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Solution for Flow Rates across the Wellbore in a Two-Zone
Confined Aquifer

Shaw-Yang Yang1 and Hund-Der Yeh2

Abstract: A closed-form solution for transient flow rates across the wellbore in a confined aquifer is derived from a two-zone
ground-water flow equation subject to the boundary condition of keeping a constant head at the well radius. An aquifer may be c
as a two-zone system if the formation properties near the wellbore are significantly changed due to the well construction an
development. An efficient numerical approach is used to evaluate this newly derived solution. Values of the transient flow
provided in a tabular form and compared with those obtained by numerical inversion for the Laplace-domain solution. The resu
that the two solutions are in good agreement. This newly derived solution can be used not only for predicting the transient flow ra
the wellbore but also for identifying the effects of a skin with a finite thickness on the estimation of transient flow rates in a groun
system with two different formation properties.

DOI: 10.1061/~ASCE!0733-9429~2002!128:2~175!

CE Database keywords: Flow rates; Ground water; Numerical analysis; Aquifers.
ct
ith
th
he

e

ar

c
u

t

t
es

s
n
g

th-
em.
re
d

ne
ng
n-

ell-
red
the

a

ss
ted
an

nt
ad
e

x-
lu-
-
d

Introduction

The constant-head test is sometimes employed in site chara
ization for determining the hydraulic parameters of aquifers w
low permeability. During the test, the hydraulic head across
wellbore is kept constant while the transient flow rate into t
well is measured.

Carslaw and Jaeger~1939! gave the solutions for heat flow
from the surface of the region bounded internally by a cylind
such as buried pipe and cable, cooling of mine, etc. Tables
numerical values for the heat-flow rate from the surface which
of practical interest can be seen in Jaeger and Clarke~1942!,
Ingersoll et al.~1950!, and Ingersoll et al.~1954!. Based on the
solution given by Smith~1937!, Jacob and Lohman~1952! pre-
sented a formula describing the flow rate across the wellbore
nonleaky confined aquifers and listed a table of the numeri
values for a wide range of the dimensionless flow rate vers
dimensionless time. Hantush~1962! also provided a formula of
ground-water flow through wedge-shaped aquifers, which has
same form as the solution given by Jacob and Lohman~1952!.
Reed~1980! and Batu~1998! listed a wide range of values of tha
formula for dimensionless well discharge versus dimensionl
distance or time.

During well construction, a wellbore skin of finite thicknes
may develop due to the invasion of drilling mud into the adjace
formation or the removal of fine particles from the surroundin
kin
he

e
the
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formation by extensive well development; consequently, an o
erwise homogeneous aquifer may become a two-zone syst
The drilling process may therefore produce a positive wellbo
skin that has lower hydraulic conductivity than the undisturbe
formation. Conversely, thorough well development removes fi
particles, e.g., fine silt and clay particles, from the surroundi
formation and produces a negative wellbore skin with an i
creased conductivity. Markle et al.~1995! developed a finite-
element model to analyze the transient flow rate across the w
bore during a constant-head test conducted in a vertical fractu
media. Their results show that during a constant-head test
transient flow rate across the wellbore may be affected when
wellbore skin exists. Chang and Chen~1999! gave the Laplace-
domain solutions of the hydraulic head and the flow rate acro
the wellbore in a two-zone ground-water system. They presen
curves representing specific capacity versus time as part of
investigation of the influence of a skin~low-permeability zone! on
aquifer parameter estimations.

In this study a closed-form solution is derived for transie
flow rate across the wellbore when performing a constant-he
test in a two-zone confined aquifer system. In addition, w
present a numerical evaluation of this solution, which is e
pressed in a dimensionless form. Numerical values of this so
tion are verified by comparing with the results of numerical in
version for the Laplace-domain solution using the modifie
Crump algorithm~de Hoog et al. 1982!. This new solution can be
used as a tool to investigate the effects of the presence of a s
with a finite thickness on the estimation of flow rate across t
wellbore.

Mathematical Derivations

Two-Zone Radial Flow Equation under Constant-Head
Condition

Fig. 1 shows the well and aquifer configurations for a two-zon
confined aquifer system. Several assumptions are made for
solution of hydraulic heads in the confined aquifer; they are~1!
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the aquifer is homogeneous, isotropic, infinite-extent, and with
constant thickness,~2! the well is fully penetrating with a finite
radius, and~3! the initial head is constant and uniform throughou
the whole aquifer. Based on these assumptions, the govern
differential equations in terms of the hydraulic headh(r ,t) in
two-zone formations can be written as

]2h1

]r 2 1
1

r

]h1

]r
5

S1

T1

]h1

]t
, r w<r<r 1 (1)

and

]2h2

]r 2 1
1

r

]h2

]r
5

S2

T2

]h2

]t
, r 1,r ,` (2)

where the subscripts 1 and 2, respectively, denote the wellb
skin zone and the undisturbed formation zone,h5hydraulic head;
r 5radial distance from the centerline of the well;r w5radius of
the well; t5time from the start of the test;S5storage coefficient;
andT5transmissivity.

