A JPEG-like texture
compression with adaptive
quantization for 3D
graphics application

C.-H. Chen, C.-Y. Lee

Department of Electronics Engineering, National
Chiao Tung University, 1001, Ta Hsueh Road,
Hsinchu, 300, Taiwan, R.O.C.

E-mail: chchen@royals.ee.nctu.edu.tw

Published online: 2 October 2001
© Springer-Verlag 2001

DCT-based compression is widely used in
video and image compression for a high
compression ratio, but it suffers from ran-
dom-access problem when applied to tex-
ture compression. In this paper we present
a JPEG-Like DCT-based texture compres-
sion technique which is suitable for 3D
graphics rendering system. We apply a sim-
ple adaptive quantization on an 8 x 8 block-
size texture, such that the length of the en-
coded bit stream of one block can be approx-
imated to the target. A pre-defined quantizer
scale is encoded with the bit stream with
a small overhead. Our technique achieved
a high compression ratio, quality control of
true color texture, and random access of tex-
ture data.

Key words: 3D graphics — Texture compres-
sion

Correspondence to: C.-H. Chen

The Visual Computer (2002) 18:29-40
Digital Object Identifier (DOI) 10.1007/s003710100130

1 Introduction

3D computer graphics have been widely used in
various applications, for example, entertainment,
medicine, and scientific research. There are few ap-
plications that stress modern PC computing power
more than today’s 3D-API. The continuous improve-
ment of deep sub-micron semiconductor technology
has brought 3D graphics processors from high-end
workstations to low-end desktop PCs. These power-
ful processors are now capable of supporting many
3D applications. Although current 3D graphics pro-
cessors have high computing power, they still cannot
render lifelike animated images in real-time. The
bottleneck of 3D graphics systems includes comput-
ing power, memory storage and bandwidth require-
ment. Although the computing power of graphics
processors doubles every six months, the memory
storage and bandwidth requirement become worse
due to the demand for realistic and complex 3D ap-
plications. Thus the overall system performance is
limited.

Among the operations in 3D graphics rendering sys-
tems, texture mapping consumes the largest band-
width and memory storage. The bandwidth require-
ment for texture access may be up to giga-bytes
per second, as shown in Table 1. Traditional texture
mapping is used to increase the detail of the ge-
ometry visual quality without increasing the model
complexity. Now multi-texture mapping techniques
are widely used in lots of applications, for example,
specular light-map, environment mapping, shadow
and bump mapping. Texture filtering, which includes
bilinear, trilinear and anisotropic filtering, is applied
to reduce texture aliasing. With multi-texture map-
ping and filtering, the bandwidth requirement for
texture access may jump up to 2-, 4- or 8-fold the sin-
gle texture mapping (PowerVR™ 1998).

Texture compression (TC) is the technique used to
reduce the texture memory storage and bandwidth
requirement. It increases system performance in sev-
eral ways. First, it reduces accelerated graphics port
(AGP) and frame buffer bus traffic, yielding supe-
rior texturing performance and fill rate. Second, it re-
duces the texture storage in frame buffer; this makes
more detailed texture storage or performance possi-
ble by using the additional memory space for double
or triple buffering. TC is a “must have” feature in
current 3D accelerators.

Textures are ordinary bit map images. Although
good and optimized image compression techniques
have been described in many papers during the
past few decades, they are not suitable for TC be-

30 C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application

Table 1. Bandwidth estimation of texture

s Texture 5 M polygons/s 10 M polygons/s 20 M polygons/s
ggcgf;els%)gl/yz)nf“;ﬁi tg%é‘)ligxwtﬁi; filtering type Withott Wi/th Without Wi{h Without Wi{h
single texture mapping, 10% texture cache cache texture cache texture cache texture
miss rate cache cache cache

Point sampling 375 37.5 750 75 1500 150
Linear 750 75 1500 150 3000 300
mip-map
Bilinear 1500 150 3000 300 6000 600
mip-map
Trilinear 3000 300 6000 600 12000 1200
mip-map
Anisotropic 6000 600 12 000 1200 24000 2400

cause of several issues with regard to texture access.
In Sect. 2, we review previous work and discuss
these issues considering modern technology and ap-
plications. In addition, we find a balance between
texture quality and compression ratio (CR) for dif-
ferent applications. For example, medical and sci-
entific 3D images must have lossless compression,
3D games can choose lossy compression and in-
ternet 3D applications can choose the highly lossy
mode to shorten download time. Current results
(3dfx 1999; S3™ 1999) for the CR are within the
range of 4 to 8. This CR may be fine for current
APIL, but it is not sufficient for future 3D applica-
tions. Future TC should provide high CR and quality
control. TREC (Torborg et al. 1996) is the first to
use JPEG-like high CR and a simple quality control
technique. But TREC suffers from a long texture ac-
cess problem (Microsoft 1999), which may degrade
performance. In this paper, we develop a JPEG-
like TC technique which aims for high CR (> 8).
We solve the problem of random texture access
where quality control is also considered. A compar-
ison of quality and CR with other methods is also
shown.

