*Ft is the set of corrupted pages at site t*)

END(*FOR*)
ELSE(*|Cn|¡ 2 for some page n*)

DECLARE detection failure
END(*IF*)

In our algorithm, each participant m = 2 and 3 sends �3f=2� combined signatures
sigq;m=

∑N
n=1 pn;m�qn to the coordinator, where 16q6�3f=2�. If a pair of sites contains

no more than �3f=2�=2 disagreeing pages, then the comparison of �3f=2� combined
signatures between the pair is suKcient to detect all the disagreeing pages. Let us call
any pair satisfying this condition normal and other pairs abnormal. Let fi stand for
the number of corrupted pages at site i for i=1, 2, and 3. Then f1 +f2 +f3 =f. So
the pair {s; t} of sites with minimum fs + ft is normal and hence admits a solution
with weight at most �3f=2�=2 to (6).

Fact 8. Let {i; j} be the pair of sites as speci4ed in the algorithm. Then {i; j} is
normal.

Proof. Suppose the contrary: {i; j} is abnormal. Then fi + fj ¿ 3f=4. Since (p1; i −
p1; j ; : : : ; pN; i−pN;j) is a solution of (6) with weight fi+fj ¿ 3f=4, it must be di5erent
from ei; j. Note that

∑N
n=1 [en;i; j−(pn; i−pn;j)]�qn=0, where q=1; 2; : : : ; �3f=2�. From

Fact 2, it follows that at least �3f=2� + 1 values of n for which en;i; j 
= pn; i − pn;j.
So wi;j¿�3f=2� − (fi + fj) + 1. Now let k be the site di5erent from i and j. Then,
without loss of generality, we may assume that {j; k} is the pair of sites with minimum
fj+fk . Then {j; k} is a normal pair and thus fj+fk =wj;k . By the above inequality,
we have wi;j¿f=2+fk+1¿min{fi+fk; fj+fk}+1¿fj+fk=wj;k , contradicting
the selection of {i; j}.

It is deduced from the above fact that for pair {i; j}, en;i; j represents the real di5er-
ence between the signatures pn; i and pn;j for each page n. From the above algorithm,
it can be seen that the similar statement holds for en;s; t when we proceed to the
construction of Gn. Thus the validity of our algorithm follows. Clearly, the communi-
cation complexity of the algorithm is min{N; �3f=2�}+min{N; 2f}. Once again from
the Abdel-Gha5ar–El Abbadi theorem [2], we conclude that min{N;f}+min{N; 2f}
is a lower bound on the minimum number of combined signatures required to be
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transmitted. Hence our algorithm has performance guarantee of 7
6 , completing the proof

of our theorem.

4. Remarks

A scheme for detecting corrupted pages in replicated �les has been given in this
paper. From the Abdel-Gha5ar–El Abbadi theorem [2], it can be deduced that our
scheme is optimal for M¿4 and has performance guarantee of 7

6 for M =3. However,
the tight lower bound for the latter case remains unknown. One natural approach to
reduce the present communication complexity goes as follows. Let fi, 16i63, be
de�ned as before. We propose to call a pair {i; j} of sites normal if fi + fj62f=3
and abnormal otherwise. Since f1 + f2 + f3 = f, we have at least one normal pair
(clearly 2f=3 is a natural cut point). At the �rst round, each participant is required
to transmit min{N; �4f=3�} combined signatures. Then try to compute a vector ei; j =
(e1;i; j ; : : : ; eN ;i; j) of weight at most �4f=3�=2 as a solution to (6) with �4f=3� in place
of �3f=2� over there; let wi;j denote the weight of the vector (e1;i; j ; : : : ; eN ;i; j) if such
a solution exists. If there are two abnormal pairs, then the pair {i; j} with smallest wi;j

is normal. (To justify it, we may turn to show that the pair with minimum fi + fj

has the smallest wi;j. Suppose wi;k exists for pair {i; k}. Then wi;k¿4f=3 + 1− (fi +
fk)¿4f=3+1−[2f−(fj+fk)−(fi+fj)]¿[4f=3+(fj+fk)−2f]+wi;j+1¿wi;j+1,
as desired.) However, when there is only one abnormal pair, it is hard to derive an
abnormal or normal pair according to the weights of solutions to (6), and therefore,
it is not so easy to improve the current bound to min{N; �4f=3�} + min{N; 2f}. We
close with a natural question: what is the best lower bound for M = 3?
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