The hydraulic head is initially assumed to be zero in both t
skin and the undisturbed formation, that is

h1~r ,0!5h2~r ,0!50, r .r w (3)

The boundary condition for maintaining a constant head ar
5r w is given by

h1~r w ,t !5hw for t.0 (4)

wherehw5constant head around the wellbore at any time. Asr
→` the hydraulic head tends to zero:

h2~`,t !50 (5)

Between the skin zone and the undisturbed formation the h
is continuous

h1~r 1 ,t !5h2~r 1 ,t !, t.0 (6)

and there is conservation of mass:

T1

]h1~r 1 ,t !

]r
5T2

]h2~r 1 ,t !

]r
, t.0 (7)

Closed-Form Solution

The detailed derivations for the solution of hydraulic head in t
Laplace domain for the skin and the undisturbed formation o
tained by using Laplace transform for Eqs.~1!–~7! are given in
Appendix I and the results forh̄1 and h̄2 are respectively ex-
pressed as

h̄15
hw

p

f1I 0~q1r !2f2K0~q1r !

f1I 0~q1r w!2f2K0~q1r w!
(8)

Fig. 1. Schematic diagram of well and aquifer configurations
176 / JOURNAL OF HYDRAULIC ENGINEERING / FEBRUARY 2002
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h̄25
hw

p

@f1I 0~q1r 1!2f2K0~q1r 1!#K0~q2r !

f1I 0~q1r w!K0~q2r 1!2f2K0~q1r w!K0~q2r 1!
(9)

whereq1
25pS1 /T1 ; q2

25pS2 /T2 ; p5Laplace variable~Spiegel
1965!; I 0(u) and K0(u)5the modified Bessel functions of the
first and second kinds of order zero, respectively; and

f15AS2T2

S1T1
K0~q1r 1!K1~q2r 1!2K1~q1r 1!K0~q2r 1! (10)

and

f25AS2T2

S1T1
I 0~q1r 1!K1~q2r 1!1I 1~q1r 1!K0~q2r 1! (11)

The functionsI 1(u) andK1(u) are the modified Bessel functions
of the first and second kinds of order first, respectively.

Applying Darcy’s law at the wellbore, the solution in the

Laplace domain for the flow rate across the wellboreQ̄w can be
obtained as

Q̄w52pr wT1H hwq1@f1I 1~q1r w!1f2K1~q1r w!#

p@f2K0~q1r w!2f1I 0~q1r w!# J (12)

The solution of Eq.~12! in the time domain can be obtained by
using the Laplace inversion integral~Hildebrand 1976! as

Qw52pr wT1H 2hw

p E
0

`

e2~T1 /S1!u2t

3
A1~u!B2~u!2A2~u!B1~u!

B1
2~u!1B2

2~u!
duJ (13)

with

A1~u!5AS2T2

S1T1
@J0~r 1u!Y1~kr1u!Y1~r wu!

2Y0~r 1u!Y1~kr1u!J1~r wu!#

2@J1~r 1u!Y0~kr1u!Y1~r wu!

2Y1~r 1u!Y0~kr1u!J1~r wu!# (14)

A2~u!5AS2T2

S1T1
@Y0~r 1u!J1~kr1u!J1~r wu!

2J0~r 1u!J1~kr1u!Y1~r wu!#

2@Y1~r 1u!J0~kr1u!J1~r wu!

2J1~r 1u!J0~kr1u!Y1~r wu!# (15)

B1~u!5AS2T2

S1T1
@J0~r 1u!Y1~kr1u!Y0~r wu!

2Y0~r 1u!Y1~kr1u!J0~r wu!#

2@J1~r 1u!Y0~kr1u!Y0~r wu!

2Y1~r 1u!Y0~kr1u!J0~r wu!# (16)

and
002.128:175-183.
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B2~u!5AS2T2

S1T1
@Y0~r 1u!J1~kr1u!J0~r wu!

2J0~r 1u!J1~kr1u!Y0~r wu!#

2@Y1~r 1u!J0~kr1u!J0~r wu!

