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Structural damage detection using the optimal weights
of the approximating arti5cial neural networks
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SUMMARY

This work presents a novel neural network-based approach to detect structural damage. The proposed
approach comprises two steps. The 5rst step, system identi5cation, involves using neural system iden-
ti5cation networks (NSINs) to identify the undamaged and damaged states of a structural system. The
partial derivatives of the outputs with respect to the inputs of the NSIN, which identi5es the system
in a certain undamaged or damaged state, have a negligible variation with di<erent system errors. This
loosely de5ned unique property enables these partial derivatives to quantitatively indicate system dam-
age from the model parameters. The second step, structural damage detection, involves using the neural
damage detection network (NDDN) to detect the location and extent of the structural damage. The input
to the NDDN is taken as the aforementioned partial derivatives of NSIN, and the output of the NDDN
identi5es the damage level for each member in the structure. Moreover, SDOF and MDOF examples
are presented to demonstrate the feasibility of using the proposed method for damage detection of linear
structures. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: arti5cial neural network (ANN); partial derivative form of ANN; system identi5cation;
structural damage detection

INTRODUCTION

Civil engineering structures are prone to damage and deterioration during their service life.
Damage assessment attempts to determine whether structural damage has occurred and, if so,
to determine the location and extent of the damage. However, detecting structural damage
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and identifying damaged elements in a large complex structure are challenging tasks since the
in situ measured data of large civil engineering structures such as bridges and buildings are
supposed to be imprecise (because of noise corruption) and often incomplete (for economy
consideration).
Conventional damage assessment methods [1; 2] are inherently direct process methods, pro-

ceeding linearly from causes to e<ects. These methods initially involve constructing a mathe-
matical model for the structure and, then, using that model to elucidate the structural behaviour
and to establish correlations between speci5c member damage conditions and changes in the
structural response. Despite their many attractive features, conventional damage assessment
methods may encounter diFculties, such as measurement noise and modelling errors, when
detecting systems that are diFcult to model. In addition, the damage assessment algorithm
conventionally adopted is generally complex and is inappropriate where measured data are
imprecise.
The arti5cial neural network (ANN) model is robust and fault-tolerant [3–5]. ANNs can

also e<ectively deal with qualitative, uncertain, and incomplete information, thereby making it
highly promising for detecting structural damage. The feasibility of applying these networks to
detect structural damage has received considerable attention. Wu et al. [6] used spectral accel-
eration, generated from a numerical model of a simple frame, as an input to a neural network.
According to their results, ANNs can learn about the behaviour of undamaged and damaged
structures to identify the damaged member and the extent of the damage from patterns in
the frequency response of the structure. While using ANNs trained with training samples
generated from a 5nite element model, Elkordy et al. [7] diagnosed damage states obtained
experimentally from a series of shaking-table tests of a 5ve-storey steel frame. Despite their
promising results, they pointed towards the need for further study of the relation between the
number of damage patterns required for training the network to perform satisfactorily and the
degree of simpli5cation of the model. Szewezyk and Hajela [8] used a modi5ed counterprop-
agation neural network to develop the inverse mapping between a vector of the sti<ness of
individual structural elements and the vector of the global static displacements under a test-
ing load. Their results indicated that the network functions as an associative memory device
capable of achieving satisfactory diagnostics even with noisy or incomplete measurements.
Pandey and Barai [9] examined the feasibility of applying multilayer perceptron to detect the
structural damage of a steel bridge from static vertical displacements of nodes. Masri et al.
[10; 11] extended the e<orts of previous studies by addressing a class of problems where
the failure states are unknown. They presented a neural network-based approach for detecting
changes in the characteristics of systems where the structure is unknown. Their approach relies
on using vibration measurements from a ‘healthy’ system to train an ANN for identi5cation
purposes. Subsequently, comparable vibration measurements from the same structure under
di<erent episodes of response are input to the trained network to monitor the health of the
structure. By utilizing the predictions of the ANN before and after potential structural changes
(damage) in the physical system have occurred, quanti5able measures of the degree of 5delity
of the predicted response measurements can be used to assess the extent of changes.
Neural networks have been extensively used to identify dynamic systems. The weights