2 Issues of texture compression and
previous work

Image and video compression technologies have
been extant for a long time. Still image coding
schemes have been classified into predictive, block
transform, and multi-resolution approaches (Egger
et al. 1999). VQ, DCT and DWT are the most
widely accepted techniques among these image
compression schemes. Although textures are or-
dinary bitmap images, current image compression

methods may not be applicable to TC. The nature
of texture access make TC differ from traditional
image compression. We discuss the issues of TC
below.

2.1 Issues of texture compression

2.1.1 Random access

In a standard rasterization pipeline, the texture
coordinate is generated until the polygon scan-
conversion stage. The texture coordinate is evaluated
or interpolated in texture space. Perspective correc-
tion and anisotropic and filtering texture mapping
techniques result in more detail and correct tex-
ture mapping. The mapping procedure introduces
discontinuous texture access in texture space and
sometimes may cause large displacement. Thus the
TC technique must provide fast random access of
texture.

2.1.2 Compression ratio and visual quality

There is a tradeoff between CR and quality. Loss-
less compression, such as Lempel-Ziv compres-
sion, can provide perfect reconstruction, but the CR
is low. However, lossy compression introduces er-
ror. For TC, existing techniques (S3™ 1999; 3dfx
1999; Ivanov and Kuzmin 2000) have average CR
values of between 4 and 8. Current image com-
pression techniques can easily achieve CR values
higher than 8 and also provide some features for
various applications, such as: quality control, SNR
scaleable, multi-resolution and progressive coding
and streaming. The major difference between im-
ages and textures is that images are viewed on
their own, while texture mapping rotates, distorts,

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application 31

magnifies or minifies texture to “paste” on geom-
etry surface. The visual quality is the most impor-
tant for image compression, but it is not so critical
for TC.

2.1.3 Decoding speed

As shown in Table 1, the texture access rate may
be up to a giga-texel per second. The texture de-
compression engine must provide high-speed de-
compression and texture access. All current designs
include a small on-chip texture cache to reap the
benefit of texture reuse. Hakura and Gupta (1997)
showed that the cache miss rate is under 10% with
proper cache design. Issue texture access or pre-fetch
as early as possible can solve the problem of long
texture decompression latency (Igehy et al 1998; Mi-
crosoft 1999). With the texture cache and a pre-fetch
technique, the decoding speed may not be so critical,
except in the worst-case scenario of texture cache
miss. For example: currently, the fastest 3D GPU can
achieve a rate of 3.2 G texel/s; assume a 10% texture
cache miss rate; thus, the decoding speed is at least
320 M texel/s.

2.2 Previous work

Several TC techniques have been proposed and some
are used in current products. These techniques can be
classified into several categories:

2.2.1 Block truncation coding

Block truncation coding (BTC) (Kanittel et al. 1996)
is a simple TC technique. Two colors are selected to
be the reconstruction level of a 4 x 4 block. Although
BTC is very simple to encode and decode, its draw-
backs are edge discontinuity, blocking effect and low
CR. Kugler (1997) provides post-processing filtering
to improve the quality. But this introduces more tex-
ture access of neighboring blocks and makes decom-
pression more complex. Despite its CR being high
(= 12), BTC is not well suited for TC due to poor
quality.

2.2.2 Vector quantization

Vector quantization (VQ) was chosen for TC due
to the simple decoding involved. However, VQ suf-
fers from the problem of codebook selection. Code-
book size determines the image quality and CR.
Beers (1996) and PowerVR™ (Butler et al. 1999)

chose one codebook for the entire texture. When de-
compressing, the decoder first retrieves the index of
the corresponding block and then consults the code-
book to find the final colors. This requires two serial
memory accesses of one block unless the codebook
can be stored on the chip or a universal codebook
can be hard-wired on the chip. A high-quality code-
book will consume a large amount of chip area and
require long downloading latency. It is impossible
to find a universal codebook whose size is small
and has good quality. Thus the traditional VQ tech-
nique is not suitable for high-performance texture
systems.