2J1~r 1u!J0~kr1u!Y0~r wu!# (17)

whereQw5flow rate across the wellbore;k5AT1S2 /T2S1; J0(u)
andY0(u)5the Bessel functions of the first and second kinds
order zero, respectively; andJ1(u) andY1(u)5the Bessel func-
tions of the first and second kinds of order first, respectively. E
~13! is the closed-form solution to the transient flow rate acro
the wellbore in a two-zone ground-water system. Detailed deri
tions to obtain the solution are shown in Appendix II.

Dimensionless Variables

Defining dimensionless variablesa5T2 /T1 , b5S2 /S1 , t

5T2t/S2r w
2 , r5r /r w , r15r 1 /r w , Q̄Dw5Q̄w /(2pT2hw), and

QDw5Qw /(2pT2hw) where a represents the dimensionles
transmissivity,b represents the dimensionless storage coefficie
t represents the dimensionless time during the test,r represents
the dimensionless distance from the centerline of the well,r1

represents the dimensionless thickness of the skin,Q̄Dw repre-
sents the dimensionless flow rate in the Laplace domain, andQDw

represents the dimensionless flow rate in the time domain.
The dimensionless flow rate across the wellbore derived fr

Eq. ~12! can be expressed as

Q̄Dw5
r wq1@f1I 1~q1r w!1f2K1~q1r w!#

ap@f2K0~q1r w!2f1I 0~q1r w!#
(18)

Accordingly Eq.~13! may be expressed in dimensionless for
as

QDw5
2

pa E
0

`

e2btu2/a
A18~u!B28~u!2A28~u!B18~u!

B18
2~u!1B28

2~u!
du (19)

where

A18~u!5Aab@J0~r1u!Y1~kr1u!Y1~u!

2Y0~r1u!Y1~kr1u!J1~u!#2@J1~r1u!Y0~kr1u!Y1~u!

2Y1~r1u!Y0~kr1u!J1~u!# (20)

A28~u!5Aab@Y0~r1u!J1~kr1u!J1~u!

2J0~r1u!J1~kr1u!Y1~u!#2@Y1~r1u!J0~kr1u!J1~u!

2J1~r1u!J0~kr1u!Y1~u!# (21)

B18~u!5Aab@J0~r1u!Y1~kr1u!Y0~u!

2Y0~r1u!Y1~kr1u!J0~u!#2@J1~r1u!Y0~kr1u!Y0~u!

2Y1~r1u!Y0~kr1u!J0~u!# (22)

and

B28~u!5Aab@Y0~r1u!J1~kr1u!J0~u!

2J0~r1u!J1~kr1u!Y0~u!#2@Y1~r1u!J0~kr1u!J0~u!

2J1~r1u!J0~kr1u!Y0~u!# (23)

If the aquifer properties are assumed to be constant through
J. Hydraul. Eng. 2
f
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whole aquifer, then Eq.~19!, the flow rate across the wellbore in
the dimensionless form, can be reduced to the single-zone so
tion presented by Jaeger and Clarke~1942! as

Qw

2pT2hw
5

4

p2 E
0

` e2tu2

@J0
2~u!1Y0

2~u!#

du

u
(24)

Numerical Evaluation

Bessel Functions

Eq. ~18! includes the Bessel functionsI 0(u), I 1(u), K0(u), and
K1(u). Likewise, Eq. ~19! contains the integral composing of
J0(u), J1(u), Y0(u), andY1(u). These functions approximated
by the formulas given in Abramowitz and Stegun~1964! and
Watson~1958! are listed in Appendix III. The argumentu in these
formulas may be divided into two ranges,@0,10# and ~10,̀ ! for
I 0(u) and I 1(u), @0,2# and ~2,̀ ! for K0(u) and K1(u), and
@0,12# and~12,̀ ! for J0(u), J1(u), Y0(u), andY1(u) in order to
achieve better accuracy. Besides, these formulas are essent
composed of infinite series and may converge slowly, especia
when u is small. Therefore, the Shanks method~Shanks 1955;
Wynn 1956! is employed to accelerate the convergence wh
evaluating the series. Each function in the integrands of Eqs.~18!
and~19! is calculated to ten decimal places, and thus it bears t
same degree of accuracy as those listed in Abramowitz and S
gun ~1964!.

Shanks Method

The Shanks transform, also called the« algorithm, consists of a
family of nonlinear sequence-to-sequence transformatio
~Shanks 1955!. Shanks~1955! proved that these transformations
are effective when applied to accelerate the convergence of so
slowly convergent sequences and may converge some diverg
sequences. Examples of the applications of Shanks method
clude numerical series, the power series of rational and merom
phic functions, and a wide variety of sequences drawn from int
gral equations, geometry, fluid mechanics, and number theo
~Shanks 1955!.

