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Abstract
The interaction between an ultracold cascade three-level atom and a
two-mode cavity field has been studied. The effects of the centre-of-mass
motion, the cavity length, the coupling constants, the initial field states and
the initial field intensity on the atomic dynamics have been examined. We
have found that the population probabilities show dependence on the
interaction time in the fast-atom region while they show dependence on the
interaction length in the slow-atom region. The variations of the probabilities
versus the cavity length show resonant peaks, and the peaks become sharper
as the atom moves more slowly. The coupling constants, the initial field
states and the initial field intensity also influence the atomic dynamics
significantly. The two transitions are competitive for the atomic probability
in the middle state, while they are cooperative for that in the lower state.

Keywords: Atom–field interaction, ultracold atom, atomic dynamics

1. Introduction

With the development of laser cooling and trapping
techniques [1], ultracold atoms have been obtained. Many
new concepts and new phenomena, that involve ultracold
atoms, are proposed or observed. Among them are atom
optics [2], Bose–Einstein condensation [3], atom lasers [4],
nonlinear atom optics [5], nonlinear optics of matter waves [6]
and maser action [7–9]. In these phenomena, the interaction
between ultracold atoms and quantum radiation fields plays
an important role [10], and the quantization of the centre-
of-mass (c.m.) motion of atoms must be taken into account
in studies on this kind of interaction. In this paper we
study the interaction between an ultracold cascade three-
level atom and a two-mode cavity field. The aim is to
examine the effects of the c.m. motion quantization, the
cavity length, the coupling constants between the atom and
the field, the initial field states and the initial field intensity

4 Author to whom correspondence should be addressed.

on the atomic dynamics. The organization of this paper is

as follows. In order to compare the results of this paper

with previous studies we briefly review some results on the

interaction of a cascade three-level atom with a two-mode

cavity field, but without considering the atomic c.m. motion

quantization (section 2). In section 3 we study the same

interaction model, but we consider a situation in which the

atom moves very slowly and its c.m. motion is described

quantum mechanically. We treat the atom–field interaction as

a scattering process, and find the reflection amplitudes and the

transmission amplitudes, which are used for the calculations

of related physical quantities. In sections 4 and 5 we study the

atomic dynamics analytically and numerically, respectively.

We examine the influences of the parameters mentioned above

on the atomic dynamics. Section 6 is a brief summary of our

main results.
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2. Model without c.m. motion quantization

We consider a micromaser-like experiment [14]. A well
defined two-mode field is prepared in a high-quality-factor
cavity. A three-level atom, initially prepared in a suitable
state, is injected into the cavity and interacts with the cavity
field. After the interaction, the atom exits the cavity and
its population probabilities among its internal states can be
measured with a state-selective field ionization technique.

In order to compare the results of this paper with
previous studies, we first briefly review some results on
the interaction of a cascade three-level atom with a two-
mode cavity field (figure 1), without considering the c.m.
motion quantization. Under the dipole approximation and the
rotating wave approximation, and in the interaction picture, the
Hamiltonian for the whole system (atom + field) reads (take
h̄ = 1)

V = g1(a
+
1 |b〉〈a| + |a〉〈b|a1) + g2(a

+
2 |c〉〈b| + |b〉〈c|a2), (1)

where |a〉, |b〉 and |c〉 are the three states of the atom with their
energies satisfying ωa > ωb > ωc. ai (i = 1, 2) and a+

i are
the annihilation and creation operators of mode i of the cavity
field. g1 (g2) is the coupling constant between mode 1 (2) of the
cavity field and the atomic transition |a〉 ↔ |b〉 (|b〉 ↔ |c〉).
Here we have assumed that mode 1 (2) of the cavity field is
resonant with the atomic transition |a〉 ↔ |b〉 (|b〉 ↔ |c〉). The
dynamics of the system can be described by the state vector

|n1,n2(t)〉=Ca,n1,n2(t)|a, n1, n2〉 + Cb,n1+1,n2(t)|b, n1 + 1, n2〉
+Cc,n1+1,n2+1(t)|c, n1 + 1, n2 + 1〉, (2)

where n1 and n2 are the numbers of photons in modes 1 and 2,
respectively. Cx,n1,n2(x = a, b, c) is the probability amplitude
of the system being in the state |x, n1, n2〉. Substituting (1)
and (2) into the Schrödinger equation we obtain

.

