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Abstract. Human faces are the main organs for expressing human emotion. In this study, a new iterative approach
to analyzing the head pose and the facial expression of a human face from a single image is proposed. The proposed
approach extends the concept of successive scaled orthographic approximations, which was used to estimate the
pose of arigid object, to develop a method to estimate the parameters for a non-rigid object, namely, a human face.
The implementation of the proposed method is simple; furthermore, no initial guess is required. The convergency
property of the proposed method is also analyzed theoretically and experimentally. Experimental results show that
the proposed method is robust and has a high percentage of convergency, and thus prove the feasibility of the

proposed approach.
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1. Introduction

Human faces are the main organs to express and convey
human emotion. Because of growing demand for appli-
cations of the internet and human-computer interaction
such as computer facial animation, distant learning,
talking agents (Thalmann et al., 1998), model-based
video coding (Li et al., 1993), etc., knowing about the
head pose and facial expression of a human becomes
important. In this study, a new method for estimating
the head pose and facial expression of a human face
from a single view is proposed.

In general, there exist two vision-based approaches
to estimating the parameters for the head pose and the
facial expression of a human face. The first approach
(Lietal., 1993; Choi et al., 1994; Tao and Huang, 1998)
tries to estimate the parameters of the head pose and
the facial expression simultaneously but this approach

*This work was supported by National Science Council under Grant
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faces a complicated non-linear problem. Thus, most
existing systems of this approach are based on instan-
taneous motion. That is, they process the motion of the
head pose and the facial expression with short sampling
periods, and thus the change of the head pose and the fa-
cial expression in a short period of time can be approxi-
mately described by a simplified form, for example, by
a linear or quadratic form. Due to this simplification,
the parameters for describing the head pose and the
facial expression can be solved easier. However, these
systems need high speed hardwares to achieve estimat-
ing and tracking the head pose and facial expression in
short sampling periods. Instead of using full perspec-
tive projection, Bascle and Blake (1998) proposed a
method with a simpler mathematical formulation to es-
timate the head pose and the facial expression based on
an affine with a parallax model. However, the estimated
head pose and facial expression may be inaccurate.
The second approach (Li et al., 1996; Zhang, 1998;
http://www.ina.fr/Recherche/TV) estimates the head
pose and the facial expression separately. First, the head
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pose is estimated by some explicitly determined rigid
features on the face. After obtaining the head pose, the
head movement can be compensated and thus the pa-
rameters for the facial expression can be solved. How-
ever, this approach may be unstable and inaccurate
(Bascle and Blake, 1998). The first reason is that it
is sensitive to noise because the head pose is estimated
from only a few rigid features on the face such as eyes’
corners and nostrils; in addition, stretched expressions
might cause these rigid feature points nonrigid. The
second is that the errors in estimating the head pose
might propagate to the estimation of facial parameters.
In stead of using explicitly determined rigid features, Li
and Forchheimer (1994) estimated the head motion be-
tween two consecutive frames by an M-estimator which
excludes the feature points violating rigidity from com-
puting the head motion. However, this method cannot
work well if there do not exist enough rigid features
between two consecutive frames.

In this study, to analyze the head pose and the facial
expression robustly, a new method is proposed to es-
timate the parameters for the head pose and the facial
expression simultaneously from a single perspective
view. The proposed method estimates the head pose
and the facial expression from the relation between
the features of a 3-D face and their respective per-
spective projections. The advantages of the proposed
method are as follows. First, since no instantaneous mo-
tion techniques are adopted, the proposed method can
be implemented on commercial hardwares. Second, be-

cause the proposed method utilizes all detected features
at a time and because the proposed method does not
reply on explicitly determined rigid features, the pro-
posed method is more robust than the second approach
mentioned above.

Shown in Fig. 1 is a diagram of the system proposed
in this study for analyzing the head pose and the facial
expression of a human face from a single view. This
system consists of four main modules, namely, the 3-D
face model creation module, the analysis module, the
computer graphics module, and the animation module.
The analysis module is designed to estimate the pa-
rameters for the head pose and the facial expression
of a person using his 3-D face model established by
the 3-D face model creation module. According to the
estimated parameters, the animation module animates
the facial motion using a computer graphics model es-
tablished by the computer graphics module. For appli-
cations aiming at talking agents and video games, etc.,
the estimated parameters need not be very accurate, so
some of the parameters for the 3-D face model for an
individual human can be obtained by a transformation
from a generic model. In this paper, we focus on the
analysis module.

The proposed method for analyzing the head pose
and the facial expression of a human face is based
on DeMenthon and Davis’s method (DeMenthon and
Davis, 1995), which computes the pose of a rigid ob-
ject with a perspective model by successive scaled or-
thographic approximations (Horaud et al., 1997). This
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Figure 1. System diagram.



method has good convergency property, needs no ini-
tial guesses, and uses fewer floating-point operations
than classical approaches such as Newton’s method for
every iteration (DeMenthon and Davis, 1995). The pro-
posed method deals with the motion of a human face,
which is non-rigid, and the proposed method also inher-
its the merits of DeMenthon and Davis’s method. Fur-
thermore, it must be pointed out that the advantages of
DeMenthon and Davis’s method are very valuable for
analysis of human faces. Especially, since there need
tens to twenties parameters to be estimated for a human
face in general, it is difficult to generate good initial
guesses for the classical non-linear method. Therefore,
amethod without initial guesses is desired. In this study,
the convergency property for the proposed method is
analyzed based on some proposed sufficient criteria for
the convergency property of DeMenthon and Davis’s
method. It is shown that the proposed method has high
percentage of convergency without initial guesses in
general configurations.

