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Optical-constants model for semiconductors and insulators
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The refractive index and the extinction coefficient, i.e., the real and imaginary parts of the complex in-

dex of refraction, for semiconductors and insulators are derived as a function of photon energy. These
derivations apply f-sum rules and symmetry relations to critical-point transitions from the valence band
to the conduction band. Comparison with measured optical data reveals that present formulations are
valid over a wide range of photon energies immediately above the band gap to the first ionization thresh-
old for inner shells. The present work shows an improvement and extension over the theory of Forouhi
and Bloomer, which applies for a narrow range of photon energies above the absorption edge.

I. INTRODUCTION

Optical properties of solids can be characterized by
quantities such as the complex index of refraction
n ( )co= i(i)co+i (tr)coand the complex dielectric function
s(co) a=i(co)+isa(co) T. hese quantities are photon energy
co dependent and provide information on the propagation
of radiation and on the electronic structure of solids. '
Optical quantities are useful in the design of mirrors,
prisms, multilayers, etc.

The refractive index il(co) and the extinction coefficient
tc(co) are commonly determined by rejective and absorp-
tive spectroscopies. Utilizing modern synchrotron ra-
diation sources, these quantities can be measured over a
wide range of photon energies, from the far infrared to
the hard x-ray region. Theoretical formulations of g and
~ can be obtained by the energy-dependent dielectric
function through the relations il= [ [(E,+ sz)'~
+E, ]/2j'~ and tc= j[(E,+sz)'~ —E, ]/2j'~ . The real
and imaginary parts of the dielectric function, c.

&
and c.2,

can be derived by the quantum theory for the interaction
between radiation and matter. A widely accepted model
for the derivation of dielectric functions is the extended
Drude model ' for the description of collective oscilla-
tions and interband transitions. Parameters in this model
are determined by a fit of the imaginary part of the
dielectric function to corresponding experimental data.

However, it is the refractive index and the extinction
coefficient rather than the dielectric function which are
experimentally accessible. Therefore, analytical expres-
sions for the former two quantities are useful in the deter-
mination of fitting parameters and in the analysis of ex-
perirnental data. Previously, such expressions for semi-
conductors and insulators were established' ' only for
a narrow range of photon energies immediately above the
band gap. Later, Forouhi and Bloomer (FB) (Refs. 14
and 15) derived a formula for the extinction coefficient to
extend the validity to photon energies in the vicinity of
interband transitions. The FB formula sufFers at least
two deficiencies, i.e., the extinction coefficient does not

II. THEORY

A. f-sum rules

f-sum rules are important constraints for the analysis
of energy-dependent optical quantities. These rules may
be expressed in different forms involving the imaginary
part of the dielectric function, E2(co), the extinction
coefficient a.( co ), and the energy-loss function
Im[ —1/E(co)]. They are explicitly expressed as'

co E (co )dco = co

oi K(co )dio = co (2)

where co =Pi(4mNZe /m)' is the free-electron plasma
energy, N is the atomic (or molecular) density, Z is the

satisfy the symmetry relation and it does not comply with
f-sum rules. As a consequence, their formula cannot be
applied to photon energies around and above the plasmon
resonant energies.

In the present work, we construct an analytical expres-
sion for the extinction coefficient which satisfies the sym-
metry relation and sum rules. We also derive an expres-
sion for the refractive index by applying Krarners-Kronig
dispersion relations. These expressions are then applied
to the critical-point transitions for electrons from the
valence band to the conduction band of insulators and
semiconductors. Comparing the results between this
work and experimental data on il(co), tc(co), s, (co), E2(co),
and the energy-loss function Im[ —1/s(co)], it is demon-
strated that present formulas for the optical quantities
are valid for photon energies over a wide range from the
band gap to the edge of inner shells.
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total number of electrons per atom (or molecule), and e
and m are, respectively, electron charge and mass. Note
that these sum rules apply to optical quantities contribut-
ed by all absorption processes including valence-band ex-
citations and inner-shell ionizations over the entire ener-