Ca,n1,n2 (t) = −id1(n1)Cb,n1+1,n2(t), (3)

.

Cb,n1+1,n2 (t) = −i[d1(n1)Ca,n1,n2(t) + d2(n2)Cc,n1+1,n2+1(t)],
(4)

.

Cc,n1+1,n2+1 (t) = −id2(n2)Cb,n1+1,n2(t), (5)

where di(ni) = gi
√
ni + 1 (i = 1, 2). Assuming the initial

condition

Ca,n1,n2(0) = 1, Cb,n1+1,n2(0) = Cc,n1+1,n2+1(t) = 0,
(6)

we find the solution

Ca,n1,n2(t) =
(
d1(n1)

�n1,n2

)2
[(

d2(n2)

d1(n1)

)2

+ cos(�n1,n2 t)

]
, (7)

Cb,n1+1,n2(t) = −i
d1(n1)

�n1,n2

sin(�n1,n2 t), (8)

Cc,n1+1,n2+1(t) = −d1(n1)d2(n2)

�2
n1,n2

[1 − cos(�n1,n2 t)], (9)

where �n1,n2 =
√
d2

1 (n1) + d2
2 (n2). When g2 = 0,

equations (7)–(9) can be reduced to Ca,n1,n2(t) =
cos

(
g1

√
n1 + 1t

)
, Cb,n1+1,n2(t) = −i sin

(
g1

√
n1 + 1t

)
and

Cc,n1+1,n2+1(t) = 0. This is just the result for the

|a>

g1

|b>

g2

|c>

Figure 1. Scheme of the interaction between a cascade three-level
atom and a two-mode cavity field.

standard Jaynes–Cummings model [11], and many theoretical
predictions in the Jaynes–Cummings model, for example the
Rabi oscillation and the collapse-revival of atomic dynamics,
the sub-Poissonian photon statistics of the cavity field and so
on, have been confirmed in experiments [11, 14, 15].

3. Model with c.m. motion quantization

It is well known from quantum mechanics that the wavelength
of the de Broglie wave of an atom (or any other matter)
increases when the atomic momentum decreases, and the c.m.
motion of the atom must be described quantum mechanically
when the atom is slow enough. With the development of laser
cooling and trapping techniques [1], ultracold (or ultraslow)
atoms have been obtained. It becomes reasonable to ask
what happens when the atoms are so cold that their c.m.
motion has to be described quantum mechanically. How is
the interaction between the atoms and radiation fields affected
when the atomic kinetic energy is smaller than the atom–
field interaction energy? Horache et al and Englert et al [10]
studied the interaction between slow atoms and cavity fields,
and showed that the atoms may be reflected by the cavity field
when the atoms are slow enough. Scully et al [7] studied the
micromaser injected with ultracold atoms and predicted a new
kind of induced emission: the maser action. Loffler et al [7]
made some considerations for observing the maser action in
experiments. In these papers it is assumed that the atom–field
interaction takes the form of the standard Jaynes–Cummings
model [11], i.e. an interaction between a two-level atom and a
single-mode cavity field. In this paper we study the interaction
between an ultracold cascade three-level atom and a two-mode
cavity field, and examine the effects of the atomic c.m. motion
quantization and other factors on the atomic dynamics.