The remainder of this paper is organized as follows.
In Section 2, the adopted 3-D face model is described
first. From the 3-D face model, the mathematical for-
mulation for analysis of the head pose and the facial
expression is derived. The proposed method is based
on the technique of successive scaled orthographic ap-
proximations, which is so reviewed in Section 3. In
Section 4, the proposed method is presented. Anal-
ysis of convergency and complexity of the proposed
method is discussed in Section 5. Experimental results
including those of computer simulation and processing
real images are presented in Section 6. Discussions and
concluding remarks are given in the last section.

inner

for [[my;|l; < r{"" and 6;; > 67";
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the amount of jaw rotation, the displacement of eye-
brows, etc., are also included. The facial expression
can be described by a linear combination of some key
expressions (Li et al., 1993; Li and Forchheimer, 1994;
Choi et al., 1994; Ullman and Basri, 1991; Tao and
Huang, 1998; Bascle and Blake, 1998) or muscle vec-
tors (Terzopoulos and Waters, 1993; Lei et al., 1996). In
this study, the latter approach is adopted. Specifically,
the muscle-based face model conducts facial expres-
sions based on the properties of the facial muscle and
skin. In this study, a human face is represented by the
muscle-based face model described in Appendix A of
Parke and Waters’s book (Parke and Waters, 1996) with
a little modification. The main modification is model-
ing the amount of mouth opening like the muscle con-
traction value for a muscle vector.

Letx; and x; represent the position of the ith feature
point before and after muscle activities, respectively.
Suppose there exist m muscle fibers in the face model.
When the muscle fibers activate, the displacement of
the ith feature point is a weighted sum of m muscle
activities acting on the ith feature point as follows:

m

’
Xl':Xi+ E cjbijm,j,

Jj=1

ey

where b;; is a muscle blend function that specifies the
influence of the jth muscle fiber on the ith feature point,
c; is the contraction factor for the jth muscle fiber, and
m;; = X; —m( where m¢, is the point that the jth muscle
fiber emerges from the bone. The muscle vector m; for
the jth muscle fiber is defined by m; = m¢ —m¢, where
m is the point that the jth muscle fiber attaches to the
skin tissue. The definition of b;; is as follows:

< lmyj 2 < " and 6;; > 6}';

j=1,2,...

;o — 7’ .
J inner
W cos < pouter _ r{1111er 2 for rj
b — J J
)
w
0 otherwise;

2. Face Model and Problem Formulation

2.1. Face Model

In this study, the pose of a human head is described
by six parameters: three parameters for the orienta-
tion and three for the position. In addition, some pa-
rameters for describing the facial expressions such as

where w =1 — %, 07" is the cosine of the angle of
the influence zoné for the Jjth muscle, rj.””” and rower,
respectively, are the inner radius and the outer radius of
influence of the consine blend profile for the j th muscle,
and 6;; is the cosine of the angle between m;; and m;.
In this study, the eighteen muscle vectors defined in
Appendix A of the book (Parke and Waters, 1996) are
adopted (i.e. m = 18). For simplicity, let v;; = b;;m;;.

Opening the mouth makes the feature points on the
lower part of the face rotate about a jaw pivot axis
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Figure 2. Face coordinate system.

(Parke and Waters, 1996). Since the feature points of
the lower part of the face are also affected by some
muscle activities, estimation of the amount of jaw rota-
tion becomes complicated. For simplicity, as shown in
Fig. 2, the x-axis of the face coordinate system is a jaw
pivot axis. Accordingly, opening the mouth moves the
feature points on the lower part of the face by rotating
them about the x-axis. Since the amount of jaw rota-
tion for a normal person is not large, the rotation ma-
trix for jaw rotation can be approximately represented
by an identity matrix I plus an anti-symmetric matrix
(Kanatani, 1993). Define b;,,+1) as an indicator for the
ith feature point being influenced by jaw rotation; that
is,

1 if feature point i is in the lower part
bim+1) = of the face;

0 otherwise.

Hence, a rotation matrix R;, denoting the amount of
the ith feature point rotating around the jaw pivot axis
can be defined as follows:

Rix =1+ cur1bignnK, 2)

where ¢, represents the amount of jaw rotation and

K = [0 0 —1]. By considering jaw rotation as well as
010 .

the muscle activities, Eq. (1) becomes

m

/

XiZR,'X X; + E Civij |-
j=l1

Substituting R;, by Eq. (2), we can obtain

m
/
X; =X; + E CjVij + Cmi1bign+ 1) Kx;
j=1

+Cm+1bi(m+l)Kchvij- 3)

Jj=1

By ignoring the right-most term, the least signifi-
cant term, and letting v;ou+1) = bim+1)KX;, Eq. (3)
becomes

m+1
X;:Xi'i_zcjvij- (4)
=1

Accordingly, estimation of the amount of jaw rotation
can be done by the same way as estimation of the con-
traction factors of muscle fibers, and Eq. (4) is the fun-
damental equation for analyzing the facial expression
in this study.

2.2.  Problem Formulation

Let the orientation and the position of the face with
respect to a camera be described by a rotation matrix R
and a translation vector t, respectively. Let x obtained
by

x/ = Rx, +t, 5)

denote the position of the ith feature point with respect
to the camera coordinate system. Let w; = [u; u;y]’,

i = 1,2,...,n, be the perspective projections of n
feature points on the face; that is, let
£l P
u; = [ = = | (6)
Xz Xig
Y/ " 4 "t 1
where x; = [x; x;; x;;]" and f is the focal length

of the camera. Without loss of generality, f can be
assumed to be one. In addition, we have some prior
knowledge about the ranges of the muscle contraction
values of muscle fibers and the amount of jaw rotation
as follows:

G=laj<c;=<B;,j=12,....om+1}. (1)
According to the 3-D face model, x; and v;;,i=

1,2,...,n,j =1,2,...,m + 1, are known. Hence,
the problem that we deal with is to find R, t, and



cj,j=1,2,...,m+ 1, from the perspective projec-
tions of the n feature points subject to the inequalities
(7). In this study, the 3-D face model of a human face
contains eighteen muscle fibers (i.e., m = 18); there-
fore, we have to estimate twenty-five parameters.

3. Review of Estimating Pose of Rigid Object
by Successive Scaled Orthographic
Approximations

Itis well known that to obtain a better estimated pose by
the scaled orthographic projection model, it is appropri-
ate to align the optical axis of the camera to pass through
the gravity center of the projections of the feature points
(Aloimonos, 1990). The gravity center of the projec-
tions of n feature points can be computed by [iz, it,]" =

’11 >, u;. The ith feature point after this alignment

process becomes ——— [u, 7 [£1[u} 11" £2[u} 1]°]", where
£y
R=|1
&
iiy —iix 0
ay+iy a§+u§,
iix i ~ i3+
il fid vl \Jida +|\/u,\+uv A3ty
iix lly 1
PERE NCETERS NGRS

After estimating the object pose, the desired rotation
matrix and translation vector can be obtained by mul-
tiplying R’ and the estimated rotation matrix and the
estimated translation vector together, respectively. In
the following sections, the optical axis of the camera
is assumed to have been aligned to pass through the
gravity center of the projections of the feature points.
In addition, we regard an object to be in an ambiguous
state if the perspective projections of the feature points
of the object are all identified and if there exist at least
two sets of parameters for the object which yield the
same perspective projection.

