Computer Communications 25 (2002) 303-312

computer
communications

www.elsevier.com/locate/comcom

High-performance IP routing table lookup

Pi-Chung Wang®, Chia-Tai Chan, Yaw-Chung Chen

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC

Received 11 September 2000; revised 8 May 2001; accepted 29 May 2001

Abstract

Nowadays, the commonly used table lookup scheme for IP routing is based on the so-called classless interdomain routing (CIDR). With
CIDR, routers must find out the best matching prefix (BMP) for IP packets forwarding, which complicates the IP lookup. Currently, this
process is mainly done in software and several schemes have been proposed for hardware implementation. Since the IP lookup performance
is a major design issue for the new generation routers, in this article we propose a fast IP address lookup scheme, which significantly reduces
the forwarding table to fit into SRAM with very low cost. It can also be implemented in hardware using the pipeline technique. By using our
proposed method, the required memory space can be 90—170 Kb less than the previous scheme and three memory accesses for a lookup in the
worst case. When implemented in hardware pipeline architecture, our mechanism can achieve one routing lookup per memory access.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: IP routing; Classless interdomain routing; Pipeline technique

1. Introduction

Speeding up the packet forwarding in the Internet back-
bone requires high-speed transmission links and high
performance routers. The transmission technology keeps
evolving and provision of gigabit fiber links is commonly
available. Consequently, the key to increase the capacity of
the Internet lies in fast routers [5]. A multi-gigabit router
must have enough internal bandwidth to switch packets
between its interfaces at multi-gigabit rates and enough
packet processing power to forward multiple millions of
packets per second (MPPS) [6]. Switching in the router
has been studied extensively in the ATM community and
solutions for fast packet processing are commercially avail-
able. As a result, the major obstacle remaining for the high
performance router design is the slow, multi-memory-
access IP lookup procedure. A router must search forward-
ing tables using the DA (destination address) as the key, and
determine which table entry represents the best route to
forward the packet to its destination. Since the development
of CIDR in 1993 [1], IP routes have been identified by a
(routing prefix, prefix length) pair, where the prefix length
varies from 1 to 32 bits. Due to the fact that table entries
have variable lengths and that multiple entries may repre-
sent the valid routes to the same destination, the search may

* Corresponding author. Tel.: +886-35-731851; fax: +886-35-727842.
E-mail address: pcwang@csie.nctu.edu.tw (P.-C. Wang).

be time consuming, especially in a backbone router with a
large number of table entries.

While designing the simple and fast routing lookup
scheme, the following considerations should be considered
simultaneously.

e Simplicity: It should make the data structure and the rout-
ing lookup operation as simple as possible, such as using
pre-computation to avoid search complexity shown in
Ref. [13].

e Reducing routing-table space: If we can reduce routing-
table size to fit into the high speed SRAM, the perfor-
mance can be promoted significantly.

e Parallelism: To provide next generation tera-bit/s high-
speed transmission, pipelining will play an important
role. Therefore, another issue is to exploit the high paral-
lelism within the routing-table lookups.

Although the existing related works have their advan-
tages, however, those approaches either use complicated
data structures, which result in high complexity for updating
the routing entries, such as Refs. [12,13], or they are not
scalable to IPv6, such as Refs. [7-9]. This work presents a
fast longest-prefix matching scheme for IP switch routers.
Our scheme needs relatively small SRAM and can be imple-
mented using hardware pipeline architecture. Based on our
proposed scheme, the forwarding table would be small
enough to fit into SRAM at a very low cost. The required

0140-3664/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0140-3664(01)00360-7

304

P.-C. Wang et al. / Computer Communications 25 (2002) 303-312

32 bits IP address

| 16 bits \

16 bits

Indexing @

Segment Table
N T B
25 entries
Starting Address of NHA
T T T
4 8 8
Jde J J

NHAo f<a, b,> NHAof<a ,b,> NHAof<a,b,>

T T
w (2]
@ 2
- = - T = = -
@ - ['}] -
™ = ™ -
& L
NHAof<a _,.b_,> NHAof<a b >

Fig. 1. Indirect-lookup mechanism.

memory space of the resulting forwarding table can be 90—
170 Kb less than the previous scheme. Most of the address
lookups can be accomplished in single memory access. In
the worst case, the number of memory accesses for a lookup
is three. When implemented in hardware, the proposed
scheme can achieve one routing lookup within one memory
access time.