of the approximating neural network store the knowledge of the structural properties. Thus,
understanding how the system’s physical properties and the weights of the corresponding ANN
are related is a worthwhile task. This work presents a novel neural network-based approach
to detect structural damage. The 5rst step, system identi5cation, involves using neural system
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identi5cation networks (NSINs) to identify the undamaged and damaged states of a structural
system. The partial derivatives of the outputs with respect to the inputs of the NSIN (functions
of weights and activation function), which identi5es the system in a certain undamaged or
damaged state, have a negligible variation with di<erent system errors. Comparing the partial
derivatives of the NSIN that identify a certain damaged state with those that identify the
undamaged state allows us to detect changes to the physical system from its undamaged
state. The second step, structural damage detection, involves using neural damage detection
network (NDDN) to detect the location and extent of the structural damage. The input to
the NDDN is taken as the aforementioned partial derivatives of the NSIN, and the output
of the NDDN identi5es the damage level (i.e. reduced percentage of respective damping and
(or) sti<ness) for each member in the structure. Moreover, SDOF and MDOF examples are
presented to demonstrate the feasibility of using the proposed method for damage detection
of linear structures.

ARTIFICIAL NEURAL NETWORKS

Arti5cial neural networks (ANNs) form a class of systems that are derived from biological
neural networks. The topology of an ANN model consists of a number of simple processing
elements, called nodes, that are interconnected to each other. Interconnection weights that
represent the information stored in the system are used to quantify the strength of the inter-
connections; these weights hold the key to the functioning of an ANN. ANNs have been used
in a broad range of applications, including classi5cation, pattern recognition, function approx-
imation, optimization, prediction, and automatic control. Among the many di<erent types of
ANN, the feedforward, multilayered, supervised neural network with the error backpropaga-
tion algorithm, the so-called backpropagation (BP) network [5], is by far the most commonly
applied neural network learning model owing to its simplicity.
Before an ANN can be used in the application, it needs to learn or be trained from an

existing training set consisting of pairs of input–output elements. The training of a supervised
neural network using BP learning algorithm usually involves two stages. The 5rst stage is the
data feed forward. The output of each node is de5ned as follows:

netj =
n∑
i=1
WijOi + �j (1)

Oj =f(netj) (2)

where Wij is the weight associated with the ith node in the preceding layer to the jth node
in the current layer, Oi is the output of ith node in the preceding layer, �j is the threshold
value of node j in the current layer, Oj is the output of node j in the current layer and
function f is the activation function, which has to be di<erentiable. Herein, the hyperbolic
tangent function and sigmoid function are used as the activation function in the NSIN and the
NDDN, respectively. The hyperbolic tangent function and the sigmoid function are de5ned,
respectively, as

f(x)=
ex − e−x

ex + e−x
(3)
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and

f(x)=
1

1 + e−x
(4)

The second stage is error back-propagation and adjustment of the weights through the network.
In the training process, the system error function is used to monitor the learning performance
of the network. This system error function is de5ned as follows:

E=
1
2P

P∑
p=1

K∑
k=1

(dpk − opk)2 (5)

where P is the number of instances in the training set and dpk as well as opk are the desired
and calculated output of the kth output node for the pth instance, respectively. The standard
BP algorithm uses a gradient descent approach with a constant step length (learning ratio) to
train the network.