3.1. Review of DeMenthon and Davis’s Method

DeMenthon and Davis’s method (DeMenthon and
Davis, 1995) is a fast iterative method for estimat-
ing the pose of a 3-D rigid object. The principle of
DeMenthon and Davis’s method is stated as follows.
If the image of a rigid object is a scaled orthographic
projection, the pose of the object can be solved by a
simple linear method. However, the image of the rigid
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object is a perspective projection. Hence, DeMenthon
and Davis proposed an iterative scheme to compute the
object pose by adjusting the perspective projection of
the object to a scaled orthographic projection with the
same pose parameters. The following is a review of
DeMenthon and Davis’s method.

From the perspective projection equation for the fea-
ture X;, we have

1 r| tx
x; +1; I, ty

where ry, r, and r; are the three row vectors of R
and t = [t, 1, t.]'. Dividing the numerators and de-
nominators of the right-hand side of Eq. (8) by ¢,, and
rearranging the resulting equations, we can obtain

Ui(1+8i)=|::,l:|xt+|:?f:|, 9
2 y

where

rr=—, i=1,2,3
I
t
1= ti
) (10)
’ t)'
==
J tz
& =l'/3X,‘.

It should be noticed that u; (1 + ¢;) is a scaled ortho-
graphic projection of the ith feature point, and Eq. (9)
is called a scaled orthographic projection equation for
the feature x;. In addition, it is possible to estimate the
object pose by minimizing the residue in Eq. (9) for
every feature point, and this minimization process can
be achieved in the following manner.

Arranging Eq. (9) for every feature point on the rigid
object to be a matrix form, we can obtain

_ |:r’l:| _
U=| |, [X, (11)
r

=[u 1(1+81)_ua

[x S X, — X],

where

un(l + gn) - ﬁs]v

Wi le
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with
_ 12": 0o
u = — u; &i),
niE
I
X = — X;.
"2

To obtain unique r| and r} by solving Eq. (11), the
rank of X must be three; that is, the configuration of
the feature points cannot be coplanar. In the following
are the steps of DeMenthon and Davis’s method.

Algorithm 1. DeMenthon and Davis’s method.

Input. w;,x;,i=1,2,...,n.

Output. Randt.

Stepl. Fori=1,2,...,n, ¢ = 0. Compute X+ =
X' (XX~

Step 2. Estimate r] and r) by solving the overcon-
strained linear system Eq. (11). That is, compute

I,// _
[r},} = UX". (12)
2

Step 3. Compute R = [r] r} r} ] and 7, by

/!

=12
rh=_——, 1 =1,2,
I/ [l2
rr X1
= ——mmm—,
) x r2l2

; 2
7z = T2 1 nrn2?
Ieflls + liezlls

where |||, is the vector 2-norm.
Step4. Updater; by r; = * foreachi = 1,2, 3.
Step 5. Compute [t, t,]" = 1. (0, — [} r5]'X).
Step6. For all i=1,2,...,n, compute & by
Eq. (10). If &;,i=1,2,...,n, moves a small dis-
tance in this iteration, then stop; otherwise go to
Step 2.

The rotation matrix estimated by the original
DeMenthon and Davis’s method does not guarantee
orthonormality, however. To ensure the orthonorma-
lity of the estimated rotation matrix, a fitting process
(Kanatani, 1993; Horaud et al., 1997) can be included
into Step 3, and the modified method is called the mod-
ified DeMenthon and Davis’s method in this study. The
modified Step 3 is as follows.

Step 3. Compute the rotation matrix R = [r] r}
r; ]’ and ¢, that minimize

lries) [ ]
Z

F

by using the singular value decomposition as

follows:
I:ll ] |:Ol Oi| t
, = | s

rs =r; Xxrp,
2

l, = —,
S+ S»

where ||| represents the Frobenius matrix norm
(Horn and Johnson, 1985), and PSQ’ is the singu-
lar value decomposition of [r|" rj’ ]" with singular
values S;; and S»,.

4. Estimation of Head Pose
and Facial Expression

In this section, the proposed method for estimating the
head pose, the amount of jaw rotation, and the mus-
cle contraction values is presented first. Upper eye-
lids are also important organs for facial expressions. In
this study, for simplicity, upper eyelids are defined to
have three states, namely, the opened state, the partially
opened state, and the closed state. The method for de-
termining the states of upper eyelids is introduced at
last.

4.1. Estimation of Head Pose, Amount of Jaw
Rotation, and Muscle Contraction Values

From Egs. (4)—-(6), we have the perspective equations
for the feature points on the face as follows:

1
B r; (Xi + ZT:II CjVij) + 1,
fls + S o)t
X s
r(x + Y1 evi) + 1y

u;



Rearranging Eq. (13), we can obtain

) 1 ) %_ix _ l‘/l ) t)/(
e =[] = [ 2]

i=1,...,n, (14)

where

m+1
;= r3< Zc vl]) (15)

m+1

En=1] ) cjvij, (16)
=1
m+1

éiy = l'/2 ZC.,'V,‘]‘. (17)
j=1

It should be noticed that [&;, &,]" is a scaled ortho-
graphic projection of the local motion of the ith fea-
ture point, and u; (1 + &4;) — [&x &y] isascaled ortho-
graphic projection of the ith feature point without local
motion. Obviously, for a rigid object, &, = &, = 0.
From Eq. (14), we have the matrix form similar to
Eq. (11) for the DeMenthon and Davis’s method as

follows:
_ r/] _
U=|,|X; (18)
r
2
where
Us = [ui(1+£41) — & —Ueq - - (1 + £40)
_gn - ﬁé‘d]v
with
51’ = [éix Eiy]ta

1 n
ey = — D (Wil +ea) —&).
i=1

In this study, the parameters for the head pose and
the facial expression are obtained by minimizing the
residue in Eq. (14) iteratively, and the steps are de-
scribed as follows.