The partial sums,Sn , of an infinite series may be denoted as

Sn5(
k51

n

ak (25)

whereak is thekth term of the series. Based on the sequence
partial sums, the Shanks transform may be expressed as~Wynn
1956!

ei 11~Sn!5ei 21~Sn11!1
1

ei~Sn11!2ei~Sn!
, i 51,2, . . .

(26)

wheree0(Sn)5Sn ande1(Sn)5@e0(Sn11)2e0(Sn)#21.
It is necessary to set a certain convergence criterion wh

applying the Shanks transform to evaluate a given series. The
fore, one may define a convergence factor, ERR, as

ue2i 12~Sn21!2e2i~Sn!u<ERR (27)

The sequence of partial sums is terminated when this criterion
met and the infinite series converges to the estimated value
e2i 12(Sn21).
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Numerical Inversion

In many engineering problems, the Laplace-domain solutions
mathematical models are tractable, yet the corresponding s
tions in the time domain may not be entirely possible or eas
solved. Under such circumstances, a numerical inversion suc
the Stehfest algorithm~Stehfest 1970! or the Crump algorithm
~Crump 1976! may be used. Eq.~18! is numerically inverted by
using the modified Crump algorithm~de Hoog et al. 1982!, which
is based on the«-algorithm to evaluate the corresponding diag
nal Pade approximants~IMSL 1987!.

Gaussian Quadrature

Gaussian quadrature is widely used in performing the numer
integration of a known function. The integration limits o
*a

bf (x)dx are changed from@a,b# to @21,1# by a suitable transfor-
mation of variable when applying Gaussian quadrature. The f
mula for ann-point Gaussian quadrature may be written as~Ger-
ald and Wheatley 1989!

E
21

1

f ~j!dj5(
i 51

n

Wi f ~j i ! (28)

whereWi5weighting factor andj i5 integration point. Values for
Wi andj i can be found in books on the fields of numerical met
ods ~e.g., Burden and Faires 1989; Gerald and Wheatley 19!
and the fields of finite element methods~e.g., Reddy 1984; Bur-
nett 1987!.

Integration Procedures for the Closed-Form Solution

Fig. 2 demonstrates the plots of the integrand of Eq.~19! versusu
for r51, r153, b51, and t51 while a50.1, 1, or 10. The
two-zone aquifer becomes a homogenous~single zone! aquifer
system whena51; on the other hand, the aquifer has a negati
skin whena50.1 and a positive skin whena510. It can be
observed that the integrand of Eq.~19! approaches infinity asu
tends to 0; contrarily, the integrand tends to zero asu becomes
very large.

The closed-form solution for the dimensionless flow rate, E
~19!, cannot be directly evaluated because the integrand cont
a singular point at the origin as indicated in Fig. 2. Letting« to be

Fig. 2. Plot of integrand of Eq.~19! versusu for r51, r153, b
51, andt51 while a50.1, 1, or 10
178 / JOURNAL OF HYDRAULIC ENGINEERING / FEBRUARY 2002
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a very small value, say 10220, and starting from«, Eq.~19! can be
evaluated by Gaussian quadrature. The initial interval for num
cal integration in Eq.~19! is chosen as 1025; then, both six-point
and ten-point formulas of Gaussian quadrature are used at
same time to carry out the integration of Eq.~19!. If the difference
of the results by those two formulas is less than the prescri
criterion, say 1027, a double interval will be used for next inte
gration. Otherwise, the present interval will be divided into tw
equal portions, and the same approach is again applied to e
portion until the result for each portion is less than 1027. This
procedure ensures that each result has the accuracy to seven
mal places. The same integration procedures are applied to
ceeding integrations until the difference in the result for ea
portion is less than 1027. Then the remaining integration is ob
tained by changing the variable asy51/u and the transformed
integral in terms ofy is directly evaluated by Gaussian quadratu
~Gerald and Wheatley 1989, p. 304!. Therefore, the result of nu-
merical integrations for the flow rate can be obtained by sim
adding all the results from each interval or portion.