gy interval: co=0—+ ~.
A typical spectrum of the optical quantity usually re-

veals well-separated peaks, with little overlapping, due to
different absorption processes. In such a case, one can set
the upper limit of integration in Eqs. (1)—(3) equal to an
energy cutoff co;, large compared to the ith peak energy
but small compared to other peak energies. Thus the
above sum rules may be separated into individual contri-
bution from each isolated absorption process by the ap-
proximate relations

f ,( ')d
0 2

4me IW(co)= i(k;„,ixik;„, ) i 5(co—cop),
3Ac

where W(cp) is the energy absorbed by the solid in the
range co to co+dco per unit time, I is the incident photon
intensity, c is the speed of light, and the Dirac 5 function
is owing to the conservation of energy. For the moment,
we consider a single critical-point transition from the
valence band to the conduction band, with transition ma-
trix element ( k;„,~

x
~ k,'„,) and the transition energy

ct)0=E E . The extinction coefficient is given by

A'cp(co) W(co)
26)I

where p(cp) is the number of possible transitions in the
range co to co+de per unit volume. Defining the dipole
oscillator strength of the transition as

and

2

f co K(co )dcp =
0 4 r]b

fo=

and substituting it into Eqs. (10) and (11),we obtain

(12)

2
i —1 m ~P, Ico'Im, d co' =—

o E(co')
(6)

neff(co) =
z ~ z f cp'E2(co')dco'

2~'e'A'N (7)

and

n, ff(co) = f c'o(Kco)d c'o,
~e AN

where co, is the plasmon energy associated with the ith
absorption process and qb is the background refractive
index. Note that the above partial f-sum rules for K(co)
and Im[ —1/s(co) ] yield eff'ective oscillator strengths that
are reduced by qb and gb due to the shielding of other
absorption processes. A detailed discussion about the
background refractive index will be given below.

It is useful to define an effective number of electrons
per atom (or molecule) corresponding to a given optical
quantity according to

p
K(CO) — 5(co cop)

4cop
(13)

Equation (13) does not satisfy the symmetry relation, '

i.e., K(co) = —K( —co). To rectify this situation, we let

~fo
K(co)= [5(co—cop) —5(co+cop)] .

4ct)p
(14)

(15)

The extinction coefficient of Eq. (14) also satisfies the sum
rule of Eq. (2). In this case, however, the lower limit of
integration must be extended from 0 to —~ with the
right-hand side of this equation multiplying by 2.
Derivations so far assume zero energy breadth or infinite
lifetime for the excited state in the critical-point transi-
tion. This assumption leads to the 5-function dependence
of the extinction coefficient on photon energy. In reality,
the spontaneous emission produces the damping of excit-
ed states. To accommodate the damping effect, one may
replace the 5 functions in Eq. (14) by the Lorentzian
line-shape function according to

m CO

n, ff(co) = co'Im, dco' .
2me AN E Co

For each absorption process, we expect that

(9) where I 0 is the damping parameter relating to the full
width at half maximum of the K(co) spectrum. Therefore,
the extinction coefficient becomes

n, ff(co) ~, :n,ff(co) ~,:n,ff(co) ~,= 1:g& '.rib
fpl pco

K(CP) =
2 2[(cp—cop) +I p][(co+coo) +I p]

(16)

in the limit co~co;. Equations (7)—(9) provide guidance
for the determination of the number of valence electrons
participating in critical-point transitions.

B. Index of refraction

Consider the forward propagation of photons in a
solid. ' The first-order time-dependent perturbation
theory under the electric dipole approximation gives'

g(co) =qb+ —Pf, dco',1 K(co')

7T —~ CO CO

(17)

where P denotes the Cauchy's principal value. Substitut-

The refractive index is connected to the extinction
coefficient by Kramers-Kronig (KK) dispersion relations.
These relations are direct consequences of the causality
principle. Based on the Hilbert transform in KK rela-
tions, it gives
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ing Eq. (16) into Eq. (17), we obtain

fo(m' —
mo

—r(')