W (k+1)
ij =W (k)

ij +PWij (6)

PWij =−� @E
@Wij

(7)

where � is the learning ratio which is a constant in the range of [0; 1]. The superscript index
(k) denotes the kth learning iteration. BP supervised neural network learning models, however,
always take a long time to learn. Moreover, the convergence of a BP neural network is highly
dependent upon the use of a learning rate (�). Thus, several di<erent approaches developed
to enhance the learning performance of the BP learning algorithm have been applied [3].
Hung and Lin [12] developed a more e<ective adaptive limited memory Broyden–Fletcher–

Goldfarb–Shanno (L-BFGS) learning algorithm based on the approach of a L-BFGS quasi-
Newton second-order method [13; 14] with an inexact line search algorithm. This algorithm
achieved better convergence rate than the BP learning algorithm by using second-order deriva-
tives of the system error function with respect to the network weights. In the conventional
BFGS method, the approximation Hk+1 to the inverse Hessian matrix of function E(W) is
updated by

Hk+1 = (I − �kskyTk )Hk(I − �kyksTk ) + �ksksTk

≡ VT
k HkVk + �ksksTk

(8)

where

�k =1=yTk sk (9)

Vk = I − �kyksTk (10)

sk =Wk+1 −Wk (11)

yk = gk+1 − gk (12)
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and

gk =
@E
@W

(13)

Instead of forming the matrix Hk in BFGS method, we save the vectors sk and yk . These
vectors 5rst de5ne and then implicitly and dynamically update the Hessian approximation
using information from the last few iterations, say m in the work. Therefore, the 5nal stage
of the adjustment of the weights in a BP-based ANN is modi5ed as follows:

W(k+1) =W(k) + �kdk (14)

The search direction is given by

dk =−Hkgk + �kdk−1 (15)

where

�k =
yT(k−1)H(k−1)g(k−1)

yT(k−1)d(k−1)
(16)

The step length, �k , is adapted during the learning process through a mathematical approach:
the inexact line search algorithm. This is used in the L-BFGS learning algorithm instead of
a constant learning ratio [12]. The inexact line search algorithm is based on three sequential
approaches: bracketing, sectioning, and interpolation. The bracketing approach brackets the
potential step length, �, between two points, through a series of function evaluations. The
sectioning approach then uses the two points of the bracket as the initial points, reducing
the step size piecemeal, and locating the minimum between points, e.g. �1 and �2, to a
desired degree of accuracy. Finally, the quadratic interpolation approach uses the three points,
�1; �2, and (�1 + �2)=2, to 5t a parabola to determine the step length, �k . Consequently, the
step length �k is required to satisfy the following conditions in each iteration [12]:

E(Wk + �kdk)6E(Wk) + ��k(∇E(Wk)Tdk) � ∈ (0; 1) and �k¿0 (17)

∇E(Wk + �kdk)Tdk¿�(∇E(Wk)Tdk � ∈ (�; 1) and �k¿0 (18)

∇E(Wk + �kdk)Td(k+1)¡0 (19)

Hence, the problem of trial and error selection of a learning ratio in the BP algorithm is
circumvented in the adaptive L-BFGS learning algorithm.

NEURAL SYSTEM IDENTIFICATION NETWORK (NSIN)

Under some mild assumptions, a discrete-time multivariable linear or non-linear time-invariant
structural system with r inputs (external excitations) and m outputs (including relative dis-
placements, velocities and accelerations) can be represented by the following equation:

y(k) = g(y(k − 1); : : : ; y(k − ny); p(k − 1); : : : ; p(k − np)) (20)
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Figure 1. The architecture of the neural structural identi5cation network.

where

p(k) = [p1(k) · · · pr(k)]T (21)

and

y(k) = [y1(k) · · · ym(k) ]T (22)

= [d1(k) v1(k) a1(k) · · · dm(k) vm(k) am(k)]T (23)

are the system input and output vectors, respectively, np and ny are the maximum lags in
the input and output, respectively, index k is an integer number; k=0; 1; 2; : : : ; N; d(k); v(k)
and a(k) are, respectively, the relative displacement, velocity and acceleration vectors of the
system at time t= kPt and Pt is the time length of the sampling period and g is some
vector-valued linear or non-linear function.
Function g in Equation (20) can be approximated by the ANN, called neural system identi-

