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Solution for Flow Rates across the Wellbore in a Two-Zone
Confined Aquifer

Shaw-Yang Yang! and Hund-Der Yeh?

Abstract: A closed-form solution for transient flow rates across the wellbore in a confined aquifer is derived from a two-zone radial
ground-water flow equation subject to the boundary condition of keeping a constant head at the well radius. An aquifer may be consider
as a two-zone system if the formation properties near the wellbore are significantly changed due to the well construction and/or we
development. An efficient numerical approach is used to evaluate this newly derived solution. Values of the transient flow rate ar
provided in a tabular form and compared with those obtained by numerical inversion for the Laplace-domain solution. The results sho
that the two solutions are in good agreement. This newly derived solution can be used not only for predicting the transient flow rate acro
the wellbore but also for identifying the effects of a skin with a finite thickness on the estimation of transient flow rates in a ground-water
system with two different formation properties.
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Introduction formation by extensive well development; consequently, an oth-
erwise homogeneous aquifer may become a two-zone system.
The constant-head test is sometimes employed in site characterThe drilling process may therefore produce a positive wellbore
ization for determining the hydraulic parameters of aquifers with skin that has lower hydraulic conductivity than the undisturbed
low permeability. During the test, the hydraulic head across the formation. Conversely, thorough well development removes fine
wellbore is kept constant while the transient flow rate into the patrticles, e.g., fine silt and clay particles, from the surrounding
well is measured. formation and produces a negative wellbore skin with an in-
Carslaw and Jaegdfi939 gave the solutions for heat flow creased conductivity. Markle et al{1995 developed a finite-
from the surface of the region bounded internally by a cylinder element model to analyze the transient flow rate across the well-
such as buried pipe and cable, cooling of mine, etc. Tables of bore during a constant-head test conducted in a vertical fractured
numerical values for the heat-flow rate from the surface which are media. Their results show that during a constant-head test the

of practical interest can be seen in Jaeger and Cl&tlkd2), transient flow rate across the wellbore may be affected when a
Ingersoll et al.(1950, and Ingersoll et al(1954. Based on the  wellbore skin exists. Chang and Chér999 gave the Laplace-
solution given by Smith(1937, Jacob and Lohmafil952 pre- domain solutions of the hydraulic head and the flow rate across

sented a formula describing the flow rate across the wellbore inthe wellbore in a two-zone ground-water system. They presented
nonleaky confined aquifers and listed a table of the numerical curves representing specific capacity versus time as part of an
values for a wide range of the dimensionless flow rate versus investigation of the influence of a skilow-permeability zongon
dimensionless time. Hantugi962 also provided a formula of  aquifer parameter estimations.

ground-water flow through wedge-shaped aquifers, which has the In this study a closed-form solution is derived for transient
same form as the solution given by Jacob and Lohrii£%2. flow rate across the wellbore when performing a constant-head
Reed(1980 and Batu(1998 listed a wide range of values of that test in a two-zone confined aquifer system. In addition, we
formula for dimensionless well discharge versus dimensionlesspresent a numerical evaluation of this solution, which is ex-
distance or time. pressed in a dimensionless form. Numerical values of this solu-

During well construction, a wellbore skin of finite thickness tion are verified by comparing with the results of numerical in-
may develop due to the invasion of drilling mud into the adjacent version for the Laplace-domain solution using the modified
formation or the removal of fine particles from the surrounding Crump algorithm(de Hoog et al. 1982 This new solution can be

used as a tool to investigate the effects of the presence of a skin
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onstant head and
Wellbore: =
Confining layer S hy [dalo(dirs) —d2Ko(dir1) JKo(d2r) ©)