2 [(~—~,)'+ r,'][(~+~,}'+r2] (18) 1,23

The above formulas for the refractive index and the ex-
tinction coefficient are approximate since they are de-
rived by first neglecting the damping effect and then
resuming this effect using a Lorentzian line-shape func-
tion. Corresponding approximate formulas for the real
and imaginary parts of the dielectric function can also be
derived using Eqs. (16) and (18) and the relations
e&(co) =q) (co)—Ic (co) and e2(co) =2qI(co)a(co). Alterna-
tively, the quantum theory yields a Drude-type dielectric
function as '

0.8

0.4
1.4

1.0—

0.2

I I I I I I I I

Fc( co coo )
,( )= b-

(c& coo) +co l'0

Fpg pcs
E,(~)=

(
2 ~2)2+~2y2 (20)

-0.2
0.8

0.6

0.4

0.2

0.0

I I « i I

8&e COI-f =
3

' l(k:. I-Ik:"& I'P(- ) (21)

be the oscillator strength for the ith critical-point transi-
tion. One can generalize Eqs. (16) and (18) into

where c.& is the background dielectric function of the
solid, I'p is related to the osci11ator strength, and yp is the
damping parameter. Comparing the approximate dielec-
tric function with the Drude dielectric function, we find
that they are equal under conditions E& =q)z, Fc=fogb,
ye=21 c, I o«coo, and fo «coo. To illustrate this com-
parison, in Fig. 1 we plot results in E,(co), E2(co), and
Im[ —I/e(co)] calculated using the approximate (solid
curves) and the Drude (dashed curves) formulas under
conditions e&=qlb=l, In=coo/10, and fo=coo/10. It is
seen that fairly good agreement is found for all functions
plotted. The imposed conditions I 0«coo and fc«coo
make Eqs. (16) and (18) valid only for insulators and
semiconductors where cop are large enough to satisfy
these conditions.

The above formulations are for a single critical-point
transition of electrons from the valence to the conduction
bands. The generalization of these formulations to a gen-
eral situation for several critical-point transitions can be
made in a straightforward way. It is not difficult to show
that each critical-point transition makes an independent
contribution to the extinction coefficient. Thus, one can
divide the oscillator strength into fractions f; with transi-
tion energy co; and damping coefficient I;. Let

I I I I I I I I I I I I I I I I i i I0 Q

0.0 0.5 1.0 1.5 2.0

Flax. 1. A plot of e&(co}, Ez(co}, and Im[ —I/E(c0}] calculated
using Eqs. (16) and (18) and the relations c

&

=g —a and
c2=2qa (solid curves) and using Eqs. (19) and (20) (dashed
curves) by taking Eb =r)~ =1, I 0=coo/10, and fo=c002/10.

C f, (co col I . )— —
1.=( [(co—co, ) +I 1. ][(co+co.) +I )

(24)

where the first and second summation terms indicate, re-
spectively, contributions from the valence band (having q
critical-point transitions) and from inner shells (with c ex-
citation groups). Since we are interested in the energy re-
gion co « cuj (j= 1 to c), Eq. (24) reduces to Eq. (23) with

where q is the total number of critical-point transitions
from the valence to the conduction bands.

To show that gb is indeed the background refractive
index due to the contribution from core electrons in inner
shells, one can rewrite Eq. (23) as

q f (~2 ~2~ F2~)

'; = ) [(co —co; ) + I";][(co+ co, ) +I, ]

f;I,co

;=i [(co—co;) +I;][(co+co;)+I;] (22)

C

rl„= 1+—,
' g

co +I (25)

and

q f (~2 ~2 P2}

;= i [(co —co; ) +I; ][(co+ co; ) +I, ]

It is seen that core electrons contribute to the back-
ground refractive index by an amount directly propor-
tional to their oscillator strengths but inversely propor-
tional to the square binding energies. Equation (25} will
be applied to a few examples discussed below.
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III. RESULTS AND DISCUSSION