5cation network (NSIN), as shown in Figure 1. The inputs of the NSIN are relative displace-
ments, velocities, and accelerations in (k−1) back-to (k−ny) time steps, and external excita-
tions in (k − 1) back-to (k − np) time steps. They are denoted as d1(k − 1); : : : ; dm(k − 1); : : : ;
d1(k − ny); : : : ; dm(k − ny) for relative displacements, v1(k−1); : : : ; vm(k−1); : : : ; v1(k − ny); : : : ;
vm(k − ny) for relative velocities, a1(k − 1); : : : ; am(k − 1); : : : ; a1(k − ny); : : : ; am(k − ny) for
relative accelerations, and p1(k − 1); : : : ; pr(k − 1); : : : ; p1(k − np); : : : ; pr(k − np) for external
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excitations. The outputs of the NSIN are relative displacements, velocities, and accelerations
in the kth time step and denoted as d1(k); : : : ; dm(k); v1(k); : : : ; vm(k) and a1(k); : : : ; am(k), re-
spectively. Notably, the approximation by the NSIN in a discrete linear system is analogous to
identifying the mass, damping and sti<ness coeFcients in the equation of motion. Herein, the
NSIN is implemented through an adaptive L-BFGS neural network model with the hyperbolic
tangent activation function.
ANN models have been extensively used to identify dynamic systems. Cybenko [15] and

Funahashi [16] rigorously demonstrated that, even with only one hidden layer, neural networks
can uniformly approximate any continuous function. This theoretical basis for modelling linear
or non-linear systems by neural networks is therefore sound. The weights of a trained NSIN
store the knowledge of the properties of the identi5ed system. Thus, understanding how the
system’s physical properties and the weights of the trained NSIN are related is a worthwhile
task. However, Masri et al. [11] indicated that determining the system’s dynamic character-
istics directly from the optimal weights of the approximating neural network is extremely
diFcult because of the non-uniqueness of the optimal weights, and also since the values of
the network weights are not directly related to the system’s physical properties. To overcome
this diFculty, the partial derivative form of the ANN is developed and introduced in the next
section.

THE PARTIAL DERIVATIVE FORM OF THE ANN

If there is a network with n hidden layers, the output of the kth node in the output layer is
de5ned as follows:

Ok =f(Netok) (24)

Netok =
∑
j
Whnj; okHnj + �ok (25)

where Hnj is the output of the jth node in the nth hidden layer, �ok is the threshold value of
the kth node in the output layer, Whnj; ok is the weight associated with the jth node in the nth
hidden layer to the kth node in the output layer and function f is the activation function.
If the number of input nodes is I , then the Taylor expansion of Equation (24) can be

written as follows:

Ok =f(X1; : : : ; XI ; �h1; : : : ; �hn; �ok) (26)

=f(0; : : : ; 0; �h1; : : : ; �hn; �ok) +
I∑
i−1

@Ok
@Xi

Xi +
1
2

I∑
i=1

I∑
j=1

@2Ok
@Xi@Xj

XiXj + · · · (27)

where Xi is the input of ith node in the input layer, �hj is the threshold value vector of the
jth hidden layer and

f(0; : : : ; 0; �h1; : : : ; �hn; �ok)=f

(∑
jn

(
Whnjn; ok · · ·f

(∑
j1
Wh1j1; h2j2f(�h1j1)

))
+ �ok

)
(28)
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where �h1j1 is the threshold value of the j1th node in the 5rst hidden layer. The higher order
partial derivatives of Ok are negligible if the nonlinearity in the function is not large. By
keeping only the linear terms in X and assuming that the number of the output nodes is
K , the linear relationship between inputs and outputs of the ANN can be expressed as the
following 5rst-order partial derivative form:



O1

...
OK


≈




@O1

@X1
· · · @O1

@XI
... · · · ...