Here we still consider the micromaser-like experiment as
described at the beginning of the previous section, but we now
consider the situation in which the atom moves very slowly,
and we describe the atomic c.m. motion quantum mechanically.
Assume that the atom moves along the z-direction, then the
Hamiltonian for the whole system (atom + field) reads

H = p2
z

2M
+ u(z)V, (10)

where V is given by equation (1), M is the atomic mass,
pz is the atomic c.m. momentum operator and u(z) is the
cavity mode function. In the following we shall first find the
eigenvalues and eigenvectors (the dressed states) ofV and then
expand the states of the whole system with these dressed states.
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The eigenequation of V can be written as

V |D(i)
n1,n2

〉 = V (i)
n1,n2

|D(i)
n1,n2

〉, (11)

and its eigenstates (the dressed states) can be expanded with
the bare states

|D(i)
n1,n2

〉 = α(i)n1,n2
|a, n1, n2〉 + β(i)

n1,n2
|b, n1 + 1, n2〉

+ γ (i)
n1,n2

|c, n1 + 1, n2 + 1〉. (12)

Substituting (1) and (12) into (11) we find

V (0)
n1,n2

= 0, V (±)
n1,n2

= ±�n1,n2 , (13)

and

α(0)n1,n2
= d2(n2)

�n1,n2

β(0)
n1,n2

= 0 γ (0)
n1,n2

= d1(n1)

�n1,n2

α(+)n1,n2
= d1(n1)√

2�n1,n2

β(+)
n1,n2

= 1√
2

γ (+)
n1,n2

= d2(n2)√
2�n1,n2

α(−)
n1,n2

= d1(n1)√
2�n1,n2

β(−)
n1,n2

= − 1√
2

γ (−)
n1,n2

= d2(n2)√
2�n1,n2

(14)
where di(ni) and �n1,n2 are defined after equations (5) and (9),
respectively.

Suppose that, initially, the atom is in the topmost state |a〉
and moves along the z-direction with a c.m. momentum k, and
the cavity field is in the two-mode Fock state |n1, n2〉, then the
initial state for the whole system reads

|n1,n2(z, 0)〉 = θ(−z) eikz|a, n1, n2〉, (15)

where the Heaviside unit step function θ merely indicates on
which side of the cavity the atom can be found.

For the following discussion, it is expedient to expand
this state in terms of the dressed states. By using the inverse
of equation (12), we can rewritten (15) as

|n1,n2(z, 0)〉 = θ(−z) eikz[α(0)n1,n2
|D(0)

n1,n2
〉 + α(+)n1,n2

|D(+)
n1,n2

〉
+α(−)

n1,n2
|D(−)

n1,n2
〉]. (16)

As discussed in [7, 10], the interaction between the slow
atom and the cavity field can be treated as a scattering process;
the component associated with |D(i)

n1,n2
〉(i = 0,±) encounters

a potential u(z)V (i)
n1,n2

. In the present case, therefore, the
component associated with |D(0)

n1,n2
〉 will be transmitted through

the cavity field freely since V (0)
n1,n2

= 0, but the components
associated with |D(±)

n1,n2
〉 may be reflected or transmitted since

V (±)
n1,n2

= ±�n1,n2 	= 0. Assume that the reflection amplitudes
and the transmission amplitudes for the components associated
with |D(±)

n1,n2
〉 are ρ(±)

n1,n2
and τ (±)

n1,n2
, respectively, then the state

of the system after the interaction can be written as

|n1,n2(z, τ )〉 = e−i k2

2M τ {θ(z − l) eikzα(0)n1,n2
|D(0)

n1,n2
〉

+ [ρ(+)n1,n2
θ(−z) e−ikz + τ (+)n1,n2

θ(z − l) eikz]α(+)n1,n2
|D(+)

n1,n2
〉

+ [ρ(−)
n1,n2

θ(−z) e−ikz + τ (−)
n1,n2

θ(z − l) eikz]α(−)
n1,n2

|D(−)
n1,n2

〉},
(17)

where τ is the interaction time between the atom and the cavity
field, and l is the cavity length. It should be noted that the
definitions of the transmission amplitudes τ (±)

n1,n2
are similar to

that in [13], but differ from that in [7] by a factor e−ikl ; the
reason for this will be discussed after equation (31).