= ” #7p balo(01rw)Kol0ar 1) = b2Ko(darw)Ko(dzry)
Well SCW““‘ET‘ T2 whereq?=pS,/T;; q3=pS,/T,; p=Laplace variablgSpiegel
—| Aquifer 1969; 14(u) and Ky(u)=the modified Bessel functions of the
Skin zone —y [ 5 Formation zone first and second kinds of order zero, respectively; and
v Confini ST,
e Confining layer 1=\ 57 Ko(Qar K121 1) ~ Ki(Gar1)Ko(Clzry) (10)
SiTy

Fig. 1. Schematic diagram of well and aquifer configurations and

T . o : /ST
the aquifer is homogeneous, isotropic, infinite-extent, and with a bo= S—T2Io(qlrl)Kl(qzrl)JrIl(qlrl)Ko(qzrl) (112)
constant thicknesg?) the well is fully penetrating with a finite 1L
radius, and3) the initial head is constant and uniform throughout The functionsl,(u) andK,(u) are the modified Bessel functions
the whole aquifer. Based on these assumptions, the governingys ihe first and second kinds of order first, respectively.

differential equations in terms of the hydraulic hela¢,t) in Applying Darcy’s law at the wellbore, the solution in the

two-zone formations can be written as . —
Laplace domain for the flow rate across the wellb@g can be

0°h; 1ah; S;ahy obtained as

8_I’2+FW:T_1W’ rWs<r<r, Q)

and Qu= Zﬂerl[
9°h, 1ah, S, ah,
I T P T

hwda[ dal1(girw) +doK(diry)]
PL2Ko(A1rw) —d1lo(dirw)]

ri<r<ow (2) The solution of Eq(12) in the time domain can be obtained by
using the Laplace inversion integrddiildebrand 197pas

(12)

where the subscripts 1 and 2, respectively, denote the wellbore

skin zone and the undisturbed formation zdme hydraulic head; w7 rsutt
e e \ LT Qu=2mr,Ti{— [ e M/S
r=radial distance from the centerline of the wefl};=radius of W W T Jo
the well;t=time from the start of the tes§= storage coefficient;
and T=transmissivity. A1(u)Bo(u)—Ay(u)By(u)
The hydraulic head is initially assumed to be zero in both the B2(u) + BZ(u) (13)
skin and the undisturbed formation, that is ! 2
hy(r,0)=hy(r,00=0, r>r, 3) with
The boundary condition for maintaining a constant head at S,T,
=r,, is given by Ai(u)= ﬁ[JO(rlu)Yl(krlu)Yl(rwu)
h.(ry,t)=h, for t>0 4
0w U= @ = Yo(ryu) Y (Kryu)Jg(ryu)]
whereh,,= constant head around the wellbore at any timerAs
—oo the hydraulic head tends to zero: —[J2(ryu)Yo(krou)Y(ryu)
ha(e,)=0 ®) =Y (r W) Yo(Kryu) Jy(ryw)] (14)
Between the skin zone and the undisturbed formation the head
is continuous ST
Ax(u) =\ g7 [Yo(rau)Ja(kryu)Ja(ryu)
hl(rlit):hz(rlit)v t>0 (6) 11
and there is conservation of mass: —Jo(rau)Ja(Kriu)Ys(ryu)]
ohy(rs,t) _ - 9ha(rs,0) —[Y1(r1u)Jo(kryu)dy(ryu)
Ty Ve t>0 (7)
—Ja(rau)Jo(kryu) Yy (ryu)] (15)
Closed-Form Solution S, T,
B =\/==1[J Yq(k Y
The detailed derivations for the solution of hydraulic head in the (W) SlTl[ oW Y1(Kr1)Yo(ruu)
Laplace domain for the skin and the undisturbed formation ob-
tained by using Laplace transform for Eq$)—(7) are given in ~Yo(ru)Yy(kryu)Jo(ryu)]
Appendix | and the results foh, and h, are respectively ex- —[35(r 1) Yo(Krau) Yo(ryu)
pressed as
— hy dalo(dar) — doKo(gsr) @ = Y1 (rau)Yo(kriu)Jo(ryu)] (16)
Y p dalo(aire) — d2Ko(asry) and
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-
B,(u)= %[Yo(rlu)h(krlu);’o(rwu)