2.2.3 Local palette

S3TC (S3™ 1999) and 3dfx-FXT1 (3dfx 1999) are
local palette techniques. They decompose texture
into small 4 x 4 (S3™ 1999; 3dfx 1999) or 8 x 8
(3dfx 1999) blocks. Within each block, two (S3™
1999; 3dfx 1999), three (3dfx 1999) or four (3dfx
1999) colors are encoded and linearly interpolated to
four or eight colors. The drawback of this method
is the lack of colors in each block. Thus Ivanov and
Kuzmin (2000) proposed a “color distribution” tech-
nique to provide more colors on one block. It al-
lows using colors from neighboring blocks instead
of simply interpolating colors stored in the current
block. The visual quality may become superior to
that in S3TC and FXT1. However, all of the local
palette techniques have a CR of 4 to 6 for RGB
format. Current local palette techniques do not pro-
vide 24-bit RGB true color format, and when the
alpha component is considered, the CR becomes re-
duced. They cannot achieve a high CR of true color
texture.

2.2.4 DCT-based coding

Texture and rendering engine compression (TREC)
(Microsoft 1997) is a JPEG-like compression tech-
nique, while Playstation2 (Suzuoki et al. 1999) is
an MPEG2-based technique. Both of them have
DCT-based coding. A CR higher than 15 can eas-
ily be achieved, and good quality can also be en-
sured under DCT-based coding. The challenges of
DCT-based coding for TC are random access and
decoding speed. Variable-length bit stream makes it
unsuitable for TC. Besides, it must decode in order
from the head of the bit stream to find the desired
pixel. TREC solved this problem by preserving DC
without DPCM. Talisman constructed an index ta-
ble and link-list to address the variable-length bit

32 C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application

8x8 Block

/

J-e DCT-Based Encoder

FH
. . Zig-Zag Huffman
- . FOCT e Quantization e Scan — Coding
Source Image Table Table
Specifications Specifications v
Compressed Bit Stream
I DCT-Based Decoder
Inverse Zig-Zag Huffman _
e [DCT | of— — -
g Quantization Scan Decoding
. . Table Table
Reconstructed Image
s 4 Specifications Specifications

T

{

Fig. 1. JPEG encoding/decoding flow

stream of each block. However, the long latency (Mi-
crosoft 1999) of texture access is still a bottleneck
and makes the hardware design more complex. In
this paper, our task is to solve the problems of DCT-
based TC.

3 The proposed JPEG-like texture
compression technique

3.1 Brief review of JPEG

DCT-based compression techniques are based on the
concept of compacting energy into fewer coefficients
in the transform domain and then encoding these
coefficients. JPEG (Pennebaker 1993) is a standard
DCT-based still image compression technique, and
it provides good visual quality. JPEG partitions the
image into 8 x 8 blocks, applies to each block the for-
ward discrete cosine transform (FDCT), and scalar
quantizes the DCT coefficients. The DC coefficient
is encoded by DPCM, while the zig-zag-ordered AC
coefficients are entropy coded using Huffman cod-
ing (or variable length coding, VLC). Figure 1 shows
the baseline JPEG encoding and decoding flow. In
the encoding process, only the Huffman codewords

and quantization tables are left for the user to con-
trol the visual quality and compression ratio. Stan-
dard JPEG has provided the example VLC code-
words and quantization table based on perceptual
criteria.

If we want to use JPEG for TC, we need to solve
the random access problem. To achieve random ac-
cess of an image block in the JPEG bit stream, we
need to build an index table or truncate the bit stream.
Truncating the bit stream will cause a serious block
effect, since the high-frequency component cannot
just be discarded. The technique used to build the
index table is similar to TREC. The entries in the in-
dex table represent the memory address or offset of
each block. The size of the index table is described as
follows:

Singex = TotalBlocks

TotalBlocks x (R+G+ B+ A)
x log, R . (D

where TotalBlocks = (Width/8) - (Height/8). For
512 x 512 24-bit RGB format images and CR =
24, Singex = 73 728 bits. Adding the index table,
the overall CR decreases to 18.73. If we parti-
tion the bit stream of each block into 32, 64, 128
or 256 segment sizes for the purpose of mem-

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application 33

Origin Compression Ratio

30

—&—Baboon
—&—Lenna

—&—Backwall
—w—Banner

|/
/

Compression Ratio

Bit Stream Segment Size

Fig.2. Compression ratio decreases under different bit
stream segment sizes in JPEG

ory alignment, the overhead of index table is as
follows:

Sindex = TotalBlocks

TotalBlocks B’)
x lo —
& Z (’75 egment Size —‘

j=1

xSegmentSize) , (2)

where B ; 1s the encoded bit-stream length. [x] rep-
resents the minimum integer greater than or equal to
x. Note that if we down sample U and V an extra
index table should be built for the U and V streams
to distinguish them from the Y stream. The overall
CR is reduced by adding an index table. Figure 2
shows the decrease in CR for different segment sizes.
It indicates that the overhead of the table is high
especially for a low-complexity image: Lenna and
Backwall as shown in Table 3. Using an index ta-
ble will introduce two memory accesses to obtain
the desired bit-stream and degrade the overall perfor-
mance.

3.2 The proposed algorithm

Figure 3 shows the compression and decompression
flow of our JPEG-like TC algorithm for an RGBA,

32-bit texture. The major distinctions of our algo-
rithm from JPEG are:

e [t operates on one 8§ x 8 block individually. Each
8 x 8 Y or U or V or Alpha block is encoded, de-
coded and accessed independently.

e It compresses every block toward a fixed length
bit stream, thus random access can be achieved
and memory space can be utilized efficiently. The
bit stream length of every encoded block can be
any size, as controlled by user definition or qual-
ity control.

e Every 8 x 8 block has its corresponding quantizer
scale, which is pre-defined to control quality and
CR.

e The “Alpha” component, which represents the
transparency of every texel, is compressed in ad-
dition to the R, G and B color components.

Both DCT and VLC are the same as those for JPEG;
however, we change the quantization step in our al-
gorithm. In the JPEG quantization stage, Hung and
Meng (1991) found the optimized quantizer of JPEG
using a complex search. But if the same quantizer is
applied to every image block as in JPEG, it will lack
local adaptation and also result in a variable-length
bit stream. In our algorithm, we introduce a localized
quantizer, an adaptive quantization for every block.
One of the pre-defined quantizer scale or quantiza-
tion tables is chosen to quantize each 8 x 8 block to
the desired bit stream length.

In JPEG or MPEG, the quantizer scale can be speci-
fied to control the rate of the encoded bit stream. Rate
control is introduced to provide consistent visual
quality in video transmission. The problem found
is, given a target bit rate, how to encode the video
sequence for minimized distortion and consistent vi-
sual quality. In JPEG and MPEG, the quantization
table or quantizer scale is applied to all blocks. We
can describe the quantization for each 8 x 8 block as
follows:

= (Cn
C, = Round

Qn : Qp
where C, represents the DCT coefficients in one
block, Q, is the corresponding quantization step
and Q, is the quantizer scale, whose default is 1.
Round(x) represents the closest integer to x.
Although an optimized quantizer can be found to
achieve minimum distortion of one block, the de-
coder has to know the quantizer of each block. As
a consequence the CR will strongly decrease. Thus

) n=12,...,64, (3)

34 C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application

4:2:0 format
U
Y
|
o v
S o

Texture RGB2YUV 1

Source Y,U,V or
Alpha Block

~
~
N, | B8 FDCT
Alpha ~,

Quantizer
Scale
Salection

!

Fit Target
- Huffman

l'.)uantlzatmn Coding

leel:l Length

Blt Stream
| Standﬂn:lTabIe | | Slam:lard Tahlel

E'-I
Stream

BuB - |

Recounstruct
Block

IFDCT

Fig. 3. Our JPEG-Like texture compression/decompression flow

Inverse Huffman I
‘ |Quantization Decoding

we have to define some quantizer scale Q, for TC
and encode 4 bit data into each corresponding block
to indicate which quantizer scale or table is selected.

3.3 Adaptive quantization for 8 x 8 blocks

Considering hardware implementation, we define
sixteen Q, for the quantizer scale. Thus a 4-bit in-
dex is encoded in each 8 x 8 block to indicate which
O, has been selected. Therefore (3) can be written as
follows:

~ 16-C,
C,,=R0und< ¢ >

Qn : Qp
0,=06,8,10,12, 14, 16, 18, 20, 22,
24,26, 28, 30, 32, 40, 48. 4)

The range and resolution of @, can be increased
or decreased to control the rate more precisely or
coarsely. Assume the desired compression ratio is
CR. The allowed bit count for one 8 x 8 block j is
B =64-24/CR for RGB true color texture. The bit
count after Huffman coding is B;. The encoding tar-
get is to let B ; come as close as possible to (but
remain less than) B. The selection of Q, could be
made by searching all of the Q,. However, we intro-
duce the activity-based bit estimation model (Cheng
and Hang 1995) used in the rate control of video se-
quences to increase the encoding speed.