If the atom–field coupling inside the cavity is constant
along the z-direction, then the mode function u(z) can be
described by a mesa function

u(z) =
{

1, 0 < z < l

0, elsewhere.
(18)

In this case, the reflection amplitudes ρ(±)
n1,n2

and the
transmission amplitudes τ (±)

n1,n2
can be calculated analytically,

and have the following forms:

ρ(±)
n1,n2

= i$(±)
n1,n2

sin(k(±)
n1,n2

l)[cos(k(±)
n1,n2

l)

−i%(±)
n1,n2

sin(k(±)
n1,n2

l)]−1, (19)

τ (±)
n1,n2

= e−ikl[cos(k(±)
n1,n2

l) − i%(±)
n1,n2

sin(k(±)
n1,n2

l)]−1, (20)

where

$(±)
n1,n2

= 1

2

(
k(±)
n1,n2

k
− k

k
(±)
n1,n2

)
,

%(±)
n1,n2

= 1

2

(
k(±)
n1,n2

k
+

k

k
(±)
n1,n2

)
,

(21)

k(±)
n1,n2

=
√
k2 ∓ k2

n1,n2
, kn1,n2 = √

2M�n1,n2 . (22)

We note that the expressions of the transmission amplitudes
τ (±)
n1,n2

are similar to that in [13], but differ from that in [7]
by a factor e−ikl ; the reason for this will be discussed after
equation (31).

For the following discussion, we now transform (17) back
into the bare-state basis by using (12)

|n1,n2(z, τ )〉 = e−i k2

2M τ {[Ra,n1,n2θ(−z) e−ikz

+ Ta,n1,n2θ(z − l) eikz]|a, n1, n2〉
+[Rb,n1+1,n2θ(−z) e−ikz + Tb,n1+1,n2θ(z − l) eikz]

×|b, n1 + 1, n2〉 + [Rc,n1+1,n2+1θ(−z) e−ikz

+ Tc,n1+1,n2+1θ(z − l) eikz]|c, n1 + 1, n2 + 1〉}, (23)

where

Ra,n1,n2 = 1

2

(
d1(n1)

�n1,n2

)2 (
ρ(+)n1,n2

+ ρ(−)
n1,n2

)
, (24)

Ta,n1,n2 = 1

2

(
d1(n1)

�n1,n2

)2
[(
τ (+)n1,n2

+ τ (−)
n1,n2

)
+ 2

(
d2(n2)

d1(n1)

)2
]
,

(25)

Rb,n1+1,n2 = 1

2

d1(n1)

�n1,n2

(
ρ(+)n1,n2

− ρ(−)
n1,n2

)
, (26)

Tb,n1+1,n2 = 1

2

d1(n1)

�n1,n2

(
τ (+)n1,n2

− τ (−)
n1,n2

)
, (27)

Rc,n1+1,n2+1 = 1

2

d1(n1)d2(n2)

�2
n1,n2

(
ρ(+)n1,n2

+ ρ(−)
n1,n2

)
, (28)

Tc,n1+1,n2+1 = 1

2

d1(n1)d2(n2)

�2
n1,n2

[(
τ (+)n1,n2

+ τ (−)
n1,n2

)− 2
]
, (29)

in which equation (14) has been used. Here Ra,n1,n2

(Rb,n1+1,n2 , Rc,n1+1,n2+1) and Ta,n1,n2 (Tb,n1+1,n2 , Tc,n1+1,n2+1) are
the reflection amplitude and the transmission amplitude of the
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bare state |a, n1, n2〉 (|b, n1 + 1, n2〉, |c, n1 + 1, n2 + 1〉) after
the interaction, respectively.