Results

Comparisons between the closed-form solution of Eq.~19! and
the results obtained from numerical inversion of Eq.~18! may
provide a cross check for the validity and accuracy of both so
tions. The values of dimensionless flow rate versus dimension
time from 0.01 to 1000 evaluated by the proposed numerical
proach for Eq.~19! and the modified Crump algorithm for Eq
~18! are listed in Tables 1 and 2, respectively, for single-zone a
two-zone systems. Table 1 gives the values of dimensionless
rate versus dimensionless time forr153 andb51 whena51,
that is, when the aquifer formation is under the single-zone c
dition. An approach of infinite series expansion given in Ha
vard’s problem report~1950! is adopted to remove the singularit
of the integrand of Eq.~24! when performing the integration from
zero to«. For the integration limit from« to infinity, Eq. ~24! is
evaluated by previously suggested integration procedures.
flow rates estimated by the numerical inversion for the Lapla
domain solution and those given in Jaeger and Clarke~1942!
agree to three decimal places when compared to that of
closed-form solution as shown in Table 1. Table 2 shows the p
of the dimensionless flow rate versus dimensionless time forr1

53 andb51 whena50.1 or 10. The formation has a negativ
skin whena50.1 and a positive skin whena510. The flow rate
values obtained by numerical Laplace inversion agree well w
that of the closed-form solution. This indicates that this close
form solution yields accurate results for the presence of a w
bore skin when estimated by the proposed numerical appro
Fig. 3 shows that the curve representing the dimensionless fl
rate across the wellbore for the undisturbed~single-zone! forma-
tion is quite different from that with positive or negative wellbor
skin. If a positive wellbore skin exists, then the dimensionle
flow rate is smaller than that when a negative wellbore skin ex
at the same dimensionless time. A smaller flow rate across
wellbore reflects the result of lower hydraulic conductivity of th
positive skin. Conversely, a larger dimensionless flow rate is c
sidered to reflect the increase of formation conductivity and st
age effects in the presence of a negative wellbore skin.

Conclusions

A closed-form solution for describing the transient flow ra
across the wellbore in a two-zone confined ground-water sys
002.128:175-183.
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has been developed for the constant-head test with the presen
a wellborn skin. This solution was derived using Laplace tran
form and a contour integral method. In a single-zone aquifer s
tem, the transient dimensionless flow rates computed from
closed-form solution match well with those given by Jaeger a
Clarke ~1942! and the Laplace-domain solution. Under the two
zone condition, i.e., in the presence of a positive or negat

Table 1. Dimensionless Flow Rate versus Dimensionless Time~t!
Estimated by Closed-Form Solution, Numerical Inversion fro
Laplace-Domain Solution, and One Given in Jaeger and Cla
~1942! for r153 andb51 whena51

t
Closed-form

solution
Numerical

inversion solution Jaeger and Clarke

0.01 6.127 6.129 6.219
0.02 4.470 4.472 4.472
0.03 3.735 3.736 3.736
0.04 3.295 3.297 3.297
0.05 2.995 2.997 2.997
0.06 2.773 2.774 2.775
0.07 2.600 2.601 2.602
0.08 2.461 2.462 2.463
0.09 2.345 2.346 2.347
0.1 2.247 2.248 2.249
0.2 1.714 1.715 1.715
0.3 1.475 1.476 1.476
0.4 1.331 1.332 1.333
0.5 1.232 1.233 1.234
0.6 1.159 1.160 1.160
0.7 1.101 1.102 1.102
0.8 1.054 1.056 1.056
0.9 1.015 1.017 1.017
1 0.982 0.984 0.984
2 0.799 0.800 0.800
3 0.715 0.716 0.716
4 0.663 0.664 0.664
5 0.627 0.628 0.628
6 0.599 0.601 0.601
7 0.578 0.579 0.579
8 0.560 0.561 0.562
9 0.545 0.547 0.547
10 0.532 0.534 0.534
20 0.460 0.461 0.461
30 0.425 0.426 0.426
40 0.403 0.404 0.404
50 0.387 0.388 0.388
60 0.375 0.376 0.376
70 0.365 0.366 0.366
80 0.357 0.358 0.358
90 0.350 0.351 0.352
100 0.344 0.346 0.346
200 0.309 0.311 0.311
300 0.292 0.293 0.294
400 0.281 0.282 0.282
500 0.272 0.274 0.274
600 0.266 0.267 0.268
700 0.261 0.262 0.263
800 0.256 0.258 0.258
900 0.253 0.254 0.255
1000 0.246 0.251 0.251
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wellbore skin, the results of the closed-form solution agree wit
those of the Laplace-domain solution to two decimal places. Th
provides a double check for the correctness of the closed-for
solution.

The flow rate decreases rapidly with increasing time at th
early stage of the test and asymptotically approaches a const
value for a long test period. For small times the differences b

e

Table 2. Dimensionless Flow Rate versus Dimensionless Timet Es-
timated by Closed-Form Solution~CS! and Numerical Inversion So-
lution ~NS! for r153 andb51 whena50.1 or 10

t

a50.1
~negative skin!

a510
~positive skin!