—Jo(ryu)Ja(kryu) Yo(ryu)]

=[Ya(rau)Jo(krau)Jo(ryu)

—Ja(rau)Jo(Kryu)Yo(ryu)] 7
whereQ,,= flow rate across the wellbork= TS, /T,S;; Jo(u)

andY(u)=the Bessel functions of the first and second kinds of

order zero, respectively; anj(u) andY,(u)=the Bessel func-

tions of the first and second kinds of order first, respectively. Eq.
(13) is the closed-form solution to the transient flow rate across
the wellbore in a two-zone ground-water system. Detailed deriva-

tions to obtain the solution are shown in Appendix II.

Dimensionless Variables

Defining dimensionless variablesc=T,/T,;, B=S,/S;, 7
=T,tIS;r2, p=rir,, p1=ri/ry,, Qpw=Qu/(2wT,h,), and

Qpw=Q./(27T,h,) where a represents the dimensionless
transmissivity,8 represents the dimensionless storage coefficient,

T represents the dimensionless time during the fesgpresents
the dimensionless distance from the centerline of the vsll,
represents the dimensionless thickness of the <Ri, repre-
sents the dimensionless flow rate in the Laplace domain{and
represents the dimensionless flow rate in the time domain.

The dimensionless flow rate across the wellbore derived from

Eqg. (12) can be expressed as

Qe rwdildal1(dary) + doKe(dary) ]
P ap[doKo(A1rw) = d1lo(dary)]

(18)

Accordingly Eq.(13) may be expressed in dimensionless form

as
2 (% o AL(UB3(W)—AY(U)B(U)

- -B
Qow To Oe Biz(u)+B§2(u)

du (19)

where
Aj(u)=JaB[Jo(p1u) Y1(Kp1u) Y1 (u)
~Yo(p1t)Y1(kp1t)Iy(u)]—=[I(p1u) Yo(kpau) Y1(u)
= Y1(p1u) Yo(Kp1u)Jy(u)] (20)
Aj(u) = JaB[Yo(p1t)Iz(kp1u)Jz(u)
—Jo(p1U)Ja(kp1u) Y1(U)]=[Y1(p1u)Jo(kp1u)Jda(u)
=J1(p1)Jo(kpa) Y1(u)] (21)
B1(U)= JaB[Jo(p1t) Ya(kp1u)Yo(u)
—Yo(paW)Ya(kpu)Jo(u) ] =[I1(p1u) Yo(kp1u) Yo(U)

=Y1(p1u)Yo(kpau)Jo(u)] (22)
and

Bj(u)= o B[Yo(p1u)Jz(kpyu)Jo(u)
—Jo(prw)J1(kp1U) Yo(u)]—[Y1(p1u)Jo(kp1u)Jo(u)

—J1(p1u)Jo(kp1u)Yo(u)] (23)

whole aquifer, then Eq.19), the flow rate across the wellbore in
the dimensionless form, can be reduced to the single-zone solu-
tion presented by Jaeger and Clafk®42 as

Quw 4 fx e*“‘Z du

2uTohy 72 Jo [2(W)+Y2(W)] U (24)

Numerical Evaluation

Bessel Functions

Eq. (18) includes the Bessel functiorig(u), 1,(u), Kq(u), and
K,(u). Likewise, Eq.(19) contains the integral composing of
Jo(u), J1(u), Yo(u), andY,(u). These functions approximated
by the formulas given in Abramowitz and Steg@h964 and
Watson(1958 are listed in Appendix lll. The argumeantin these
formulas may be divided into two rangd$,10] and (10°) for

lo(u) and I4(u), [0,2] and (2,¢) for Ko(u) and K;(u), and
[0,12] and(12¢0) for Jy(u), J1(u), Yo(u), andYq(u) in order to
achieve better accuracy. Besides, these formulas are essentially
composed of infinite series and may converge slowly, especially
whenu is small. Therefore, the Shanks meth@hanks 1955;
Wynn 1956 is employed to accelerate the convergence when
evaluating the series. Each function in the integrands of @s.
and(19) is calculated to ten decimal places, and thus it bears the
same degree of accuracy as those listed in Abramowitz and Ste-
gun (1964).