In the fast-atom limit, k2 � k2
n1,n2

, in turn, k(±)
n1,n2

≈
k ∓ k2

n1,n2
/2k, $(±)

n1,n2
≈ 0, %(±)

n1,n2
≈ 1, ρ(±)

n1,n2
≈ 0 and

τ (±)
n1,n2

≈ eik(±)
n1 ,n2 e−ikl ≈ exp(∓ik2

n1,n2
l/2k) = exp(∓i�n1,n2τ);

therefore, we obtain

Ra,n1,n2 = Rb,n1+1,n2 = Rc,n1+1,n2+1 = 0, (30)

Ta,n1,n2 = Ca,n1,n2(τ ), Tb,n1+1,n2 = Cb,n1+1,n2(τ ),

Tc,n1+1,n2+1 = Cc,n1+1,n2+1(τ ),
(31)

where Ca,n1,n2 , Cb,n1+1,n2 and Cc,n1+1,n2+1 are given by
equations (7)–(9), respectively. These results are obviously
reasonable. In the fast-atom limit, corresponding to the atomic
kinetic energy, the potential barrier encountered by the positive
component is very low and the potential well met by the
negative component is very shallow; therefore, the atom will
not be reflected, it will only be transmitted. In other words, it
is not necessary to treat the c.m. motion of the atom quantum
mechanically in the fast-atom limit. This issue has been proved
by the agreement between the theories and the experiments of
the micromaser injected with thermal atoms [14]. If we had
not used the definitions of the transmission amplitudes τ (±)

n1,n2

as that in [13], we would not have obtained equation (31), and
this would affect the calculations of other physical quantities.
However, it can be shown that the two definitions of the
transmission amplitudes are equivalent for the two-level one-
photon maser [7], and for the three-level two-photon maser [8]
in the slow-atom limit.

4. Atom dynamics: analytical discussion

Now we study the dynamics of the system. After the atom–
field interaction, the probability of the system being in the state
|b, n1 + 1, n2〉 is

Pb,n1+1,n2 = |Rb,n1+1,n2 |2 + |Tb,n1+1,n2 |2. (32)

By using equations (26), (27) and (19), (20) we obtain

Pb,n1+1,n2 = 1

2

(
d1(n1)

�n1,n2

)2
{

1 − F (1)
n1,n2

F (2)
n1,n2

E
(+)
n1,n2E

(−)
n1,n2

}
(33)

where

F (1)
n1,n2

= 1 + $(+)
n1,n2

$(−)
n1,n2

S(+)n1,n2
S(−)
n1,n2

,

F (2)
n1,n2

= C(+)
n1,n2

C(−)
n1,n2

+ %(+)
n1,n2

%(−)
n1,n2

S(+)n1,n2
S(−)
n1,n2

,

E(±)
n1,n2

= (C(±)
n1,n2

)2 + (%(±)
n1,n2

S(±)
n1,n2

)2,

C(±)
n1,n2

= cos(k(±)
n1,n2

l), S(±)
n1,n2

= sin(k(±)
n1,n2

l).

(34)

Equation (33) with (34) looks like the expression for the
emission probability in the one-photon maser [7], but the
differences are also evident. We can also calculate the
probability of the system being in the state |c, n1 + 1, n2 + 1〉
after the interaction,

Pc,n1+1,n2+1 = |Rc,n1+1,n2+1|2 + |Tc,n1+1,n2+1|2. (35)

By using equations (28), (29) and (19), (20) we obtain

Pc,n1+1,n2+1 = 1

2

(
d1(n1)d2(n2)

�2
n1,n2

)2 {
3 +

F (1)
n1,n2

F (2)
n1,n2

E
(+)
n1,n2E

(−)
n1,n2

− 2

E
(+)
n1,n2E

(−)
n1,n2

[
F (3)
n1,n2

+ F (4)
n1,n2

]}
, (36)

where

F (3)
n1,n2

= (C(+)
n1,n2

E(−)
n1,n2

+ C(−)
n1,n2

E(+)
n1,n2

) cos kl,

F (4)
n1,n2

= (%(+)
n1,n2

S(+)n1,n2
E(−)
n1,n2

+ %(−)
n1,n2

S(−)
n1,n2

E(+)
n1,n2

) sin kl.
(37)

The information about the probability of the system being
in the state |a, n1, n2〉 can be obtained from the relation
Pa,n1,n2 +Pb,n1+1,n2 +Pc,n1+1,n2+1 = 1. Equations (33) and (36)
are rather complicated; we shall use them only in the numerical
calculations. For analytical discussion we consider some limit
cases.