CS NS CS NS

0.01 22.479 22.488 1.830 1.833
0.02 17.144 17.152 1.307 1.311
0.03 14.754 14.763 1.075 1.079
0.04 13.316 13.324 0.937 0.941
0.05 12.324 12.333 0.843 0.847
0.06 11.581 11.592 0.773 0.777
0.07 10.990 11.003 0.719 0.723
0.08 10.497 10.513 0.676 0.679
0.09 10.073 10.090 0.639 0.643
0.1 9.698 9.713 0.609 0.613
0.2 7.198 7.080 0.443 0.447
0.3 5.726 5.480 0.370 0.374
0.4 4.749 4.443 0.326 0.330
0.5 4.066 3.739 0.296 0.300
0.6 3.569 3.241 0.273 0.277
0.7 3.195 2.877 0.256 0.260
0.8 2.908 2.603 0.242 0.246
0.9 2.681 2.391 0.231 0.235
1 2.498 2.225 0.221 0.225
2 1.675 1.515 0.167 0.171
3 1.390 1.282 0.144 0.148
4 1.236 1.156 0.129 0.133
5 1.135 1.073 0.119 0.123
6 1.063 1.012 0.112 0.116
7 1.008 0.965 0.106 0.110
8 0.963 0.927 0.102 0.106
9 0.927 0.895 0.099 0.102
10 0.896 0.868 0.096 0.100
20 0.728 0.718 0.083 0.089
30 0.653 0.649 0.080 0.087
40 0.606 0.605 0.079 0.086
50 0.574 0.575 0.078 0.085
60 0.550 0.552 0.077 0.084
70 0.530 0.533 0.077 0.083
80 0.515 0.518 0.076 0.083
90 0.501 0.505 0.076 0.082
100 0.490 0.494 0.075 0.082
200 0.425 0.431 0.073 0.079
300 0.393 0.400 0.072 0.077
400 0.373 0.380 0.071 0.076
500 0.359 0.366 0.070 0.075
600 0.348 0.355 0.070 0.075
700 0.339 0.347 0.069 0.074
800 0.332 0.340 0.069 0.074
900 0.326 0.333 0.069 0.074
1000 0.320 0.328 0.069 0.073
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tween the flow rate in an aquifer with a positive or negativ
wellbore skin and an aquifer without a wellbore skin are large.
addition, the effect of a negative wellbore skin on the flow rate
larger than that of a positive wellbore skin. Obviously, the ma
nitude of the flow rate across the wellbore strongly depends
the hydraulic properties of both the formation and the wellbo
skin.
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Appendix I. Derivation of Eqs. „8… and „9…

Chang and Chen~1999! presented the Laplace-domain solution
of the hydraulic head and the flow rate across the wellbore in
two-zone ground-water system without giving the derivation
Nevertheless, such solutions in the Laplace domain, Eqs.~8! and
~9!, can be derived based on the procedures given in Carslaw
Jaeger~1959!.

Applying the Laplace transform on Eqs.~1! and ~2! yields

d2h̄1

dr2 1
1

r

dh̄1

dr
5q1

2h̄1 (29)

and

d2h̄2

dr2 1
1

r

dh̄2

dr
5q2

2h̄2 (30)

Furthermore, Laplace transforms of boundary conditions, E
~4!–~7!, are

h̄15hw /p for r 5r w (31)

Fig. 3. Results of the closed-form solution evaluated by the nume
cal approach and the solution obtained from the numerical invers
by using the modified crump approach.
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h̄250 for r→` (32)

h̄15h̄2 for r 5r 1 (33)

and

T1

dh̄1

dr
5T2

dh̄2

dr
for r 5r 1 (34)

The solutions of Eqs.~8! and ~9! to the hydraulic head in the
Laplace domain in the skin and the undisturbed formation ca
then be obtained as~Carslaw and Jaeger 1959!

h̄15C1I 0~q1r !1C2K0~q1r ! (35)

and

h̄25D1I 0~q2r !1D2K0~q2r ! (36)

whereC1 , C2 , D1, andD2 are constants.
Substituting Eqs.~35! and ~36! into Eqs.~31!–~34!, one can

obtain

C15
hw

p

f1

f1I 0~q1r w!2f2K0~q1r w!
(37)

C25
hw

p

2f2

f1I 0~q1r w!2f2K0~q1r w!
(38)

D150 (39)

and

D25
hw

p

f1I 0~q1r 1!2f2K0~q1r 1!

f1I 0~q1r w!K0~q2r 1!2f2K0~q1r w!K0~q2r 1!
(40)

Consequently, Eq.~8! can be obtained by substituting the con-
stants from Eqs.~37! and ~38! into Eqs. ~35! and ~9! can be
obtained by a similar manner. Note that Eq.~9!, representing the
head distribution in the undisturbed formation, slightly differs
from the one given in Chang and Chen~1999!. Their inaccuracy
may be due to typing errors.