Algorithm 2. Estimation of the head pose and fa-
cial expression by successive scaled orthographic
approximations.
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Imput. x; w, and v;;,i=1,2,...,n,j=1,2,...,
m+ 1.

Qutput. R, t,and¢;,i =1,2,...,m+ 1.

Steps.

Step 1. Initially, fori = 1,2,...,n,e4 = 0,&, =
&y =0.

Step 2. Estimate r} and ry by the same operations as
Step 2 in Algonthm 1 Wlth U being replaced by U,.

Step 3. Compute R = [r| r} r} ] and 7, by the same
operations as Step 3’ in Algorithm 1.

Step 4. Update r; by the same operations as Step 4
in Algorithm 1.

Step 5. Compute [, #,]" by the same operations as
Step 5 in Algorithm 1 with u, being replaced by
Ugg.

Step 6. According to the newly estimated r}, r5, and t,
estimate the parameters for the facial expression
ci,i=1,2,...,m+ 1 (see Section 4.1.1).

Step 7. For all i=1,2,...,n, compute &4, &,
and &, by Egs. (15), (16), and (17), respec-
tively. If e4;, i=1,2,...,n, move a small dis-
tance in this iteration, then stop; otherwise go to
Step 2.

In this study, the termination criterion for the pro-
posed method is the average of the distances which all
gqi, 1=1,2,...,n, advance in an iteration is smaller
than 107°.

4.1.1. Solving the Parameters for Facial Expression.
After obtaining the head pose from the scaled or-
thographic projection model for an iteration, the
muscle contraction values and the amount of jaw
rotation can be obtained by solving a system of
linear equations formed by the scaled orthographic
projections of all feature points without the terms for
the global motion. Specifically, from Eq. (14), we

have
/
I Vim+1)
, c
I Vim+1)

=ui(1+5di)_|:,:| |:;f:|,
=1

72’

/ ’
|:I'1Vi1 v

/ /
I)vip I,V

or equivalently,

Ge=g, (19)
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where
RAZSER AL Vit |
1’/2V11 1'/2V12 r/gvl(erl)
G = ,
AT A X Vagnt1)
RAZTER AN 5 Vamt1) |
c=[c o cms1l,
(i (14 e01) — 1% — 1) ]
ury (14 e41) —ryx; — 1
g= :
Uny (1 4+ 840) — )Xy — 1,
| uny (1 + €4n) — )X, — t; A

Hence, by solving Eq. (19), the best parameters for the
facial expression associated with the newly estimated
head pose with respect to the scaled orthographic pro-
jections of the feature points estimated in the previous
iteration can be obtained. However, to ensure that the
estimated parameters for the facial expression are all
in the allowed ranges, the priori knowledge about the
muscle contraction values and the amount of jaw rota-
tion must be considered, and estimation of the param-
eters of the facial expression becomes a constrained
minimization problem QP:

QP: arg min ||Ge — gII%
C

subject to the inequalities (7).

Since Inequalities (7) are all linear, ||Ge — g||% is
bounded, and G’G is a positive semidefinite symmet-
ric matrix, the non-linear programming problem QP
is a linearly constrained quadratic programming prob-
lem, and the minimum of QP can be always obtained
in polynomial time (Bazaraa et al., 1993; Nesterov and
Nemirovskii, 1994).

4.1.2. A Geometric Interpretation of Algorithm 2.
The parameters for the head pose and the facial ex-
pression estimated at the current iteration are computed
from the scaled orthographic projections of the fea-
ture points obtained in the previous iteration. Step 2
through Step 5 compute the head pose from the scaled
orthographic projections without the terms caused by
the local motions estimated in the previous iteration;
therefore, these steps can be regarded as computing the
pose of a rigid object. After estimating the head pose,

the parameters for the facial expression are obtained
from the scaled orthographic projections without the
terms caused by the newly estimated head pose. These
steps repeat until no significant changes between con-
sequent iteration.

4.2.  Determination of States of Upper Eyelids

In this study, the state of an upper eyelid is determined
by the ratio of the distance w between the two corners of
the eye, and the length & of the black region around the
eye in the direction perpendicular to the line formed by
the two eyes’ corners. The decision rule for determining
the state of an upper eyelid is defined as follows:

state of upper eyelid

opened if 51 < %

= 4 partially opened if s, < v <s1,

w
closed if m <5

where s; and s, are determined by experiments.

5. Analysis of Convergency Property
and Complexity

In this section, the convergency property and complex-
ity of the proposed method are analyzed. First, the con-
vergency property of the proposed method is discussed.

5.1.  Analysis of Convergency

In DeMenthon and Davis’s work (DeMenthon and
Davis, 1995), a geometric interpretation for the conver-
gency of DeMenthon and Davis’s method was given.
In this study, the convergency property of the proposed
method is interpreted via proposed properties for the
convergency of DeMenthon and Davis’s method. For
simplicity, the noise effect is not considered in this
analysis. First, some new results of the convergency
properties of the modified DeMenthon and Davis’s
method are proposed, including a sufficient condition
about reducing the residue in each iteration, and a suf-
ficient criterion for the global convergency. Then, the
convergency property of the proposed method is illus-
trated based on the result of the modified DeMenthon
and Davis’s method.



5.1.1. Sufficient Criteria for Convergency of
Modified DeMenthon and Davis’s Method. Scaled
orthographic projection equations for the n feature
points with respect to the pose parameters obtained
at the kth iteration can be written as

“ o o 0
u(1+¢") = [ /(k):|xi + |:t/(k):|’
) y
i=1.2....n (20

where ul(k) is the perspective projection for the ith fea-

ture point with respect to the pose parameters estimated
at the kth iteration, and & =r"x;. It can be easily

obtained that the residue in the kth iteration is

2
2

2w (1 +6?) —uf (14
i=l

and that the residue in Eq. (9) for the k + 1th iteration
is

D i1+ e?) —ut ()
i=1

Obviously, if the residue in each iteration is mono-
tonically decreasing and if the rigid object is in an un-
ambiguous state, the modified DeMenthon and Davis’s
method can converge to a solution with the desired pre-
cision after a finite number of iteration. In this study,
a sufficient criteria about reducing the residue in an
iteration is derived as follows.