4.1. Fast-atom limit

In the fast-atom limit, by substituting equations (30), (31) and
(7)–(9) into (32) and (35), we obtain

Pb,n1+1,n2 =
(
d1(n1)

�n1,n2

)2

sin2(�n1,n2τ), (38)

Pc,n1+1,n2+1 =
(
d1(n1)d2(n2)

�2
n1,n2

)2

[1 − cos(�n1,n2τ)]
2. (39)

These results are in agreement with previous works [11].

4.2. Slow-atom limit

In the slow-atom limit, k2 � k2
n1,n2

, in turn, k(−)
n1,n2

≈ kn1,n2 ,
k(+)n1,n2

≈ ikn1,n2 , $(−)
n1,n2

≈ %(−)
n1,n2

≈ kn1,n2/2k ≡ fn1,n2 � 1,
$(+)

n1,n2
≈ %(+)

n1,n2
≈ ifn1,n2 . In this case we have

ρ(+)n1,n2
≈ −1, τ (+)n1,n2

≈ 0, (40)

ρ(−)
n1,n2

= ifn1,n2 sin(kn1,n2 l)[cos(kn1,n2 l)−ifn1,n2 sin(kn1,n2 l)]
−1,

(41)
τ (−)
n1,n2

= e−ikl[cos(kn1,n2 l) − ifn1,n2 sin(kn1,n2 l)]
−1. (42)

Equation (40) shows that, in the slow-atom limit, correspond-
ing to the atomic kinetic energy, the potential barrier encoun-
tered by the positive component is very high; therefore, the
positive component will be reflected almost fully. Substitut-
ing equations (40)–(42) into (26), (27), and in turn into (32),
we obtain

Pb,n1+1,n2 = 1

2

(
d1(n1)

�n1,n2

)2 1

1 + f 2
n1,n2

sin2(kn1,n2 l)
. (43)

By comparing equation (38) with equation (43) we find that the
probability depends on the interaction time τ in the fast-atom
limit, while it depends on the interaction length l (the cavity
length) in the slow-atom limit. Equation (43) resembles the
Airy function of classical optics, [1 +F sin2($p/2)]−1, which
gives the transmitted intensity in a Fabry–Perot interferometer
with finesse F and total phase difference $p [12]. In our
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Figure 2. The population probability Pb versus the dimensionless
cavity length L with the parameters: K = 0.1, n1 = n2 = 0 and
η = 0, 0.5, 1 and 2, respectively.

situation here, F = f 2
n1,n2

= (kn1,n2/2k)2 and $p = 2kn1,n2 l.
There will appear resonant peaks when kn1,n2 l = mπ (m
is an integer). We note that, besides the common factor
kn1,n2 , $p is proportional to the cavity length l, while F is
inversely proportional to the square of the c.m. momentum,
i.e. F ∝ 1/k2, so the resonant peaks of Pb,n1+1,n2 will become
sharper when the atom moves more slowly (k is smaller).

In fact, under the slow-atom limit, fn1,n2 = kn1,n2/2k � 1,
we find from (41) and (42) that ρ(−)

n1,n2
= 0 and |τ (−)

n1,n2
| = 1

when the resonant condition kn1,n2 l = mπ is met, while
|ρ(−)

n1,n2
| ≈ 1 and τ (−)

n1,n2
≈ 0 when the resonant condition is

not met. The resonant condition kn1,n2 l = mπ corresponds to
l = m λn1,n2/2, where λn1,n2 = 2π/kn1,n2 is the de Broglie
wavelength of the atom in the cavity. Therefore, the negative
component will transmit through the cavity fully when the
cavity length is an integer multiple of half the de Broglie
wavelength; otherwise, it will be reflected almost fully.