The rest of the paper is organized as follows. Section 2
describes the previous work. The proposed longest prefix
matching scheme and the hardware architecture is presented
in Section 3. The performance analysis of the proposed
scheme is addressed in Section 4. Finally, a concluding
remark is given in Section 5.

2. Related works

Several works have been proposed with novel data struc-
tures to reduce the complexity of longest-prefix matching
lookups [11-13]. These data structures and their accompa-
nying algorithms are designed primarily for software imple-
mentation, they are usually unable to complete a lookup in
few memory-access-time. The most straightforward way to
implement a lookup scheme is to build a forwarding table
for all possible IP addresses. However, the size of the
forwarding table (next-hop array; NHA) is too large (2%
entries) to be practical.

To reduce the size of the forwarding table, an indirect

32 bits | P address

| 1B bils [

1Bbits |

e

Starting Address of NHA

2 entries 2 entries

NHAo f<a ,b,> NHAof<a ,b,> NHAof<a ,b.>

Pointerto NHA and
L; (Maximum Prefix Length - 16)

2 entries

NHAof<a b ,> NHAof<a b >

Fig. 2. Indirect-lookup mechanism with variable offset length.

P.-C. Wang et al. / Computer Communications 25 (2002) 303-312 305

Network Processor

RT FT

Route Update

FT
Packets Input ——sns s ~—— Packets Qutput

Forwarding Engine

Fig. 3. Architecture of the IP router.

lookup mechanism, as shown in Fig. 1 [8], can be employed.
Each IP address is split into two parts: the segment (16-bit)
and the offset (16-bit). The segment table has 64 K entries
which record either the next hop of the route or pointers
pointing to the associated NHAs. Each NHA consists of
64 K entries, each entry records the next hop for the desti-
nation IP address. This scheme uses a maximum of two
memory accesses for a lookup in a 33-Mb forwarding
table. By adding an intermediate-length table, the forward-
ing table can be reduced to 9 Mb; however, the maximum
number of memory accesses for a lookup would be
increased to three. When implemented in hardware pipeline,
the scheme can accomplish one route lookup every memory
access and achieve up to 20 million lookups per second.
In Ref. [9], Huang et al. further reduced the size of the
associated NHA by considering the distribution of the
prefixes belonging to the same segment, as demonstrated
in Fig. 2. With 58,000 routing prefixes, it results in about
1.3 million entries in the NHA. With 1 b per entry, the total
required memory size (including segment table) is more

than 1.5 Mb, and the required memory accesses is two. By
using the compression, the required memory size can be
reduced to 590 Kb, but the number of memory accesses is
increased to three. The time complexity for building the so-
called Code Word Array (CWA) and the compressed NHA
(CNHA) is O(n log n) [9] where n denotes the number of
prefixes in a segment. However, due to the characteristic of
compression, it is necessary to rebuild the CNHA for updat-
ing the forwarding table. Since the routing updates may
occur every few seconds, the performance might degrade
severely due to the memory bandwidth contention.

3. The proposed scheme

Fig. 3 conceptually depicts the architecture of the IP
router, which mainly consists of a network processor and
a forwarding engine. The forwarding engine employs a
forwarding table (FT) downloaded from the network proces-
sor to make the routing decision. The network processor
executes the routing protocols, such as RIP and OSPF,
and maintains a routing table (RT) and a dynamic forward-
ing table for fast updates. Once the route updates, the
forwarding table in the network processor will be renewed.
Consequently, the forwarding engine will update its table
based on the update information from the network processor
without downloading a new forwarding table. Although
routing updates may occur frequently, forwarding table
update for each routing update is unnecessary. This is because
routing protocols, such as RIP and OSPF, need minutes to
converge, and the forwarding tables can grow a little stale and
need to be updated only once every 30—60 s [14].