@OK
@X1

· · · @OK
@XI






X1
...
XI




+




f

(∑
jn

(
Whnjn; o1 · · ·f

(∑
j1
Wh1j1; h2j2f(�h1j1)

))
+ �o1

)

...

f

(∑
jn

(
Whnjn; oK · · ·f

(∑
j1
Wh1j1; h2j2f(�h1j1)

))
+ �oK

)




(29)

The 5rst-order derivative of the kth output with respect to ith input Dki can be derived as
follows:

D1
ki=

@Ok
@Xi

=
∑
jn

· · ·∑
j1
Whnjn; okf′(Netok) · · ·Wxi; h1j1f′(Neth1j1) (30)

where Wxi; h1j1 is the weight associated with the ith node in the input layer to the j1th node
in the 5rst hidden layer.
Equation (30) indicates that D1

ki is a function of weights and the 5rst-order derivative of
the activation function. Actually, Dn

ki (n¿2), i.e., the higher-order derivative of the kth output
with respect to the ith input, is a function of weights and the derivatives, including 5rst
and higher order, of the activation function. Notably, for a trained NSIN, Dl

kl relates to the
linear properties of the structure, while Dn

ki (n¿2) relates to the non-linear properties of the
structure.
A sequence of repeatedly identifying the system in a certain undamaged or damage state by

the NSIN reveals that Dn
ki (n¿1) of the NSIN has a negligible variation with di<erent system

errors. Importantly, the topology of the NSIN during the sequence of training processes must
remain the same; otherwise, this loosely de5ned uniqueness of Dn

ki (n¿1) of the NSIN does
not exist. Owing to the diFculty of proving the loosely de5ned uniqueness of Dn

ki (n¿1)
of the NSIN, a linear SDOF structure example and a linear MDOF one are illustrated in
the numerical example section later on. Comparing the partial derivatives of the outputs with
respect to the inputs of the NSIN that identify a certain damage state with those that identify
the undamaged state allows us to detect changes to the physical system from its undamaged
state. The larger changes to the physical system imply a greater di<erence between these
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partial derivatives of the two NSINs. Notably, this detection was performed without a priori
knowledge of the physical system properties.

NEURAL DAMAGE DETECTION NETWORK (NDDN)

The mathematical function describing a real-world structure can be extremely complex, and its
exact form is usually unknown. Thus, the complex system’s properties can still not be deter-
mined directly from these partial derivatives. As well known, ANNs can model input–output
functional relations even when mathematically explicit formulas are unavailable. Therefore, the
ANN, called neural damage detection network, can determine the system’s properties directly
from the optimal weights of a trained NSIN if some priori information about the damaged
states are available.
The neural damage detection network attempts to identify the location and extent of the

structural damage. The NDDN is trained to recognize the partial derivatives of the outputs
with respect to the inputs of NSINs that identify the structure in undamaged as well as
various damaged states. According to Figure 2, the input to the NDDN is taken as the partial
derivatives of the outputs with respect to the outputs of the NSIN. In addition, the output of
the NDDN is an identi5cation of the damage level (reduced percentage of respective sti<ness
and damping) for each member in the structure. Hence, the output layer contains two nodes
per member and the damage states (both damping and sti<ness) in that member; an activation
value of zero represents no damage and one represents complete damage. Herein, the NDDN
is implemented using an adaptive L-BFGS neural network model with the sigmoid activation
function.

Figure 2. The architecture of the neural damage detection network.
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THE NUMERICAL EXAMPLE

Example 1: SDOF structure system

Herein, a linear SDOF system is selected as the structure to investigate the damage de-
tection capacity of the proposed method. The structural properties are taken to be: mass
m=2923:38 kg; sti<ness k=1391:06 kN=m; and damping coeFcient c=6373:74 N s=m.
Response spectra for the 1940 EL-Centro earthquake record are used as the external exci-
tation, but scaled to 25 per cent of the intensity of the original earthquake. The sampling
period Pt is 0:01 s. In this example, the relative displacement, relative velocity and relative
acceleration time histories, computed by state space procedure (SSP), are used as a measured
response of the structure.