5. Atom dynamics: influences of initial fields

In the above discussions we assumed that the field is initially
in the two-mode Fock state |n1, n2〉. When the field is initially
in a state with a photon number distribution Pn1,n2(0), then the
probabilities of the atom in the state |b〉 and |c〉 will be

Pb =
∑
n1,n2

Pn1,n2(0)Pb,n1+1,n2 , (44)

and
Pc =

∑
n1,n2

Pn1,n2(0)Pc,n1+1,n2+1, (45)

respectively.
In the following we consider several initial field states

and give a discussion from numerical calculations. Since
the properties for the thermal-atom (fast-atom) case are well
known from previous works [11], here we concentrate our
attention mainly on the ultracold-atom (slow-atom) situation.

For convenience, in the numerical calculations we have

introduced 4 =
√

2M
√
g2

1 + g2
2 , which has the dimension

of a momentum, and 42/2M =
√
g2

1 + g2
2 is the vacuum
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Figure 3. The population probability Pc versus the dimensionless
cavity length L with the parameters: K = 0.1, n1 = n2 = 0 and
η = 0.5 and 1, respectively. Pc = 0 for η = 0, and the curve for
η = 2 overlaps with that for η = 0.5.

coupling energy (note that we have taken h̄ = 1). We have
also introduced the dimensionless c.m. momentum K = k/4,
the dimensionless cavity length L = 4l and the ratio of the
two coupling constants η = g2/g1. Using these quantities in
equation (43) we can obtain the width of the resonance peaks
(2$L)FWHM = 4K{[(n1 + 1) + η2(n2 + 1)]/(1 + η2)}−1/2. We
see that the peaks become sharper when the atom changes
slower (K changes smaller) and/or the field changes stronger
(n1 and/or n2 change/changes larger).

Case a. Initially, both modes are in the vacuum state, i.e.
n1 = 0, and n2 = 0. This situation corresponds to the
cascade two-mode spontaneous emission. The variations of
the probabilities versus L, with n1, n2, K and η as parameters,
are shown in figures 2 and 3. In the numerical calculations the
exact expressions (33) and (36) have been used, but the value
of K is for the slow-atom region (K < 1, i.e. k < 4). We
see from figure 2 that the probability Pb,n1+1,n2 shows resonant
peaks at L = mπ(m = 1, 2, . . .). This is in agreement with
equation (43) and the discussions following it. Here it should
be pointed out that the approximate expression (43) is not
suitable near L = 0. We also see that Pb,n1+1,n2 decreases
monotonically as η increases. This is because the increase
of η will speed up the depletion of the population in the atomic
state |b〉. However, we see from figure 3 that Pc,n1+1,n2+1 does
not change monotonically with η. In fact, the curves for η = 2
and for η = 0.5 are fully overlapping. This is because we have
taken n1 = n2, and under this condition the two situations
η = 2 (g2 = 2g1) and η = 0.5 (g1 = 2g2) are equivalent for
the population in the atomic state |c〉.

In order to lay stress on the influences of the initial field
states and initial field intensity, we take η = 1 (i.e. g1 = g2)
in the following cases b, c and d.

Case b. Initially, mode 1 is in the vacuum state, i.e. n1 = 0,
while mode 2 is in a coherent state; the initial photon number
distribution Pn1,n2(0) can be written as

Pn1,n2(0) = δn1,0 exp(−〈n2〉) 〈n2〉n2

n2!
, (46)
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Figure 4. Pb versus L with the parameters K = 0.1, η = 1, n1 = 0
and 〈n2〉 = 10.
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Figure 5. Pc versus L with the parameters K = 0.1, η = 1, n1 = 0
and 〈n2〉 = 10.