Lemma 1. [n Algorithm 1, the residue in the k + 1th
iteration is not larger than that in the kth iteration if
the following inequality is satisfied:

n

/(k+1) (k) k+1
[V =0, 1D D w33 < 240, @1
i=1

where
B = |3 w1+ &) — a1+ )

I (e -
Proof: See Appendix A.1. 0
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In Inequality (21), />, Iw131x: 13 is constant. More-
over, the smaller /> JuI2Ix is, the more relaxed
Inequality (21) becomes. In the following, we show
that />, Iw3Ix13 is related to the global conver-
gency property of the modified DeMenthon and Davis’s
method. First, some definitions are given as follows.

Let M,,3(R) denote all 2 x 3 real matrices. Let I'
denote the set of matrices in M»,3(®) such that for
every W e I, the two row vectors of W are orthogo-
nal and the 2-norms of the two row vectors are equal.
Since ¢; is equal to ||r] ||2_1(r’1 X I5)'x;, it can be no-
ticed that Eq. (12) can be regarded as a function ¢
mapping I' to My,3(®). Similarly, Step 3" and Step 4
can also be regarded as a function W mapping Mj.3 (R)
to I'. Therefore, when k > 1, the iterative formula of
the modified DeMenthon and Davis’s method can be
written as

WD = w(o(W")), (22)

where W% denotes the value of the matrix W at the
kth iteration. From Eq. (22), we know that the modi-
fied DeMenthon and Davis’s method can be regarded
as a fixed-point iteration method (Stoer and Buliesch,
1993). For further analysis, let R*=[r{" r} r}]
and t* =[t} t; tf] denote the actual rotation ma-
trix and translation vector, respectively, and let W* =
%[r’f’ ry’]". It can be easily shown that W* = & (W*)
and W* = & (W*),

To analyze the global convergency property of the
modified DeMenthon and Davis’s method, Lemma 2 is
derived for illustrating the relation between the two ma-
trices mapped by @ from two matrices in I" as follows.

Lemma2. Forall W and W € T, if the rank of X is
three, we have

1D(W) — @(W)| ¢
SCXpy ooy X g, ., W) [W =W, (23)
where
C(le "'»Xnvuls "'7“}’1)

n
2 2
> w3 lxi 13,
i=1

= [IX*s

with ||| representing the spectral matrix norm.

Proof: See Appendix A.2. a
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Based on Lemma 2, three corollaries about the con-
vergency properties of the modified DeMenthon and
Davis’s method are derived in this study as follows.

Corollary 1. IfC(xy,...,X,,0y,...,
state of the rigid object is unambiguous.

w,) < 1, the

Proof: See Appendix A.5. a

Corollary 2. If the state of the rigid object is
ambiguous, the ambiguity can be resolved by place

the object away from the camera until C(Xy, ..., X,
up,...,u,) < 1.
Proof: Note that the optical axis has been aligned

to pass through the gravity center of the projections
of the feature points. Hence, moving the object away
from the camera decreases ||u;||,i = 1,2, ...,n,and
C(xXy,...,X,,Uy,...,u,) becomes smaller. Accord-
ing to Corollary 1, once C(xi,...,X,, 0y, ..., W,) is
smaller than one, the ambiguity is resolved. O

Corollary 3. If C(xq,...,X,,uy,...,4,) <0.5,
the modified DeMenthon and Davis’s method is glob-
ally convergent.

Proof: See Appendix A.6. o

Corollary 1 states a sufficient criterion for unambi-
guity of the state of arigid object. Corollary 2 describes
a method for resolving the ambiguity of the state of a
rigid object which is useful for configuring a system for
pose estimation. The intuitive meaning of this method
is to make the projections of the feature points of the
rigid object look like scaled orthographic projections.
Corollary 3 describes a sufficient criterion for global
convergency of the modified DeMenthon and Davis’s
method. Since the valueof C(xy, ..., X,, Uy, ..., U,)is
dependent on the structure and the pose of arigid object,
the convergency property of the modified DeMenthon
and Davis’s method is related to the pose and the struc-
ture of the rigid object.

To verify the relation between C(xi, ..., X,, Uy,

.,u,) and the convergency property of the modi-
fied DeMenthon and Davis’s method, computer sim-
ulations were conducted. The eight corners of a cube
in size of 20° were utilized as feature points in the
computer simulations where the origin of the object
coordinate system is the gravity center of the cube.
Six thousand samples of the cube in arbitrary ori-
entations were generated. The x- and y-coordinates

of the samples with respect to the camera coordi-
nate system are distributed uniformly in [—5---5]
and [—5--- 5], respectively, and the z-coordinates of
them are ranged from eleven to sixty-six at an interval
of five. The maximum number of iterations was one
hundred. Shown in Fig. 3(a) are some experimental
results of the value of C(xy,...,X,,uy,...,u,) ver-
sus the average number of iterations for the modified
DeMenthon and Davis’s method to be convergent. It
shows that the rate of convergency of the modified
DeMenthon and Davis’s method is one hundred percent
when C(xy,...,X,,Uy,...,u,) is smaller than 0.5.
In addition, we can find that the number of iterations
increases when C(Xy, ..., X,, U, ..., U,) gets larger.
Figure 3(b) are the results of C (X1, ..., X, Uy, ..., Wy,)
versus the z-coordinate of the center of the cube
in the camera coordinate system. It shows that
C(Xy,...,X,,uy,...,u,) decreases when the object
moves away from the camera. Figure 3(c) shows that
C(xy,...,X,,uy,...,U,)canact as an indicator of the
convergency of the modified DeMenthon and Davis’s
method.

5.1.2. Convergency Analysis of Proposed Method.
The aim of the iterative formula of the proposed method
is to find the parameters which minimize the residue in
Eq. (14). If the proposed method is convergent for an
unambiguous state of a face, the estimated parameters
are the desired ones because they satisfy Eq. (14). Like
Lemma 1 for Algorithm 1, a sufficient criterion for the
convergency property of Algorithm 2 about reducing
the residue in an iteration can be obtained as follows.