The bit count B ; depends on the complexity in the
block. For example, a texture block with higher ac-
tivity indicates that the content of the block is more
complex than one with low activity and that more
bits will be needed to encode it. Activity here means
an absolute-value summation of the 63 DCT AC
coefficients in one 8 x 8 block. Therefore we can
construct a linear equation of block activity and bit
counts for different Q. The following is an empiri-
cal first-order bits model:

(lCt
B =K, —L + K>, 5
Op;

where K| and K, are constants derived from train-
ing data to minimize the error and act; is the ac-
tivity of block j. By using this model, we can
train lots of various blocks under different Q,
and then obtain 16 approximation lines. When en-
coding block j, we calculate act; first and then
solve (6):

ClCtj
B—K;
Thus we obtain the approximate ij. Figure 4
illustrates the concept of ij selection. By con-

ij:Kl (6)

trolling ij, Ej can be specified to be as close
as possible to B. Since the content of neighbor-
ing blocks usually has little variation, the previous
blocks Qy; can be used as a reference for Q.

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application 35

QP1
QP2

Target Bit Length QP3

Z i

/

Bit Counts

Activity

Fig.4. O, selection under different activities

The pseudo-code to encode one 8 x 8 block is as
follows:

1. Calculate activity act; of block j.

2. Solve (6) to obtain the value of Q, closest to or
equal to ij_l.

3. Quantize j with Q, and Huffman coding to ob-
tain the bit count B jy if B j > B goto step 4, else
if §j < B gotostep 5, else go to last step 6.

4. IfB ; > B, decrease the bit count:
while (B; > B) {
increase Q,, one level to Q;;
quantize with Qp;
Huffman encoding to obtain new B b
ij = Q;
5.1fB j < B, increase the bit count but do not allow
it to exceed the budget B:
while (B; < B) {
decrease Q) one level to Q;;
quantize with Qp;
Huffman encoding to obtain new B i b
Qp j = Qp-

6. Encode corresponding index of ij into block.

As shown above, complex blocks are assigned large
Oy, and low-activity blocks smaller ones. Although
higher Q, means higher loss and lower Q, means
smaller loss, all of the blocks are encoded towards
the target length and stored in a fixed-size mem-
ory block with efficient memory utilization. Thus the
texture in any block in the memory can be accessed.
This fixed-length technique also provides efficient
memory allocation and consistent decoding speed.

3.4 Bit budgets

The texture formats in 3D graphics include gray-
scale, 16-bit RGB, 24-bit RGB, 32-bit RGBA and
others. How to choose the bit target for each compo-
nent in each block is another problem in our adaptive
quantization technique. Here, we profile the bit al-
location of each component in JPEG to see the bit
counts of each component. When arranging the bit
budget, the memory alignment problem should also
be considered. Bit counts of 32, 64, 128 or 256 are
suitable for memory access and hardware design.
Other size may cause two or three memory accesses
in one texture request and decrease the performance
of texture mapping.

We down-sample U and V by two in our algorithm.
This refers to the YUV 4 : 2 : 0 format used in JPEG
and MPEG. Figure 5 is the bit allocation profile of
three 24-bit true color JPEG images, where the quan-
tizer and Huffman coding are set to default. Ob-
viously, we can find that almost all of the U and
V allocated bit counts are within 32 bits in one
block. But Y may be distributed widely from 16 to
160 bits. Thus we can conclude that a 32-bit bud-
get is sufficient for U and V for most cases in TC.
For Y, it depends on the complexity of the texture.
A 64-, 96-, 128- or 256-bit budget can be chosen
forY.

In addition to the RGB format, the texture format
may include the “Alpha” component, which is used
to represent the transparency of the texture. The Al-
pha component can be treated as a gray-level image;
thus we encode it individually. The Alpha resolution
may be 4, 5, 6 or 8 bit, depending on the application.
When the resolution is 5 or 6 bit, we can combine
the bit stream of Alpha with Y for a total bit length
of 128 or 256, which is a good memory alignment
size. If an 8-bit Alpha is used, the bit stream is sep-
arated from Y. Table 2 shows the performance of
different resolution Alpha under various CR in our
algorithm. Here, we treat the gray-level image as the
Alpha component, since the detail of Alpha can be
any shape.