70,000
B AADS
O Mae-East
60,000 O PacBell
B Paix
O Mae-West
50,000
g
% 40,000
w
5
(7
£ 30,000
=
=
20,000
10,000
0 BT ey]

0 1 2 3 4 5

7 8 9 0 11 12 13 14

Prefixes Count within a Segment

Fig. 4. Prefix count distribution.

306 P.-C. Wang et al. / Computer Communications 25 (2002) 303-312

Table 1
The sample routing prefixes

Routing prefix Prefix length

63.192.0 20
63.192.16 20
63.192.32 19
63.192.64 19
63.192.96 20
63.192.112 20

3.1. NHA construction algorithm

Although the number of Internet hosts has increased
exponentially, the routing prefix is still very sparse. For
example, there are about 58,000 routing prefixes in current
backbone router but 65,536 segments totally. For each
segment, there is less than one routing prefix contained in
a segment on average. Moreover, we found that for most
segments, there is no routing prefix to define the route, as
shown in Fig. 4. In fact, only few segments contain multiple
routing prefixes, we call that routing locality. For the nearer
area in topology, the number of routing prefixes becomes
higher, and the prefixes in the associated segment become
more diverse. Conversely, for the farther region, there are
less and orderly routing prefixes within a segment. There-
fore, it is possible to arrange prefixes for most segments and
reduce the required memory.

By observing the routing information in Table 1, we can
find that all routing prefixes belong to the same segment
(63.192). In Huang’s algorithm, the total required entries
in an NHA would be 2%°7'9 = 2* If we further analyze
these prefixes, we can find that the first 17 bits
(00111111110000000) of these prefixes are the same.
Since the longest prefix length is 20, this means that we
only have to record the 3-bits variation by building the
NHA with 27" = 2% — entries for these six prefixes.
The longer the common part is, the more the NHA entries
can be reduced. The only one problem is how to carry the
extra prefix information. To deal with this issue, we can add
few prefix bits and its length to the entry of the segment
table. This will increase the size of the segment table as
trade off. The resulting NHA is shown in Fig. 5. Those
entries with no routing prefix information, such as P; and
Ps, should be filled with a default route.

The formal algorithm to construct the NHA for a segment
is given below. Let /; and A; be the length and output port

Routing Prefix Prefix Length
63.192.0 20
63.192.16 20
63.192.32 19
63.192.64 19
63.192.96 20
63.192. 112 20

Fig. 5. The resulting NHA from the sample routing prefixes.

identifier of a routing prefix p,, respectively. The cprefix
represents the common part of routing prefixes beyond the
first 16 bits in a segment, and clength is the length of cprefix.
Mlength is equal to the longest prefix length in the segment
minus 16, i.e. clength = Mlength. Let p{(x,y) represent the
bit pattern of p; from the xth bit to the yth bit. If the input
prefix length is equal to Mlength, only one entry would be
updated. Otherwise, all entries with the prefix equal to the
bit pattern p;(clength + 16,1;) will be updated with its
output port identifier 4;. Thus, the range of updated entries
is from V(p;(clength + 16, 1;)2M"$" % to V(p,(clength +
16, li))leength—l, + (2Mlength—l,» _ 1)’ where V(pi(a, b))
pattern p;(a, b). Besides, most routers have a default route
with zero prefix length which matches all addresses. The
default route is used consequently if no other prefix
matches. Thus, the table is initially assigned the default
route for possible reference to these entries.