Lemma 3. In Algorithm 2, the residue in the k + 1th
iteration is not larger than that in the kth iteration if
the following inequality is satisfied:

n

2 2
> 31113
i=1

”r;(kJrl) _ l./3(k) ”2

n
3 2 (4 Ax e ) |
i=1

IA

+eg) —u (1 +eg);

Z Ju:(1

(k) (k+1) (k+1)
teg)—u T (1+ey)

3

Z Ju: (1

i

(24)
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Figure 3. The simulation results of C versus the number of iterations, the average distance to the camera, and the percentage of convergency:
(a) illustrates the result of C versus the number of iterations; (b) illustrates the result of C versus the average distance to camera; (c) illustrates

the result of C versus the percentage of convergency.

where Axfk) denotes the local movement of the ith fea-
ture point estimated at the kth iteration.

Proof: The derivation is omitted because it is similar
to that of Lemma 1. d

Currently, the global convergency property of the
proposed method similar to that of the modified
DeMenthon and Davis’s method has not been de-
rived. However, in fact, the maximum amounts of
local movements of the feature points except those
on the lower jaw are not large, and thus the left-
hand side of Inequality (24) is dominated by its first
term. Therefore, />, Iw3Ix 12 is highly related to
the convergency of the proposed method for each
iteration, and C(x;,...,X,, Uy, ..., Uu,) can also be
an index for global convergency of the proposed
method.

5.2.  Analysis of Complexity

In the proposed method, Step 6 in Algorithm 2 is
the critical step which solves the linearly constrained
quadratic programming problem QP. As shown in
Nesterov and Nemirovskii (1994), by the logarith-
mic barrier algorithm with Karmarkar acceleration, it
takes In(5gty; ) iterations and O (mn* + m'>n) arith-
metic cost for every iteration to find an e-solution
of a convex quadratic programming problem with n
variables and m linear constrains, where a(G : w) =
max{r | w+1(w — G) C G} is the asymmetry coeffi-
cient of G with respect to the starting point w €
{aj<cj<Bj,j =1,2,...,m+ 1}. Since QP has
nineteen variables and thirty-eight linear constrains, it
takes O(38 x 197 + 19 x 38') In( 25, arithmetic
cost to find an g-solution of QP.

By using the successive quadratic programming
(SQP) method (Bazaraaetal., 1993), which is a popular
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method for the non-linear programming problem, to
estimate the parameters for the head pose and the fa-
cial expression, one has to deal with twenty-five vari-
ables and thirty-eight linear constrains and thus needs
O (38 x 252 +25 x 3819) ln(a(G?’?w)E) arithmetic cost to
get a solution. Moreover, the SQP method needs extra
overhead to compute a 25 x 25 Hessian matrix for every
iteration. Hence, the proposed method is at least 1.63

times faster than the SQP method for every iteration.

6. Experimental Results

In this section, we describe the results of testing the
proposed method by computer simulations and using
real images. Since the sensitivity of the parameters for
the head pose and the facial expression is distinct for
each other, it is inappropriate to evaluate the estimated
results directly via the estimated parameters. Alterna-
tively, the errors of the estimated results are defined
as:

(1) the average image error: the average of the errors
between the estimated positions and the theoretical
positions of the feature points in the image;

(2) the average 3-D relative global error: the average
of the relative errors between the estimated 3-D
positions and the theoretical 3-D positions of the
feature points; and

(3) the average 3-D relative local error: the average
of the relative errors between the estimated 3-D
positions and the theoretical 3-D positions of the
feature points with respect to the face coordinate
system.

In the following are the experimental results of the
proposed method analyzed by computer simulations,
including:

(1) therelation between C and the rate of convergency;
(2) error analysis;
(3) the rate of convergency;

and tested by using real images, including:

(1) the quality of the parameters estimated by the pro-
posed method;

(2) comparisons between the results estimated by the
proposed method and the results estimated by the
SQP method.

Figure 4. A computer graphic face model used for simulations
where the black points indicate the positions of the twenty-two
feature points.

6.1. Computer Simulations

In this study, the 3-D face model in Appendix A of the
book (Parke and Waters, 1996) was utilized to test the
proposed method. As shown in Fig. 4, twenty-two ver-
tices on the face distributed in a 6.57 x 7.6 x 2.29 cm?
box were selected as the feature points for this simula-
tion. The ranges for yaw, pitch, and roll, were randomly
generated within +22.5°, +22.5°, and +30°, respec-
tively. The eighteen muscle contraction values were
generated from —1 to 1, and the amount of jaw rota-
tion was produced from 0° to 10° randomly. The x, y-
coordinates of the test samples were generated within
430 cm uniformly. The focal length of the camera in
this experiment is set to be 350 pixels.

6.1.1. Relation between C and the Rate of
Convergency. To show that C(x,...,X,,u,...,
u,) can be an index of convergency of the proposed
method, one thousand test samples without noise were
generated. The distances between the test samples and
the origin of the camera coordinate system were from
10 cm to 80 cm. The experimental results are shown
in Fig. 5. They reveal that C(xy, ..., X,, Uy, ..., U,) is
related to the rate of convergency. In addition, from the
value of C(xy,...,X,,uy,...,u,), the proper work-
ing distance from the origin of the camera coordinate
system to the adopted 3-D face model is suggested not
to be smaller than 40 cm. This suggested value was
utilized in the subsequent analysis.

6.1.2. Error Analysis. In this experiment, five hun-
dred test samples were generated and the perspective
projections of the feature points of every test sample
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Figure 5. The simulation results of the relation among the distance to the camera, C, and the percentage of convergency: (a) illustrates the
result of the distance to the camera versus the average percentage of convergency; (b) illustrates the result of the distance to the camera versus
the average C; (c) illustrates the result of C versus the average percentage of convergency.

were perturbed by Gaussian noise with standard de-
viations 0, 1, 2, 3, 4, and 5. The distances between
the test samples and the origin of the camera coordi-
nate system were ranged from forty cm to seventy cm.
In this simulation, the average maximum local motion
and the average local motion of the feature points of
a test sample were 1.75 cm and 0.53 cm, respectively.
The experimental results are as follows. The average
image errors versus various noise levels are computed
and plotted in Fig. 6(a), and the average 3-D relative
global errors and the average 3-D relative local errors
are analyzed and shown in Fig. 6(b) and (c) where the
averages of the errors with their standard deviation bars
versus various noise levels are plotted. Figure 6(b) and
(c) show that the proposed method gives the parame-
ters with less than five percent of 3-D relative global

errors and less than five percent of 3-D relative local
errors, in average. The stability of the proposed method
in estimation of global motion and local motion is so
ensured.