3.5 Compression ratio and visual quality
comparison

As discussed in Sect. 3.4, we can use the adaptive
quantization in Sect. 3.3 for each block to efficiently
use the bit budget. Table 3 shows the CR and a visual-
quality comparison with other techniques. The CR,

36

80

Number of Blocks

[+23
o
a2

B
o
1

204

2504

200

1504

100

Number of Blocks

504

3004

2504

2004

150

Number of Blocks

-
©
£

504

:
H
i
H
i
1

Baboon
Lenna
-------------- Backwall

20

T T 7
40 60

1 v 1 '.-
80 100

Bit Counts of 'Y' Block

Baboon
Lenna
Backwall

R\ WY

120

140 160

180 200

10 15 20 25 30 35 40 45 50 55 60 65 70
Bit Counts of 'U' Block

Baboon
Lenna
- Backwall

Bit Counts of 'V' Block

L I AL L |
10 15 20 25 30 35 40 45 50 55 60 65 70

Fig. 5. Bit allocation profile of YUV components in JPEG

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application

Table 2. PSNR performance of different resolution Alpha; CR

is 8
Baboon Lenna Backwall Banner Texture
4 bits/pixel 45.84 51.05 49.68 4692 49.57
5 bits/pixel 41.12 47.80 4693 4278 4571
6 bits/pixel 36.01 44.01 43.08 38.11 41.07
8 bits/pixel 2476 34.04 33.58 27.57 31.61

when U and V are down-sampled by 2, is defined as
follows:

(R+G+B+A)x64
R=— Biry + Bit - ™
Bity + (%) + Bit,

Where R, G, B, A represent the format of the tex-
ture and Bity, Bity, Bity, Bity represent the bit
counts of one block. For a 24-bit RGB format,
R=G=B=8 when Y =64, U=V =32 and
CR=192. For U=V =32 and Y = 128 or 64,
sizes suitable for memory alignment, CR = 10.67
and 19.2. As shown in Table 3, our TC technique
can achieve a CR about 2-fold greater than the
S3TC local palette technique and still hold the vi-
sual quality of JPEG. The random access problem
of TREC is also solved. When the Alpha precision
is low, for example 4 or 5 bit, combining the Al-
pha bit stream with Y to 128 bits results in good
quality, and CR becomes 14.2, which is more than
three times that in S3TC. For a low-complexity im-
age (Lenna and Backwall), the quality is still good
at CR = 19.2. The rendering results in Figs. 6 and 7
show the overall visual quality is good even under
high CR. It is hard to find the difference between
compressed and uncompressed texture-mapped 3D
scenes. A feature comparison with other TC tech-
niques is given in Table 4. DCT-based coding is good
for high CR and good quality, while others cannot
preserve good quality under high CR. With a fixed
length bit stream technique, our technique is better
than TREC, where both a high CR and good quality
can be achieved.

3.6 Decoding speed

The decoding speed is an important issue in TC.
Previous works (S3™ 1999; 3dfx 1999; Ivanov
and Kuzmin 2000) challenge the decoding speed
and hardware cost of JPEG. But from the a system
view, it is not critical in current 3D graphics sys-
tems. Current 3D graphics accelerators all include

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application 37

Table 3. Compression ratio and visual quality (average RGB PSNR) comparison. The number in the parenthesis is CR

Baboon Lenna

Backwall?

Texture

Venus?

FXT1 S3TC JPEG? TREC¢ Proposition 1, Proposition 2, Proposition 3, Proposition 4,

CR=6 CR=6 CR=38 CR =10.67 CR=12 CR=19.2
Baboon 28.30 27.82 24.94 (15.34) 26.20 (12.16) 25.92 25.03 24.64 23.08
Lenna 3491 35.03 31.71 (30.27) 31.32(36.03) 33.16 32.89 32.72 31.51
Backwall 33.14 32.6 29.44 (21.10) 28.87 (24.46) 29.71 29.56 29.45 28.47
Banner 30.26 30.01 25.88 (14.39) 26.89 (12.08) 26.80 26.10 25.81 24.31
Texture 37.97 36.51 4478 (21.94) 34.93 (24.5) 43.65 42.49 41.44 31.85
Venus 33.44 33.05 29.90 (19.17) 30.36 (17.49) 32.10 31.35 30.90 28.83

4Textures from 3D Winbench™ 2000, 3D Winbench™ is a trademark of ZD Inc.
bJPEG [13]: UV down-sample, and use default quantizer scale and default Huffman table.