Appendix II. Derivation of Eq. „13…

The inverse Laplace transform of Eq.~12! in the time domain can
be obtained by using the Laplace inversion integral~Hildebrand
1976! as

Qw5
1

2p i Ez2 i`

z1 i`

eptQ̄wdp (41)

where p5complex variable;i 5 imaginary unit; andz5 large,
real, positive constant, so much so that all the poles lie to the le
of the line (z2 i`,z1 i`).

A single branch point with no singularity~pole! at p50 exists
in the integrand of Eq.~12!. Thus, this integration may require the
use of the Bromwich integral for the Laplace inversion. The
closed contour of the integrand is shown in Fig. 4 with a cut o
the p plane along the negative real axis, whered is taken suffi-
ciently small to exclude all poles from the circle about the origin
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The closed contour consists of the partAB of the Bromwich line
from 2` to `, semicirclesBCD and GHA, lines DE and FG
parallel to the real axis and a circleEF of radius d about the
origin. The integration along the small circleEF around the origin
asd→0 is carried out by using the Cauchy integral and the va
of the integration is equal to zero. The integrals taken alongBCD
and GHA tend to zero asR→`. Consequently, Eq.~12! can be
superseded by the sum of the integrals alongDE andFG. In other
words, the integral can then be written as

Qw5 lim
d→0
R→`

1

2p i F E
DE

eptQ̄wdp1E
FG

eptQ̄wdpG (42)

For the first term on the right-hand side~RHS! of Eq. ~42!
along DE we introduce the change of variablep5u2e2p iT1 /S1

and use the formula~Carslaw and Jaeger 1959, p. 490!

Kv~ze6~1/2!p i !56
1

2
p ie7~1/2!vp i@2Jv~z!6 iYv~z!# (43)

and

I v~ze6~1/2!p i !5e6~1/2!vp iJv~z! (44)

wherev50,1,2, . . . . Thefirst term on the RHS of Eq.~42! then
leads to

Qw152
2r wT1hw

i E
0

`

2e~T1 /S1!u2t
@A1~u!1 iA2~u!#

@B1~u!1 iB2~u!#
du

(45)

Fig. 4. Plot of closed contour integration ofh̄ for inverse Laplace
transform~Hildebrand 1976!
and

J. Hydraul. Eng. 2
e

Likewise, introducingp5u2ep iT1 /S1 , the integral alongEF
gives minus the conjugate of Eq.~45! as

Qw25
2r wT1hw

i E
0

`

2e~T1 /S1!u2t
@A1~u!2 iA2~u!#

@B1~u!2 iB2~u!#
du (46)

The closed-form solution of Eq.~13! can then be obtained by
combining Eqs.~45! and ~46!.

Appendix III. Formulas of Bessel Functions

The Bessel functions ofI 0(u), I 1(u), K0(u), andK1(u) may be
evaluated by the formulas given in Abramowitz and Stegu
~1964!. The argumentu in these formulas can be divided into two
ranges,@0,10# and~10,̀ ! for I 0(u) andI 1(u) and@0,2# and~2,̀ !
for K0(u) and K1(u) for better accuracy. For 0<u<10, the
asymptotic expansions forI 0(u) and I 1(u) may be expressed re-
spectively as~Abramowitz and Stegun 1964, p. 375!

I 0~u!511

1

4
u2

~1! !2 1

S 1

4
u2D 2

~2! !2 1

S 1

4
u2D 3

~3! !2 1¯ (47)

and

I 1~u!5S u

2D F 11

1

4
u2

~1! !~2! !
1

S 1

4
u2D 2

~2! !~3! !
1

S 1

4
u2D 3

~3! !~4! !
1¯

G
(48)

The Bessel functions ofI 0(u) and I 1(u) for 10,u,` are
respectively approximated as~Abramowitz and Stegun 1964, p.
377!

I 0~u!5
eu

A2pu
H 11

12

~1! !~8u!
1

12332

~2! !~8u!2 1
12332352

~3! !~8u!3 1¯J
(49)

and

I 1~u!5
eu

A2pu
H 12

4212

~1! !~8u!
1

~4212!•~4232!

~2! !~8u!2

2
~4212!•~4232!•~4252!