3.1.1. NHA-construction algorithm

Input: The set of routing prefixes of a segment.
Output: The corresponding NHA of this segment.
Step 1. Let I; and h; be the length and output port identifier
of a routing prefix p, respectively.
Step 2. Let P = {pg,P1,...,Pn—1} be the set of sorted
prefixes of an input segment. For any pair of prefixes p;
and p; in the set, i < j if and only if I; <.
Step 3. Assign cprefix = po(17, 1), clength = Iy and
Milength =1, | — 16.
Step 4. Fori=0ton — 1 do
cprefix = common bits between the p(17,1;) and
cprefix.
clength = the length of cprefix.
Step 5. Construct the NHA with size of 2M'ens™h=clensih
entries, and set initial value to default route.
Step 6. Fori=0ton— 1 do
Calculate the range of updated entries and assign h;.
Step 7. Stop.

Let us use an example to show how this algorithm works.
Consider the set of sorted prefixes in Fig. 6. In Step 4, all
prefixes are examined once for deciding the cprefix and
clength values, and it results in O for cprefix and 1 for
clength. Since the Mlength is equal to 8, the constructed
NHA is with 287! = 128 entries. After constructing the
NHA, the table is assigned with default route as the initial
value because the routing prefixes cannot cover every entry
in NHA. Then the first prefix (24.48.8/22/10) will be
fetched. The 8th (=2x2%79) to 11th (=2x2%79 +
2676 _ 1) entries are the associated entries for
(24.48.8/22/10) and will be overwritten with the output
port identifier 10. The process is repeated for other prefixes.
When processing the prefix (24.48.9/24/7), one can find that
the value of the 9th entry is 10, which is defined by prefix
(24.48.8/22/10). But the prefix (24.48.9/24/7) is a longer

P.-C. Wang et al. / Computer Communications 25 (2002) 303-312 307

Segment Table

63192 common-prefix =<1> length=1

NHA of <63.192>
» P, <63.192.0/20>
1 P, <63.192.16/20>
i P, <63.192.32/19>
' P,
P, <63.192.64/20>
P5
P <63.192.96/20>
P, <63.192.112/20>

Fig. 6. NHA construction example.

one. To satisfy the longest prefix matching, the 9th entry
will be overwritten with 7 again. Since the prefixes have
been sorted by their lengths, this process can be done trivi-
ally.

Obviously, the computation cost is low. If a new routing
prefix is received, it will recalculate Mlength, cprefix,
clength, which is the same as Step 4, and rebuilds the
NHA if its size is changed. By applying the proposed algo-
rithm, the entries of the generated NHA can be 25% less
than Huang’s algorithm. The detailed organization of the
segment table and the hardware architecture will be
provided in Section 3.4. The effect of the cprefix is also
demonstrated in Section 4.

3.2. NHA compression algorithm

In the proposed NHA construction algorithm, the size of

<24.48.13/24/1>

<24.48.12/24/7>

Sample Prefixes

Prefix Length | Output Port

<24.48.10/24/10>

24488 22 10
24.48.40 22

<24.48.9/24/7>
24.48.56 23 10
24.48.80 23 7
24.48.82 23 7
24.48.9 24 4| <2448.8/22/10~
24.48.10 24, 10
24.48.12 24 7
24.48.13 24, 1 .
24.48.55 24 1
24.48.84 24, 7

8 3 1| 12| 13

the generated forwarding table would be around 900 Kb
with 3 bits cprefix and one byte per entry. Moreover, the
NHA can be further compressed based on the distribution of
output port count within an NHA. In Fig. 7, we show the
distribution which is generated from traces of several main
NAPs. We can find that approximately 54% segments
consist of less than two output ports, where only one bit is
needed to identify, and 96% segments can be encoded with
less than two bits. And also, the maximum number of output
ports in a segment is 20. Thus, we can encode the output port
identifiers within an NHA to reduce its size.