NSINs training. In this example, 66 NSINs are used to identify 66 distinct states (including
undamaged and damaged states) of the structure. The 66 distinct states (cases) of the structure
reveal that the sti<ness is reduced from 0 to 50 per cent every 5 per cent and damping from
0 to 25 per cent every 5 per cent. Each NSIN consists of four, four, and three nodes in
the input layer, the hidden layer, and the output layer, respectively, and denoted as NSIN L-
BFGS(4-4-3). The four input data are the structural relative displacement dk , relative velocity
vk , relative acceleration ak and external excitation pk . The three outputs are dk+1, vk+1 and
ak+1.

To verify the loosely de5ned uniqueness of partial derivatives of the outputs with respect
to the inputs of a trained NSIN, the undamaged structure is repeatedly modelled by the
NSIN ten times, and each time uses a di<erent set of starting weights and takes 5000 cycles
for the complete o<-line training process. Since the structure in this example is a linear
system, only the 5rst-order partial derivatives of the NSIN need to be computed for damage
detection. Results of the ten modellings (Table I) indicate that the NSIN’s 12 5rst-order partial
derivatives of the outputs with respect to the inputs (the 2nd to the 13th columns in Table
I) have only a slight variance with the di<erent system error (the 14th column in Table I).
For any two di<erent modellings, the larger di<erence between their system errors implies
a greater di<erence between their 5rst partial derivatives of the outputs with respect to the
inputs of the NSIN. Nevertheless, the di<erences of 5rst partial derivatives of the outputs with
respect to the inputs of the NSIN between the best and worst modellings are still very small
and can even be negligible.
Next, each of the other 65 cases is also repeatedly modelled by a NSIN ten times, and

each time uses a di<erent set of starting weights and takes 5000 cycles for the complete
o<-line training process. For each case, only the best model out of 10 trials is chosen, and
a portion of those results are shown in Table II. This table reveals that @vi+1=@di (the 2nd
quantitative indicator), @ai+1=@di (the 3rd quantitative indicator), @vi+1=@vi (the 5th quantitative
indicator) and @ai+1=@vi (the 6th quantitative indicator) obviously vary with the sti<ness, and
only @ai+1=@vi with damping, while other eight quantitative indicators vary unobviously with
sti<ness or damping. Interestingly, in this example, @vi+1=@di, @ai+1=@di and @ai+1=@vi are nearly
proportional to sti<ness as shown in Figure 3. Besides, the larger changes to the physical
system imply a larger change of the four obviously varying quantitative indicators. Notably,
this detection is performed without a priori knowledge of the physical system properties.
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Figure 3. Values of the 2nd, 3rd, 5th and 6th quantitative indicator vary with sti<ness and damping in
the 66 cases (SDOF example).

The NDDN training and testing. Herein, the NDDN is constructed with 12, 5ve and two
nodes in input layer, hidden layer, and output layer, respectively, and denoted as NDDN L-
BFGS(12-5-2). The 12 input data are the 12 5rst-order partial derivatives of the outputs with
respect to the inputs of the NSIN. The two outputs are the reduced percentage of sti<ness
and damping of the structure.
Among the 66 cases, 54 cases are used to train the NDDN, and other cases (case 2, 11,

12, 21, 26, 31, 36, 41, 50, 51, 60, 61) are used to test the NDDN. The 12 testing cases
are uniformly selected in the 66 cases to verify the damage detection ability of the NDDN.
The complete o<-line training process takes 2000 cycles, and the system error converges to
0.00002305. After the NDDN is trained on the 54 training cases, it is tested to observe how
accurately it would recognize other states of damage. Table III summarizes the results of these
tests, indicating that the NDDN can satisfactorily diagnose the damaged state (both damping
and sti<ness) in all 12 testing cases.