6.1.3. Rate of Convergency. Figure 7(a) shows the
average number of iterations versus various noise
levels. In general, the test samples perturbed by
noise with higher noise levels have larger residues
in Eq. (14), so the proposed method takes smaller
numbers of iterations to reach the termination
condition. Figure 7(b) shows the percentage of con-
vergency for the proposed method to estimate pa-
rameters from the test samples versus various noise
levels. The overall average percentage of convergency
18 99.23%.
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Figure 6. The simulation results of the quality of the estimated results versus various noise levels: (a), (b) and (c) illustrate the result of the
average image errors, the average 3-D relative global errors and the average 3-D relative local errors, respectively.
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Figure 7. The simulation results of analysis of percentage of convergency versus various noise levels: (a) illustrates the result of the average
number of iterations versus various noise levels; (b) illustrates the result of the percentage of convergency versus various noise levels.

6.2. Tests with Real Images

To estimate the parameters for the head pose and
the facial expression, the 3-D positions of the fea-
ture points and the muscle vectors for an individual
human face with respect to the face coordinate sys-

tem must be known beforehand. In this study, the
proposed method was implemented on a PentiumlIl
400 MHz PC and twenty-two feature points on a hu-
man face shown in Fig. 8 were detected automatically.
The 3-D positions of the feature points were estimated
by the structure-from-motion algorithm proposed by



Figure 8. Twenty-two feature points indicated by crosses.

Horn (Horn, 1990). The errors of the 3-D positions of
the feature points built in this manner are about 6%.
Besides, based on a generic 3-D face model, the points
of the muscle fibers attached on the skin tissue were
obtained by an interpolation method (Akimoto et al.,
1993), and the lengths and directions of the muscle
fibers were obtained by an affine transform. In fact, the
3-D face model obtained in this manner is not accu-
rate. Thus, the error sources in this experiment include
at least the image error and the model error. For the
sake of shortening this paper, the details of construct-
ing an individual 3-D face model and detecting feature
points are omitted.

Since it is hard to measure the actual 3-D positions
of the feature points with respect to the camera, the
quality of the estimated parameters was evaluated by
the average image error. Figure 9(a)—(j) show ten test
images in size of 320 x 240. The focal length of the
camera used in this experiment is 366 pixels. For com-
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parisons, the ten test images were utilized to test not
only the proposed method but also the SQP method.
The initial guess for the SQP method was a face fac-
ing to the camera with no expression. The termination
criterion for the method is any of the three cases: the
average image error is smaller than 0.001, the distance
that the estimated parameters advance in an iteration is
smaller than 0.01, or the number of iterations exceeds
one hundred.

Figure 9(a’)—(j") show the detected feature points for
the test images, and Fig. 9(a”) through (j”) are the
synthesized images for the ten test images with the pa-
rameters estimated by the proposed method. Table 1
shows the details of the experimental results. The val-
ues of C for the ten test images are all smaller than
one. It indicates that the configuration of this sys-
tem is proper for the proposed method. The average
image error of the solutions found by the proposed
method is about 3.17 pixels, and the average com-
putation time is 0.478 seconds. The average image
error of the solutions found by the SQP method is
about 12 pixels, and the average computation time
is 5.55 seconds. For a single iteration, it takes about
21.3 ms and 55.53 ms for the proposed method and
the SQP method, respectively. For the ten test im-
ages, the SQP method does not converge to good so-
lutions because it needs better initial guesses. In our
experience, although it is hard to obtain good initial
guesses, once the SQP method converges to a good
solution, the average image error of the solution is
smaller than that of the solution found by the pro-
posed method. The reason is that the SQP method
estimates the parameters by minimizing the average
image error. As a summary, the experimental results
show that the proposed method is effective, robust, and
better.

Table 1. Comparisons between the results estimated by the proposed method (denoted by SSOA) and the results estimated by the successive

quadratic programming method (denoted by SQP).

Image no.
a b c d f g h i j
C 0.83 0.9 0.95 0.89 0.93 0.84 0.81 0.93 0.9
Method SSOA SQP SSOA SQP SSOA SQP SSOA SQP SSOA SQP SSOA SQP SSOA SQP SSOA SQP SSOA SQP SSOA SQP
Average 281 816 319 10 27 1502 343 13.62 3.12 11.82 55 2287 293 1015 409 881 218 1043 1.7 9.1

image error

Number of 20 100 25 100 20 100 22 100 14

iterations

Computation 033 6.15 0.83 456 05 681 038 6.1 022

time (s)

384 044 472 055 627 038 505 049 6.1

100 19 100 24 100 23 100 32 100 25 100

0.66 5.93




194 Chang and Tsai

Figure 9. Ten test images: (a) through () are the original images; (a/) through ( j’) show the detected feature points; and (a’) through ( j/) are
the synthesized images. (Continued on next page.)
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7. Conclusions

In this study, a new iterative method for estimating the
parameters of the head pose and the facial expression
from a single view has been proposed. The proposed
method is based on the technique of successive scaled
orthographic approximations, which has been success-
fully applied to estimating the pose and the structure
of a rigid object. In this study, we have extended this
technique to estimate the parameters for a non-rigid
object, namely, a human face. In addition, we have de-
rived a sufficient criterion for the convergency of the
proposed method. Our theoretical analysis and the sim-
ulations both show that the convergency property of the
proposed method is related to the proposed criteria. If
the distance between the camera and the face is in the
range suggested by the derived criterion, the proposed
method without initial guesses can, as shown by our
experimental results, have about one hundred percent-
age of convergency. The experimental results also show
that the successive quadratic programming method, a
general method for non-linear constrained optimiza-
tion, often traps into local minima or cannot converge
with respect to the test images used in our experiments.
Hence, the proposed method is better than the succes-
sive quadratic programming method in estimating the
head pose and the facial expression. The experimental
results show finally that the proposed method is ro-
bust and can act successfully as a basis of a system for
applications in human-computer interaction.