If we assume that for each segment there are m possible
output ports at the most (including the default route if neces-
sary), then we can use b bits, where Wl -1 = 2b, to
encode the output port identifiers. In addition, we need to
establish another index table which records the physical
output port addresses, as shown in Fig. 8. An extra field,

<24.48.80/23/7>

<24.48.55/24/1> <24.48.82/23/7>

<24.48.40/22/1> <24.48.56/23/10> <24.48.84/24/7>

40 43| 55 |56 57| 80 &1/ 82 &3| 84

127

The Interval relation of prefixes in the NHA of segment <24.48>

Fig. 7. The distribution of Output Port Count within a segment.

308

P.-C. Wang et al. / Computer Communications 25 (2002) 303-312

8000

7000

6000

5000

4000

Number of segment

3000

2000

1000

AADS
Mae-East
Paix

M Mae-West

. | 1s s,
1 2 3 4 5 6 7

9 10 1 12 13 14 15 16 17

Number of Output Ports within a segment

Fig. 8. An NHA compression example.

cbits with b bits is appended to the entry of the segment
table to indicate the encoded bits. But for segments with
only one output port, we can compress its NHA into one
entry since the whole NHA is with only one value. In this
case, we don’t really have to create the NHA, instead, we
assign the output port value in the pointer/next_hop field
and the rest of the field is the same. In the previous trace,
the entries of most NHAs can be compressed to less than
2 bits, and the longest entry in this trace is 5 bits. The index
table can be appended to the tail of NHA and be searched
based on the address of NHA plus its size. To update the
forwarding table, we can add an entry in the index table and
some necessary entries in the NHA rather than updating the
whole table.

The algorithm for compressed NHA construction is
shown in below. There are two extra steps in the NHA
construction algorithm. The first one is to find out the possi-
ble output ports for the prefixes in a segment. However, to
avoid unnecessary searching process, we use a simple vector
to record the output ports temporarily. Each output port is
mapped to one bit in the bit vector, and the vector is initially
filled with 0. When the prefix with output port k is exam-
ined, the kth bit of the vector will be marked as 1. After
examining all prefixes, the sorted index table can be built
directly from the vector. Consequently, the cbits is calcu-
lated and then the compressed NHA space is allocated. The
second extra step is to map the original output port to the
index table. Since the index table has been sorted, the time
complexity for mapping is O(log m), where m is the number
of entries of the index table. Obviously, m is always less
than n(number of prefixes), thus the time complexity is
O(n log n).

3.2.1. Compressed-NHA construction algorithm

Input: The set of sorted routing prefixes of a segment.
Output: The corresponding compressed NHA of this
segment.
Step 1. For each prefix, calculate cprefix, Mlength and
clength. And also, records the output port value in the
output port vector.
Step 2. Construct the index table from the output port
vector and calculate the cbits value according to the
output port count.
Step 3. Construct the NHA with size 2Mensth—clensih o
cbits.
Step 4. For each routing prefix
Search the index table for index value of output port.
Calculate the range of updated entries in NHA and fill
with index value.
Step 5. Stop.

The biggest advantage of the proposed compression
scheme is the avoidance of bit-wise operation. As described
in Ref. [9], the lookup algorithm has to perform bit-by-bit
test to CWA for 1s, which will cost 32 clock cycles (with
32 bits segmented-bitmap) in the worst case. With the
proposed algorithm, this operation will spend only one
clock cycle.

3.3. Hardware architecture

A feasible high-level hardware architecture of the
proposed lookup scheme is shown in Fig. 9. The entry of

P.-C. Wang et al. / Computer Communications 25 (2002) 303-312 309

Index Table for NHA;
P

[¢]

1

N

W

IS

<

@

T(TV|0|T|TV(TV|T

~

Fig. 9. Hardware architecture of the proposed lookup scheme.

the segment table consists of 5 parts: pointer/next hop,
cprefix, clength, Mlength and cbits. The length of pointer/
next hop is 20 bits which can map up to 1 Mega memory
addresses, this is more than five times the space required for
storing the whole NHAs generated from the real world rout-
ing tables. Since the maximum prefix length minus the
length of segment (16) is smaller than 16, the length of
Mlength is 4 bits. Then we consider the left three fields.
The maximum number of output ports from a segment is
20, it needs 5 bits to represent the addresses. Thus the bit
count of cbhits is 3. If we use cprefix with length 3, then the
clength is 2 bits. Therefore, the length of each entry is
32 bits, and the size of the segment table is 216% 32 bits,
i.e. 256 Kb.