Example 2: MDOF structure system

In this example, a 5-storey shear building is chosen to demonstrate the feasibility of using
the proposed method to detect the damage of linear MDOF structure systems. The structural
properties of the building are assumed to be as follows: Soor mass m=8× 104 kg, Soor

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:217–234
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Table III. Damage detection results (SDOF example).

Testing Real (predicted) reduced percentage of sti<ness and damping
case

k c

1 5 (4.3779) 0 (0.8359)
2 50 (49.9299) 0 (1.4386)
3 0 (0.7469) 5 (4.7800)
4 45 (44.9394) 5 (4.6387)
5 15 (15.5242) 10 (13.9134)
6 40 (39.9733) 10 (12.1338)
7 10 (9.9342) 15 (13.9702)
8 35 (34.8921) 15 (14.2284)
9 25 (25.0451) 20 (20.6451)

10 30 (29.9777) 20 (21.0848)
11 20 (19.8623) 25 (26.1801)
12 25 (24.8726) 25 (25.9880)

sti<ness k=4× 107N=m, and Soor damping c=1:5× 106Ns=m for all Soors. Response spectra
for the 1940 EL-Centro earthquake record is used as the external excitation. The sampling
period Pt is 0:01 s. In this example, only the relative acceleration time histories of the 5rst,
third, and 5fth Soor, computed by SSP, are used as measured responses of the structure.

NSINs training. In this example, 243 NSINs are used to identify the following 243 distinct
states (including undamaged and damaged states) of the structure. The 243 distinct states
(cases) of the structure stipulate the arrangement of the 5ve Soor sti<ness reductions, and each
Soor sti<ness reduction varies from 0 to 20 per cent every 10 per cent. Herein, each NSIN
consists of 5ve, four and three nodes in input layer, hidden layer, and output layer, respec-
tively, and denoted as NSIN L-BFGS(5-4-3). The 5ve input data are the relative acceleration
of the 5rst Soor a1k , the third Soor a3k , the 5fth Soor a5k and external excitations pk and pk−1.
The three outputs are the relative acceleration of the 5rst Soor a1k+1, the third Soor a3k+1 and
the 5fth Soor a5k+1.

The undamaged structure is repeatedly modelled by the NSIN ten times, with each time
using a di<erent set of starting weights and taking 5000 cycles for the complete o<-line
training process. Results of the ten modelling (Table IV) indicate that the NSIN’s 15 5rst-
order partial derivatives of the outputs with respect to the inputs (the 2nd to the 16th columns
in Table IV) have only a slight variance with the di<erent system error (the 17th column in
Table IV). According to this table, the loosely de5ned uniqueness of partial derivatives of the
outputs with respect to the inputs of a trained NSIN still holds in this example.
Next, each of other 242 cases is also repeatedly modelled by a NSIN ten times, each

time using a di<erent set of starting weights and taking 5000 cycles for the complete o<-line
training process. In each case, only the best model out of 10 trials is chosen, and a portion
of the results are shown in Table V. In Table V, ki is the sti<ness of the ith Soor.

The NDDN training and testing. Herein, the NDDN is constructed with 15, nine and 5ve
nodes in input layer, hidden layer, and output layer, respectively, and denoted as NDDN L-
BFGS(15-9-5). The 5fteen input data are the 15 5rst-order partial derivatives of the outputs

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:217–234
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Table VI. Damage detection results (MDOF example).