~3! !~8u!3 1¯J (50)

For 0<u<2, the asymptotic expansions forK0(u) andK1(u)
may be written respectively as~Abramowitz and Stegun 1964, p.
375!
(51)
K0~u!52F lnS u

2D1g G I 0~u!1

1

4
u2

~1! !2 1S 11
1

2D S 1

4
u2D 2

~2! !2 1S 11
1

2
1

1

3D S 1

4
u2D 3

~3! !2 1¯
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K1~u!5F lnS u

2D1g G I 1~u!1
1

u
2

u

4 5 F 1

4
u2

~1! !~2! !
1S 11

1

2D S 1

4
u2D 2

~2! !~3! !
1S 11

1

2
1

1

3D S 1

4
u2D 3

~3! !~4! !
1¯

G
1F 11S 11

1

2D
1

4
u2

~1! !~2! !
1S 11

1

2
1

1

3D S 1

4
u2D 2

~2! !~3! !
1¯

G 6 (52)

whereg50.577215664901533 is the Euler’s constant. For 2,u,`, K0(u) andK1(u) are respectively taken as~Abramowitz and Stegun
1964, p. 378!

K0~u!5
eu

A2pu
H 12

12

~1! !~8u!
1

12332

~2! !~8u!22
12332352

~3! !~8u!3 1¯J (53)

and

K1~u!5
eu

A2pu
H 11

4212

~1! !~8u!
1

~4212!•~4232!

~2! !~8u!2 1
~4212!•~4232!•~4252!

~3! !~8u!3 1¯J (54)

These functions ofJ0(u), J1(u), Y0(u), andY1(u) may be evaluated by the formulas given in Abramowitz and Stegun~1964! and
Watson~1958!. The argumentu in these four functions may be split into two ranges,@0,12# and ~12,̀ !, for good accuracy. For 0<u
<12, these functions may be written respectively as~Abramowitz and Stegun 1964, p. 360!

J0~u!512

1

4
u2

~1! !2 1

S 1

4
u2D 2

~2! !2 2

S 1

4
u2D 3

~3! !2 1¯ (55)

J1~u!5S u

2D F 12

1

4
u2

~1! !~2! !
1

S 1

4
u2D 2

~2! !~3! !
2

S 1

4
u2D 3

~3! !~4! !
1¯

G (56)

Y0~u!5
2

p F lnS u

2D1g GJ0~u!1
2

p
F 1

4
u2

~1! !22S 11
1

2D S 1

4
u2D 2

~2! !2 1S 11
1

2
1

1

3D S 1

4
u2D 3

~3! !2 2¯
G (57)

and

Y1~u!52
2

pu
1

2

p F lnS u

2D1g GJ1~u!1
u

2p 5 F2

1

4
u2

~1! !~2! !
1S 11

1

2D S 1

4
u2D 2

~2! !~3! !
2S 11

1

2
1

1

3D S 1

4
u2D 3

~3! !~4! !
1¯

G
1F 12S 11

1

2D
1

4
u2

~1! !~2! !
1S 11

1

2
1

1

3D S 1

4
u2D 2

~2! !~3! !
2¯

G 6 (58)

Note that asu50, J0(u) andJ1(u) are equal to one and zero respectively, whereasY0(u) andY1(u) approach2`.
The functions ofJ0(u), J1(u), Y0(u), andY1(u) for 12,u,` are approximated respectively as~Watson 1958, p. 199!

J0~u!5A 2

puH cosS u2
p

4 D F (
m50

`
~21!m

•~0,2m!

~2u!2m G2sinS u2
p

4 D F (
m50

`
~21!m

•~0,2m11!

~2u!2m11 G J (59)

J1~u!5A 2

puH cosS u2
3p

4 D F (
m50

`
~21!m

•~1,2m!

~2u!2m G2sinS u2
3p

4 D F (
m50

`
~21!m

•~1,2m11!

~2u!2m11 G J (60)

Y0~u!5A 2

puH sinS u2
p

4 D F (
m50

`
~21!m

•~0,2m!

~2u!2m G1cosS u2
p

4 D F (
m50

`
~21!m

•~0,2m11!

~2u!2m11 G J (61)

and

Y1~u!5A 2

puH sinS u2
3p

4 D F (
m50

`
~21!m

•~1,2m!

~2u!2m G1cosS u2
3p

4 D F (
m50

`
~21!m

•~1,2m11!

~2u!2m11 G J (62)

where
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~n,m!5

GS n1m1
1

2D
m!GS n2m1

1

2D (63)

andG(m) is the Gamma function~Abramowitz and Stegun 1964, p. 255!.
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