Appendix
A.l.  Proof of Lemma 1

From the triangular inequality of the vector 2-norm,
we can derive the following inequality describing the
relation between the residue in the k + 1th iteration
and the residue in Eq. (9) for the k + 1th iteration as
follows:

(1+€(k+1)) (k+1)(1+ (k+1))

w, (1 4+ €6+D) — u (1 4 eletD)

u1(1+€(k))—u§k+l)(l+ (k+1))

w, (14 €®) — uD (1 4 k)

(el )
+ : . (25)

u, (e —el) |,

From Inequality (25) and the definition of 2*+1 if the
following inequality is satisfied:

w (e )
<h®h, (26)

u, (€£k+l) - Eizk)) 2

we can conclude

ul(] +€(k+l)) §k+l)(] +€(k+l))

.uﬁlkJrl)(l + )
u(lk)(l + s(k))

u, (1 +ekh) —
u(1+ s(k)) -

u, (1 +®) —u® (1 +e®)

that is, the residue in the k 4 1th iteration is not greater
than that in the kth iteration. Furthermore, it can be
easily shown that

2

(e~ o)

u, (4D — e®)

< 50—,

n

2 2
>l 13 1113,
i=1

so eV —rf o /S w3k )3 < A4D s a
sufficient condition for Inequality (26). Accordingly,
we have completed the proof of Lemma 1. a

A.2.  Proof of Lemma 2

For convenience, let I_Jw, U,w, and &;w denote the ma-
trix U, the vector u,, and the scalar ¢; in Eq. (11) with
respect to W, respectively, and let Uw denote

Uw = [ui(1 + e1w) - - -0, (1 + g,w)].

Jt S/t ot ot

Now, forevery W =[r/ r/]' € and W = [#// #/]' €
', from Eq. (12) and the following inequality (the proof



can be found in Appendix A.3):
IAB| 7 < [|AllF[IBl 27

where A and B are two arbitrary compatible matrices,
we have

[®(W) — &(W)|r = [OwX*t — Ug X" ||£

< Ow — Oy llrlIX* 5. (28)

Since

10w — OgllF = Y il + &iw) — Gew)
i=1

— (i (1 + ;) — 0,413

and U,w — W, is the mean vector of w; (1 + &;w) —
u(1+¢4),i=1,2,...,n, wehave
10w — Ugllr < [lUw — Ugll . (29)

In addition, it can be easily shown that

n
Uw = Ugllr < | D w3113 005 — &2, (30)
i=1

Hence, from Inequalities (28)—(30), we can obtain

| (W) — &(W)||
<CXipy..osXp, U, .., w) Xy — B2, (31)
where
CXi,....X,, 0, ..., 0,)

= IX* I

n

2 2
>l 13 11 13-
i=1

As proved in Appendix A.4, we have

/ =/
Ol |1h
J/ =/
r r

From Inequalities (31) and (32), we can conclude

lIry — F5l> < (32)

F

| (W) — @(W)|

SC(Xl,...,X,,,lll,...,U,1)||W—W||F. D
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A.3.  Proof of Inequality (27)

Let A e M;,,,(®) and B e M,,.,(R), and let the
row vectors of A be denoted by a;,i = 1,2,...,1.
From the definition of the Frobenius matrix norm, we
have |AB|% = Y7, lla;B]|3. Since the spectral ma-
trix norm is compatible with the vector 2-norm (Horn
and Johnson, 1985), we can obtain

> llaBIi3 < (Z ||ai||%) IBI? = IAI7 IBI .
i=1 i=1

Hence, we have ||AB|r < ||A]¢||B]||s, and this com-
pletes the proof. O

A.4.  Proof of Inequality (32)

The proof of the inequality can be simplified by mul-
tiplying the matrices and the vectors of the both sides
of Inequality (32) by a rotation matrix R = [r} r} r}]
because this operation does not change the norms of
the both sides of Inequality (32). Thus, we can have

2
i -#B =0 o f-ul. ©3
vl T#] } o] [#1°
AN ; o] " [w ]l
(34)

where [F] ¥} ¥{]' = 7[¥] ¥ Fj]' with [F] ¥ ¥]'=
[t} ©5 Fi)'R. From Egs. (33) and (34), it can be easily
shown

a2
- ||1',3 - r'3||2
F

i.t, t} ’

Since [F] ¥} F{]’ is a rotation matrix, we have 733 =

Fi1F22 + Fiof2 and

(Fi1 4+ 702)* + (Fi2 + F21)?
=14 75 + 2(F1172 + Fiafar)
=147 + 23
=(1+ 7).
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Hence, we have (7| +72,)> < (14 733)2. Furthermore,
since —1 < 33 < 1, we also have Fj| + Fp < 1 + 3.
Accordingly, we obtain

1 2(F Fop — T 1 1
S_M il 201
12 it 272 ot 1

That is, we have
2
/ a8
r r
- _||r3_r3||2>0
F

Hence, we have completed the proof of Inequality
(32). |

A.5.  Proof of Corollary 1

If the pose of the object is ambiguous, there exist at
least two matrices W and We ', and W# W such
that (W) = W and <D(W) = W. From Eq. (23), we
can have

IW—Wr = | ®W) — dW)|F

= C(Xl’ cees Xp, Up, .. ’un)”W - W”F'
The above inequality holds only if C(xy,...,X,,
up,...,u,)>1. Accordingly, we have proved the
corollary. O

A.6.  Proof of Corollary 3

From Eq. (23), we can have

W —W*||r

[P W) — W*lF,

- C(X],...,Xn,ll],...,lln)
(35)

for an arbitrary W eTI'. From the definition of W,
we have that W (®(W)) is the matrix in I closest to
@ (W) in the Frobenius matrix norm and obtain

[@(W) — W[ > [[®(W) — W(P(W))]|F.
Thus, we can have
1
[®(W) — W¥|p > E(HCD(W)_W*”F
+ | P(W) — W (DW))IF).

In addition, from the triangle inequality for the
Frobenius matrix norm, we can have

1
[P(W) — W > S IV (@ W) — Wil

in addition, from Inequality (35), we obtain

W —=Wlp = a| ¥(P(W)) — W,

1
2C (X1, ey X, W, W)

starting point W® e T", we have

where o = Hence, for an arbitrary

1 ¢ % *
(3) IWo-wel, = [wo - w .

Thus, ifa > 1;i.e., C(xq, ...,
we have

X,, U, ...,0,) <0.5,

. e (1) .
i WO =W, < i () [ WO - W =

and conclude that the modified DeMenthon and Davis’s
method guarantees to converge to the actual object pose
from every starting point. O
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