We now fit Eq. (22) to optical data' for several in-
sulators and semiconductors. Tables I—IV list the fitting
parameters for MgO, SiOz, Si, and GaAs. In these
fittings, we check the accuracy of optical quantities in-
cluding ri, a, and Im( —1/E), critical-point energies tu;,
and sum rules of Eqs. (4)—(6) by comparing fitted values
to experimental data. It is confirmed that the total oscil-
lator strength of critical-point transitions satisfies the
sum rule, i.e., gq=, f; =co~, /rib, with co~, being the
plasmon energy of valence electrons. Critical-point ener-
gies measured by the optical reAectometry ' and calcu-
lated by the pseudopotential band theory for Si and
GaAs are also listed in Tables III and IV for comparison.
For MgO and Si02, our fits extend to ~=300 eV, which
exceeds the L-shell threshold energies of Mg and Si. In
these cases, the first eleven terms (i =1—11) in Tables I
and II correspond to critical-point transitions of the
valence band, whereas the last three terms (i = 12, 13,14)
are associated with L-shell excitations of Mg and Si.
Neglecting the K-shell contribution, we find that the re-
fractive index at the region well below the L-shell excita-
tion energy may be given by Eq. (24) with 14 terms or by
Eq. (23) with 11 terms. In the latter equation we find that
qb=1. 035 and 1.004 for MgO and Si02, respectively.
Thus the background refractive index is indeed deter-
mined by Eq. (25).

Figure 2 shows a comparison of q( cu ), a (co ), and
Im[ —1/E(co)] for semiconducting Si calculated presently
(solid curves) using Eqs. (22) and (23) and the relations
c&

=g —~ and e2=2g~, measured experimentally
(dashed curves) and determined by FB (chain curves). It
is seen that close agreement is found between present re-
sults and experimental data for all quantities plotted. It
is also seen that prominent interband transitions,
represented by the strong resonant peaks in g and ~ spec-
tra, occur in the region of critical-point energies below
—10 eV. Above this energy, the refractive index gradual-
ly approaches the asymptotic value gb, and the extinction
coefficient decreases with co . The corresponding FB re-

1

2
3
4
5
6
7
8
9

10
11
12
13
14

1

2
3
4
5

6
7
8
9

10

TABLE II. Parameters in Eqs. (22) and (23) for SiO&.

gb=1 (1.004 if i =1 to 11 are used)

f; (eV') I; (eV)

6
15
10
38
51

110
45
41
33
70
63
16
58

170

0.16
0.60
0.69
1.31
1.70
3.96
4.97
5.00
4.98
8.00

12.94
5.95

14.90
59.82

10.2
11.6
12.4
14.0
16.9
20.0
25.0
30.0
40.0
51.0
72.0

108.0
134.6
189.5

0.2
0.4

11.0
16.0
10.0
21.0
23.0
70.0
70.0
50.0

0.01
0.01
0.36
0.25
0.30
0.50
0.70
1.60
2.30
2.80

3.43
3.48
3.72
4.35
4.75
5.45
6.40
7.80

10.60
14.00

3.40
3.45
3.66
4.30
4.57
5.48

3.42
3.48

4.47
4.60
5.56

TABLE III. Parameters in Eqs. (22) and (23) for Si.

Experimental Theoretical

gb = 1.015 reAectivity critical-point

f; (eV ) 1; (eV) co; (eV) structure (eV) analysis (eV)

TABLE I. Parameters in Eqs. (22) and (23) for MgO.

gb=1 (1.035 if i =1 to 11 are used)

f, (eV') I; (eV) co; (eV)
TABLE IV. Parameters in Eqs. (22) and (23) for GaAs.