When a DA is fetched, its first 16 bits are used as an
index to the segment table. The value of pointer/next_hop
field in the corresponding entry records the next hop if it
is smaller than 256. The value will be forwarded to the
selector directly. Otherwise, it records the starting address

DA(clength, Mlength) is used to compare with the cprefix
stored in this entry. If two values are identical, then
V(DA(clength, Mlength)) plus the value of the pointer is
used to access the NHA. Or the default output port will be
forwarded to the selector. The value in the NHA is the index
to the associated index table, which is appended to the NHA.
Thus, the physical output port value can be fetched by
adding the starting address of NHA with its size and the
index value.

An illustrative example is presented to demonstrate how
the forwarding table is constructed according to the
proposed architecture, as shown in Fig. 10. These prefixes
belong to segments (24.40), (24.48) and (24.112), respec-
tively. For the segment (24.40), the cprefix is 00 and the
clength is 2. Thus, the resulting NHA consists of only two-
entries. Notice that default route is not necessary in this
case, because these two entries are covered by the given
prefixes. Therefore, there are only two values in the index
table. But for the segment (24.48), not all entries are

of the associated NHA. Then the bit pattern assigned with a dedicated output port, which can be
l NHA
Index for NHA Next Hop
—V (DA(clength, Mhgt h) - -
a8 — 5
0 Segmentation Table ,—» 8 - ifidex Tablo
A
NHA addr.
- _I o o
—» ¢ —p-Next
—> 2 Hop
15 . cprefix
] true -
| NHA size = 2 Mlength-clengih)
]
S ER fal
— alse
I - g % - (default route)
g
31 Format of Segmentation Table Entry
Pointer/Next Hop cprefix |o\9ngm |Mleng#7 | cbits |
20 bits 3 bits 2 bits 4 bits 3 bits

Fig. 10. Forwarding-table example.

310 P.-C. Wang et al. / Computer Communications 25 (2002) 303-312

Routing Table

f—2 bits—f——1 bytes—)|

Segment Table
Miength [cprefix [clength [cbiis [Pointer/Next Hop

24.4 a[m]élil

Prefix Length |Output Port Next Hop Indox Table
g::go:z :g ; k—1 bits 1 bytes :]1 Default Route
24.488 2 10 Next Hop Index Table

24.489 24 7 —0 0

24.48.10 24 10 1 1 9

24.48.2 24 7 2 entries 8

24.48.8 24 1 9

24.48.4 2 1 10

24485 24 1 1 ;

24.48.% 23 10 13

24.48.8 23 7

24.48.2 23 7

24.48.8 24 7

24112 16 9 40

24.88 8 1 o | 1 T 2]
2412 o 1 o T o T o] 9

128 entries

Fig. 11. The pipelining IP lookup diagram.

observed from Fig. 6. Thus the default route is added to the
index table.

3.4. Pipelining hardware architecture

As described above, at most three memory access time is
needed to accomplish an IP-address lookup. If we can
implement this architecture in pipelining hardware, the
forwarding throughput can be improved to one routing
lookup per memory access. However, due to the structural
hazard caused by compression scheme, this cannot be done
trivially. Therefore, we propose a simple hardware imple-
mentation for the forwarding engine in this subsection.

Since we append the index table to the tail of NHA, it has
to perform another memory access for output port value on
the same memory space, which is the same as Huang’s
algorithm. There are two solutions to solve this problem.
The first one is using the dual port memory to implement the
NHA storage with high cost. Another solution is to put the
index table in additional memory. But the address of index
table is not recorded in the segment table entry. Therefore,
the main issue here is how to address the index table without
extra cost.