Testing Real (predicted) reduced percentage of sti<ness
case

k1 k2 k3 k4 k5

1 0 (0.00) 0 (0.31) 10 (10.48) 0 (0.32) 0 (0.29)
2 10 (9.78) 0 (0.15) 0 (0.25) 10 (8.26) 0 (0.50)
3 0 (0.00) 10 (9.26) 0 (0.31) 10 (9.83) 10 (10.61)
4 10 (8.65) 10 (7.72) 10 (11.48) 10 (7.37) 0 (3.60)
5 0 (0.03) 20 (20.75) 0 (0.22) 0 (1.73) 20 (20.89)
6 20 (19.82) 0 (0.22) 20 (20.08) 0 (0.48) 20 (24.20)
7 0 (0.00) 20 (18.97) 20 (21.83) 20 (17.21) 20 (17.38)
8 10 (9.70) 0 (0.25) 0 (0.15) 20 (19.29) 0 (2.39)
9 0 (0.00) 20 (19.95) 0 (0.55) 0 (0.27) 10 (7.90)

10 20 (20.16) 10 (8.23) 10 (12.50) 0 (0.24) 0 (0.75)
11 0 (0.00) 10 (11.80) 20 (20.54) 10 (6.29) 0 (2.87)
12 20 (19.89) 0 (0.40) 0 (0.29) 10 (7.09) 10 (13.85)
13 20 (20.03) 10 (11.72) 0 (0.07) 20 (20.11) 0 (0.74)
14 10 (11.07) 0 (0.44) 20 (19.38) 0 (2.28) 20 (17.19)
15 0 (0.00) 20 (19.56) 0 (1.39) 20 (20.47) 10 (10.49)
16 10 (10.26) 10 (10.48) 20 (19.89) 0 (0.54) 10 (8.06)
17 0 (0.00) 10 (9.40) 10 (11.74) 20 (20.38) 10 (12.77)
18 10 (10.43) 20 (20.50) 10 (11.22) 20 (20.00) 0 (0.00)
19 20 (19.85) 0 (0.34) 20 (19.66) 10 (11.98) 10 (10.50)
20 20 (19.79) 20 (20.11) 10 (10.73) 0 (0.60) 20 (22.50)
21 20 (19.99) 10 (9.70) 20 (19.16) 20 (19.45) 20 (19.59)
22 10 (9.86) 20 (19.99) 10 (10.39) 10 (10.69) 20 (19.76)
23 20 (19.80) 10 (8.82) 20 (19.79) 20 (19.06) 10 (14.18)

with respect to the inputs of the NSIN. The 5ve outputs are the reduced percentage of sti<ness
of each Soor.
Among the 243 cases, 220 cases are used for training of the NDDN, and other 23 cases

are used to test the NDDN. The 23 testing cases are uniformly selected in the 243 cases to
verify the damage detection ability of the NDDN. The complete o<-line training process takes
10 000 cycles and the system error converges to 0.000104. Table VI summarizes the testing
results, indicating that NDDN can satisfactorily diagnose the damaged state in all of the 23
testing cases.
Although the two examples demonstrate only the feasibility of using the proposed method

for damage detection of linear structures, we believe that this method can be applied to
non-linear structures as well.

CONCLUSIONS

Neural networks are a highly e<ective means of identifying systems that are typically en-
countered in structural dynamics. The weights of the approximating neural network store the
knowledge of the structural properties. The partial derivatives of the outputs with respect
to the inputs (functions of weights and the activation function) of the approximating neural
network have the loosely de5ned uniqueness property that enables these partial derivatives

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:217–234
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to quantitatively indicate system damage from the model parameters. This work presents a
novel neural network-based approach to detect structural damage. First, NSINs are used to
identify the undamaged and damaged states of the structural system. Comparing the quantita-
tive indicators of the NSIN that identify a certain damaged state with those that identify the
undamaged state allows us to detect changes to the physical system from its undamaged state.
This detection is performed without a priori knowledge of the physical system properties.
Second, by assuming that some a priori information about the system are available, then this
knowledge can be used to train the NDDN in order to identify the location and extent of the
damage which is never used in training the NDDN. Illustrative examples demonstrate that the
proposed structural damage detection method is not only feasible for linear SDOF systems
with complete measured data, but also feasible for linear MDOF systems with incomplete
measured data. Furthermore, this method is highly promising for applications to non-linear
structures since ANNs can treat both linear and non-linear systems with the same formulation.
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