1

2
3
4
5

6
7
8
9

10
11
12
13
14

2
24
35
35
24
84
38
28
29

131
143

18
95

500

0.10
1.30
0.90
0.59
0.91
1.40
1.00
0.79
1.58
7.47

11.92
1.96
8.95

29.64

7.8
9.1

11.0
13.3
14.8
17.5
19.4
21.2
24.1

34.0
49.0
58.0
72.0
99.0

1

2
3
4
5

6
7
8
9

10
11

0.8
3.4
5.8

13.0
20.0
13.0
20.0
44.0
59.0
49.0
13.0

0.10
0.20
0.40
0.50
0.40
0.50
0.79
1.40
2.20
2.20
1.70

3.03
3.25
3.70
4.60
5.05
5.76
6.70
8.00

10.50
13.50
21.50

3.02
3.25

4.64
5.11
5.64
6.60

3.03
3.25

4.54
5.07
5.76
6.67

9.87
12.55

Experimental Theoretical
gb =1.01 reAectivity critical-point

i f; (eV ) I; (eV) ro; (eV) structure (eV) analysis (eV)
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FIG. 7. A comparison of g(co), ir(co), and Im[ —I/E(col] for
Si02 glass calculated using Eqs. (22) and (23) and the relations
El g K an E2d =2gK (solid curves) and measured experimen-
tally (dashed curves) (Ref. 20).

and ,n( sue)~, at large co. The FB results on n, fr(co)~
2

also deviate greatly compared to experimental data at
co& 15 eV.

Similarly, in Fig. 4 we plot the results of q(co), ir(co,
and Im[ —I/E(ru)] for semiconducting GaAs calculated
presently (solid curves), measured experimentally (dashed
curves), and determined by FB (chain curves). It is again
seen that close agreement is found between present re-
sults and experimental data for all quantities plotted.
The small deviations occurring at cu&22 eV are due to
the contribution from d-band excitations. The onset of
these excitations is -25 eV, above which optical data are
unavailable. It is also seen that the FB results are in
agreement with experimental data only for co (6 eV. The
failure of these results around and above plasmon ener-
gies is clearly demonstrated.

As an example of insulators, in Fig. 5 we plot g(co,
ir(ro), and Im[ —I/E(co)] for MgO. Here the agreement
between present results (solid curves) and experimental
data (dashed curves) is quite good for all quantities plot-
ted. Figure 6 shows a plot of n, ff(co) calculated presently
( 1'd curves) and measured experimentally (dashed

fcurves) for MgO. Note that the saturation value o
( ) ~

is near 16 instead of 8, the number of valencenet 6) ~ Is nea

electrons. This is due to the onset of Mg L-shell excita-
tions near 55 eV; there only about 75% of the oscillator
strength of valence electrons is exhausted. Thus a strong
overlapping of oscillator strengths between the valence
band and the Mg L shell exists above 55 eV. Also, the
next filled 0 X shell lies -500 eV above the valence
b d Therefore the isolated absorption group should in-an. e

2 . 2 2 4elude eight valence electrons (3s of Mg; 2s and p o
0) and eight Mg L-shell electrons (2s and 2p of Mg).
The merge of saturation values of all three n, ( a)scupectra

findicates that gb =1. It means that absorption peaks o

Mg and 0 K shells are far away from critical-point tran-
sition peaks of the valence band.

Finally, in Fig. 7 we plot optical quantities for another
insulator, Si02 glass. Good agreement is found between
present results (solid curves) and experimental data
(dashed curves). In this case, the isolated absorption
grou~roup involves 16 valence electrons (3s an p o i;3 of Si
2 d 2p of 0) and 8 Si L-shell electrons (2s and p

2 2 6s an p o
=300of Si). The saturation of n, fr(co) to 24 occurs at co=

eV.

IV. CONCLUSIONS

We have constructed analytical expressions for the ex-
tinction coefficient and the refractive index of semicon-
ductors and insulators. Our approach involved the appli-
cation of f-sum rules and symmetry relations. These ex-

' ~

pressions contain parameters charactenzing the oscillator
strength, the damping effect, and the transition energy as-
sociated with each critical-point transition from the
valence to the conduction bands. Contributions from
inner shells to the refractive index in the vicinity o
critical-point energies were included as a background re-
fractive index. Applications of present formulations were
made for MgO, Si02, Si, and GaAs over a wide range of
photon energies. Results were in very good agreement
with experimental data for all optical quantities studied.
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