where 〈n2〉 is the initial mean photon number in mode 2.
The variations of the probabilities versus L are shown in
figures 4 and 5. Comparing with the curve for η = 1 in figure 2
we find that the amplitude of Pb in figure 4 decreases. There
are two reasons for this. Firstly, in this case, mode 2 is stronger
than mode 1 (〈n2〉 = 10, n1 = 0); this speeds up the depletion
of the population in the state |b〉. Secondly, we know from
the resonant condition kn1,n2 l = mπ that the resonant peaks
for different (n1, n2) appear at different places; the summation
over n2 makes Pb collapse. However, for Pc, the effects of
the two factors are opposite. The increase of the intensity
of mode 2 makes Pc increase, while the summation over n2

makes it collapse. The variation is shown in figure 5. The
second reason also makes the variations of the probabilities
versus L change faster.

Case c. Initially, mode 2 is in the vacuum state, i.e. n2 = 0,
while mode 1 is in a coherent state; the initial photon number
distribution Pn1,n2(0) can be written as

Pn1,n2(0) = δn2,0 exp(−〈n1〉) 〈n1〉n1

n1!
, (47)

where 〈n1〉 is the initial mean photon number in mode 1. The
variation of Pb versus L is shown in figure 6. Comparing with
figure 4 we find that the amplitude of Pb in figure 6 increases.
This is because, in this case, mode 1 is stronger than mode 2
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Figure 6. Pb versus L with the parameters K = 0.1, η = 1,
〈n1〉 = 10 and n2 = 0.

0 1 2 3 4 5 6 7
0.0

0.1

0.2

P
b

L/π
Figure 7. Pb versus L with the parameters K = 0.1, η = 1 and
〈n1〉 = 〈n2〉 = 10.

(〈n1〉 = 10, n2 = 0); this strengthens the transition |a〉 →
|b〉, and weakens the transition |b〉 → |c〉. For Pc, under
the condition η = 1 (g1 = g2), the curve for the parameters
〈n1〉 = 10, n2 = 0 is identical with that for the parameters
〈n2〉 = 10, n1 = 0 in case b above (i.e. figure 5). This means
that the two situations are equivalent forPc under the condition
η = 1. The effects of the summation are the same as in case b.

Case d. Initially, both modes are in coherent states; the initial
photon number distribution Pn1,n2(0) can be written as

Pn1,n2(0) = exp(−〈n1〉) 〈n1〉n1

n1!
exp(−〈n2〉) 〈n2〉n2

n2!
. (48)

The variations of Pb and Pc versus L are shown in figures 7
and 8, respectively. In these two figures, the parameters for
the two modes are identical (η = 1, 〈n1〉 = 〈n2〉 = 10).
Comparing figure 7 with figures 4 and 6 we find that the values
of Pb in figure 7 are larger than that in figure 4, but smaller
than that in figure 6. This is due to the competition between
the two transitions. However, for Pc, the two transitions are
cooperative; this can be seen by comparing figure 8 with
figure 5: the values of Pc in figure 8 are larger than that in
figure 5. The double summations make the variations of the
probabilities versus L change more quickly.
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Figure 8. Pc versus L with the parameters K = 0.1, η = 1 and
〈n1〉 = 〈n2〉 = 10.

6. Summary

We have studied the interaction between an ultracold cascade
three-level atom and a two-mode cavity field, and examined the
effects of some parameters on the atomic dynamics. The main
results are summarized as follows: the population probabilities
show dependence on the interaction time τ in the fast-atom
region while they show dependence on the interaction length
(the cavity length) L in the slow-atom region. The variations
of the probabilities versus L show some resonant peaks. The
resonant peaks become sharper as the atom moves more
slowly (the c.m. momentum K is smaller). When the ratio
of the two coupling constants (η = g2/g1) increases, the
probability Pb decreases monotonically, while Pc does not
behave this way. The initial field states and the initial field
intensity also influence the atomic dynamics significantly. The
two transitions are competitive forPb, while cooperative forPc.
The results of this paper may be tested with micromaser-like
experiments [7, 14].
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