The most efficient way to address the index table is to
utilize the first n bits of NHA starting address. From the
given routing table, we find that there are about 10,000
index table entries at most. Therefore, 14 bits is enough to
address the index table. But for each NHA, the minimum
block is 22°~'* = 64 b since the first 14 bits of NHA address
must be different. Obviously, this is storage-inefficiency. On
the other hand, if we use more bits for addressing, the utili-
zation of index table memory might be low, but it increases

the NHA memory utilization. Since the required NHA space
is much larger than the index table space, we use 16 bits as
index table address (i.e. 16 b per block) with 64 Kb memory
to store the index table. The detailed NHA addressing algo-
rithm is shown as below:

3.4.1. Compressed-NHA allocation algorithm

SA;: The Starting Address of NHA;;
EA;: The Ending Address of NHA;;
SA': The Starting Address of index table i;
EA!: The Ending Address of index table i;

For each compressed NHA;

Step 1. Fill the NHA from the SA; with associated output
port value;

Step 2. Fill the index table from SA’, where SA} = SA,/16;
Step 3. EA; = SA; + the size of NHA;;

Step 4. EA: = SA' + the size of index table i;

Step 5. SA;4, = max(EA; + 1,(EA} + 1) X 16);

To implement the pipelining hardware, we can use three
SRAMSs with 256, 256 and 64 Kb, respectively. Because the
three memory accesses are performed on three different
SRAMs, thus the IP lookups can be executed concurrently,
as shown in Fig. 11.

4. Performance analysis

Our proposed IP address lookup scheme aims at two

P.-C. Wang et al. / Computer Communications 25 (2002) 303-312 311

_ >D Output Port
Segment Table HA Index Table
B I
Y | Output Port
Segment Table Comprossad NHA Index Table
| °

Segment Table

> Output Port

Index Table

| Compressed NHA I

Fig. 12. Effect of the length of cprefix.

targets, one is to reduce the memory space needed for the
forwarding tables, and the other to speed up the IP lookup
process. Through simulation, we show that the proposed
scheme features a low memory requirement while achieving
a very high IP lookup performance. Note that the current
backbone routers have a routing table with about 58,000
entries [10]. We use the logs of publicly available routing
table as a basis for comparison. These tables are offered by
the IPMA project [4] (7/26/2000), they provide a daily snap
shot of the routing tables used by some major Network
Access Points (NAPs).

To further realize the effect of the extra cprefix, we use
the trace available in the router of Mae-East NAP to present
the relation between the total number of entries in NHAs
and the bits of cprefix, as shown in Fig. 12. Obviously, when
the length of cprefix reduces to 0, the number of NHA
entries using the proposed scheme is less than that of
Huang’s algorithm, this is due to the compression of 1-
output port NHAs. Moreover, by coupling the effect of
cprefix, the number of entries can be 28% less than that
needed in Huang’s algorithm. Moreover, the total size of
forwarding table can be as small as 436 Kb, which is 152 Kb
less than that in Huang’s algorithm. Although as the length
of cprefix increases, the number of NHA entries is reduced;

Table 2
The comparison of memory requirements

Site Routing entries Memory Memory usage
usage of of Huang’s
proposed algorithm (Kb)
scheme (Kb)

AADS 24,770 347 441

Mae-East 58,101 436 588

PacBell 32,388 390 504

Paix 13,395 306 475

Mae-West 36,943 310 398

it has to increase the entry length of the segment table, this
results in larger segment table. From the observation of Fig.
12, the suitable cprefix length should be no more than 3 by
considering both segment table size and number of NHA
entries.

In Table 2, we log five traces to build the forwarding table
for illustrating the effect of the proposed scheme. From the
numerical result, we can find that the proposed scheme can
reduce the required memory space effectively. In the most
significant case (PacBell), the proposed scheme can save the
required storage as large as 170 Kb. Notice that the more
entries there are, the more memory reduction can be
achieved.