“TREC [8]: UV down-sample, and use uniform quantization mode.

the MPEG video decoder. The transistor count of
current 3D accelerators may be up to twenty mil-
lion, and the MPEG video decoder is under 5% of
the total chip area. Our JPEG-like TC algorithm
can share hardware resources with the MPEG de-
coder, for example, the IDCT, inverse quantizer
and VLD. High throughput IDCT and VLD tech-
niques are available to support high-speed decom-
pression, for example, 600 Mpixels/s ISDCT (Lin
and Lee 2000) and group-based VLD (Shieh et al.
2001). Even under sequential decoding, this decod-
ing speed is sufficient to support DCT-based texture
decompression.

4 Conclusion

In this paper, we review the texture compression
techniques of previous works and address the re-
quirements of texture compression. The compres-
sion ratio of current standard S3TC and FXT1 is
under 8:1. A high-compression-ratio technique
such as TREC suffers from the texture random ac-
cess problem. By analyzing the properties of JPEG,
we have proposed a JPEG-like DCT-based texture
compression technique to obtain higher compres-
sion ratios (> 12). We have solved the random ac-
cess problem in TREC. In the proposed technique,

38 C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application

7

Fig. 6. 3D rendering result 1 (CR =16 RGB format)
Fig.7. 3D rendering result 2 (CR = 16 RGB format)

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application 39

Table 4. Features comparison of texture compression techniques

Kugler [11] Beers [1] PowerVR [5] S3TC [2] FXT1 [3] TREC [8] Proposed
TC type BTC vQ vQ Local palette Local palette DCT DCT
Encoding speed Fast Slow Slow Medium Medium Fast Fast
Decoding complexity Low Low Low Medium Medium Highest High
CR 12 >8 2—16 4~6 4~8 > 10 > 10
Quality Bad Medium Medium Very good Very good Good Good

we apply localized block adaptive quantization to
each 8 x 8 block and encode it to target bit stream
length. A 4-bit quantizer-scale is encoded with the
bit stream in each block. And a bit-count estimation
model is proposed to increase the encoding speed
for real-time texture encoding. The quality of our
technique is at an acceptable level and the compres-
sion ratio can be defined by the user. Thus quality
control, which is used in video applications, can
also be achieved. Applications can choose the com-
pression ratio versus quality trade-off depending on
the hardware computing power or network band-
width. This is important for internet and wireless 3D
applications.

Bandwidth and storage are always the issues in var-
ious applications. Texture compression is also an
issue. High compression ratio and quality control are
the trends for future complex 3D applications. Our
technique provides both features and brings a video
technique into graphics applications. It provides
an alternative approach to meet the ever-increasing
memory storage and bandwidth requirements.

Acknowledgements. The authors would like to thank their colleagues
within the SI2 group of NCTU and the Multimedia Division of SiS
(Silicon Integrated Systems Corp.) for many fruitful discussions. The
support from SiS and the NSC is also acknowledged. This work was
supported by the National Science Council of Taiwan, ROC, under
Grant NSC89-2218-E-009-080.

References

1. 3dfx Interactive (1999) FXT1 texture compression technol-
ogy white paper. Available at
http: //www-dev.3dfx.com/fxt1 /fxtl whitepaper.pdf

2. Hung AC, Meng TH-Y (1991) Optimal quantizer step sizes
for transform coders. In: Chan YT, Venetsanopoulos AN
(eds) IEEE Int. Conf. Acoustics Speech Signal Process.,
Toronto, Canada, IEEE Press, New York, pp 2621-2624

3. Beers AC, Agrawala M, Chaddha N (1996) Rendering from
compressed textures. Proc. SIGGRAPH *96, pp 373-378

4. Kugler A (1997) High performance texture decompression
hardware. Visual Comput 13(2):51-63

10.

11.

12.

13.

14.

15.

16.

17.