We compare the proposed scheme with existing algo-
rithms in Table 3 consequently. We scaled all results of
previous works with software implementation to 300 MHz
CPU to ease the comparison. The worst-case lookup time of
LC tries [11] is not addressed in the literature so we fill it
with average lookup time. Obviously, the proposed scheme
outperforms than existing schemes in lookup speed while
the size of forwarding table is smaller than most of them.
Notably, the number of table entries used in the proposed
scheme (58,101) is much larger than those used in the
previous schemes (about 40,000).

5. Conclusions and future work

One of the major bottleneck in the Internet router design
is the slow, software-based IP address lookup process. In
this paper, we propose a fast IP-address lookup scheme that
requires less memory space, and it’s implementation is
feasible with high-speed SRAM. We also provide a pipelin-
ing hardware implementation. By employing an efficient
compression scheme, the size of the forwarding table can
be largely reduced. In the most significant case, the size of

312 P.-C. Wang et al. / Computer Communications 25 (2002) 303-312

Table 3
Comparisons with other existing works

Schemes Worst case lookup time (ns) Memory required (Kb)
Patrica trie 1650 3262
Binary Search on hash tables 650 1600
Lulea scheme 409 160
Multiway Search 330 950
LC tries 500* 464
Multibit trie 236 640
Proposed scheme 30 436

* This is the average performance since the worst-case performance is not addressed.

the resulting forwarding table can be 170 Kb less than the
previous scheme. Most of the address lookups can be done
in one memory access, with the worst case being three.
When implemented in pipelining hardware architecture,
the proposed mechanism can accomplish one routing
lookup in one single memory access time. With state-of-
the-art SRAM technology, our scheme can provide more
than 100 x 10° routing lookups per second. We have
demonstrated that the proposed scheme reduces the memory
size significantly and also outperforms the existing schemes
in lookup speed, but the routing-table reconstruction is
another issue for the backbone router since it requires
frequently route updates. Our future work will focus on
the fast routing-table update algorithm.

References

[1] Y. Rekhter, T. Li, An architecture for IP address allocation with
CIDR, RFC 1518, September 1993.

[4] Merit Networks, Inc., Internet performance measurement and analysis
(IPMA) statistics and daily reports, see http://www.merit.edu/ipma/
routing_table/.

[5] S. Keshav, R. Sharma, Issues and trends in router design, IEEE
Commun. Mag. 36 (5) (1998) 144-151.

[6] C. Partridge, et al., A 50-Gb/s IP router, IEEE/ACM Trans. Network.
6 (3) (1998) 237-248.

[71 M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding
tables for fast routing lookups, Proc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 3—14.

[8] P. Gupta, S. Lin, N. McKeown, Routing lookups in hardware at
memory access speeds, Proc. IEEE INFOCOM’98, San Francisco,
USA, March 1998.

[9] N.F. Huang, S.M. Zhao, J.Y. Pan, A fast IP routing lookup scheme for
gigabit switch routers, Proc. IEEE INFOCOM’99, New York, USA,
March 1999.

[10] P.C. Wang, C.T. Chan, Y.C. Chen, A fast IP lookup scheme for high-
speed networks, IEEE ICC’2000, pp. 1140-1144.

[11] S. Nilsson, G. Karlsson, Fast address lookup for internet routers, Proc.
IFIP Fourth International Conference on Broadband Communications
(BC’98), 1998, pp. 11-22.

[12] M. Waldvogel, G. Vargnese, J. Turner, B. Plattner, Scalable high
speed IP routing lookups, Proc. ACM SIGCOMM’97, Cannes,
France, Sept. 1997, pp. 25-36.

[13] B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway
and multicolumn search, IEEE/ACM Trans. Network. 7 (4) (1999)
324-334.

[14] C. Labovits, G.R. Malan, F. Jahanian, Internet routing instability,
Proc. ACM SIGCOMM’97, France, pp. 115-126.