Shieh B-J, Lee Y-S, Lee C-Y (2001) A new approach
of group-based VLC codec system with fully table pro-
grammability. IEEE Trans Circuits Syst. Video Technol.
11(2):210-221

Ivanov D, Kuzmin Ye (2000) Color distribution — a new
approach to texture compression. Comput Graph Forum
19(3):283-289

Khnittel G, Schilling A, Kugler A, Straber W (1996) Hard-
ware for superior texture performance. Comput Graph
20(4):475-481

Igehy H, Eldridge M, Proudfoot K (1998) Prefetching in
a texture cache architecture. Proc. 1998 EUROGRAPHICS/
SIGGRAPH Workshop Gr. Hardware, pp 133-142

Cheng J-B, Hang H-M (1995) Adaptive piecewise linear
bits estimation model for MPEG based video coding. In:
Liu B, Chellappa R (eds) Int Conf Image Process, Wash-
ington DC, IEEE Computer Society Press, Los Alamitos,
2:551-554

Torborg J, Kajiya JT (1996) Talisman: commodity realtime
3D graphics for the PC. Proc. SIGGRAPH 96, pp 353-363
Ribas-Corbera J, Lei S (1999) Rate control in DCT video
coding for low-delay communications. IEEE Trans Circuits
Syst Video Technol 9(1):172-185

Ramchandran K, Vetterli M (1994) Rate-distortion opti-
mal fast thresholding with complete JPEG/MPEG decoder
compatibility. IEEE Trans Image Process 3(5):700-704
Crouse M, Ramchandran K (1997) Joint thresholding and
quantizer selection for transform image coding: entropy-
constrained analysis and applications to baseline JPEG.
IEEE Trans Image Process 6(2):285-297

Butler M, Pinter-Krainer M, VideoLogic Ltd (1999)
PowerVR™ second generation white paper of vector quan-
tization texture compression, hardware bump mapping and
generalized modifier volumes. Available at

http: //www.powervr.com

Suzuoki M, Kutaragi K, Hiroi T, Magoshi H, Okamoto S,
Oka M, Ohba A, Yamamoto Y, Furuhashi M, Tanak M,
Yatak T, Okada T, Nagamatsu M, Urakawa Y, Funyu M,
Kunimatsu A, Goto H, Hashimoto K, Ide N, Murakami H,
Ohtagu (1999) A microprocessor with a 128-Bit CPU, ten
floating-point MAC’s, four floating-point dividers and an
MPEG-2 decoder. IEEE J Solid State Circuit 34(11):1608-
1618

Microsoft (1997) Escalante hardware overview. Talisman
Graph Multimedia Syst, pp 89-106

Microsoft (1999) Method and system for accessing texture
data in environments with high latency in a graphics render-
ing system. United States Patent, Patent Number: 5880737

40

18.

19.

20.

21.

22.

23.

C.-H. Chen, C.-Y. Lee: A JPEG-like texture compression with adaptive quantization for 3D graphics application

Egger O, Fleury P, Ebrahimi T, Kunt M (1999) High-
performance compression of visual information — a tutorial
review — part I: still pictures. Proc. IEEE 87(6):974-1011
PowerVR™ (1998) White paper: the future of 3D graphics
technology. Available at

http: //www.powervr.com

S3™ Inc (1999) White paper of S3TC. Available at

http: //www.s3.com/savage3d/s3tc.pdf

Lin S-T, Lee C-Y (2000) Analysis and design of a high-
throughput two dimension inverse scan discrete cosine
transform processor. Master’s thesis, NCTU EE, Taiwan
Pennebaker WB (1993) JPEG still image data compression
standard. Van Nostrand Reinhold, New York

Hakura ZS, Gupta A (1997) The design and analysis of
a cache architecture for texture mapping. In: Pleszkum A,
Mudge T (eds) Proc. 24th Int Symp Comput Archit, Denver,
Colorado, ACM, New York, pp 108-120

CHEN-YI LEE received his
B.S. degree from the National
Chiao Tung University, Hsinchu,
Taiwan, in 1982 and his M.S.
and Ph.D. degrees from Katho-
lieke University Leuven (KUL),
Belgium, in 1986 and 1990, re-
spectively, all in electrical engi-
neering. From 1986 to 1990 he
was with IMEC/VSDM, work-
ing in the area of architecture
synthesis for DSP. In February
1991, he joined the faculty of
the Electronics Engineering De-
partment, National Chiao Tung

University, where he is currently a Professor. His research in-
terests mainly include VLSI algorithms and architectures for
high-throughput DSP applications. He is also active in vari-
ous aspects of high-speed networking, system-on-chip design
technology, very low bit rate coding, and multimedia signal pro-

cessing.

CHENG-HSIEN CHEN re-
ceived his B.S. degree from
the Department of Electron-
ics Engineering, National Chiao
Tung University, in 1997. Since
September 1997, he has been
working toward a Ph.D. de-
gree in electronics engineering
at the same university. His re-
search interests include VLSI
algorithms and architectures (in-
clude 3D graphics and video
systems) and memory optimiza-
tion for system-on-chip design.