Shanks Method

The Shanks transform, also called thalgorithm, consists of a
family of nonlinear sequence-to-sequence transformations
(Shanks 1956 Shanks(1955 proved that these transformations
are effective when applied to accelerate the convergence of some
slowly convergent sequences and may converge some divergent
sequences. Examples of the applications of Shanks method in-
clude numerical series, the power series of rational and meromor-
phic functions, and a wide variety of sequences drawn from inte-
gral equations, geometry, fluid mechanics, and number theory
(Shanks 1956

The partial sumsS,,, of an infinite series may be denoted as

Si=2>, a (25)
k=1

wherea, is thekth term of the series. Based on the sequence of
partial sums, the Shanks transform may be expresseuvgsn
1956

i=12,...
(26)

1
€i+1(Sy)=6e_1(Sy+1)+ N CRETYCAE

whereey(S,) =S, ande;(S,) =[€o(Sn+1) —€o(Sh)]1 ™"

It is necessary to set a certain convergence criterion when
applying the Shanks transform to evaluate a given series. There-
fore, one may define a convergence factor, ERR, as

|€2i+2(Sh-1) —€2i(Sy)|<ERR (27)

The sequence of partial sums is terminated when this criterion is
met and the infinite series converges to the estimated value of

If the aquifer properties are assumed to be constant through theey; , »(S,_1).
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30 a very small value, say 16° and starting fronz, Eq.(19) can be

evaluated by Gaussian quadrature. The initial interval for numeri-
cal integration in Eq(19) is chosen as I0; then, both six-point

and ten-point formulas of Gaussian quadrature are used at the
same time to carry out the integration of Efj9). If the difference

of the results by those two formulas is less than the prescribed
criterion, say 107, a double interval will be used for next inte-
gration. Otherwise, the present interval will be divided into two
equal portions, and the same approach is again applied to each
portion until the result for each portion is less than 10This
procedure ensures that each result has the accuracy to seven deci-
mal places. The same integration procedures are applied to suc-
ceeding integrations until the difference in the result for each
portion is less than I0. Then the remaining integration is ob-
tained by changing the variable §s=1/u and the transformed
integral in terms of is directly evaluated by Gaussian quadrature

Y (Gerald and Wheatley 1989, p. 30& herefore, the result of nu-

Fig. 2. Plot of integrand of Eq(19) versusu for p=1, p;=3, B merical integrations for the flow rate can be obtained by simply
=1, andr=1 while «=0.1, 1, or 10 adding all the results from each interval or portion.

2.0

Integrand

1.0

Numerical Inversion Results

In many engineering problems, the Laplace-domain solutions for Comparisons between the closed-form solution of &@§) and
mathematical models are tractable, yet the corresponding solu-the results obtained from numerical inversion of E§8) may
tions in the time domain may not be entirely possible or easily provide a cross check for the validity and accuracy of both solu-
solved. Under such circumstances, a numerical inversion such agions. The values of dimensionless flow rate versus dimensionless
the Stehfest algorithniStehfest 1970or the Crump algorithm time from 0.01 to 1000 evaluated by the proposed numerical ap-
(Crump 1976 may be used. Eq18) is numerically inverted by  proach for Eq.(19) and the modified Crump algorithm for Eq.

using the modified Crump algorithde Hoog et al. 1982 which (18) are listed in Tables 1 and 2, respectively, for single-zone and
is based on the-algorithm to evaluate the corresponding diago- two-zone systems. Table 1 gives the values of dimensionless flow
nal Pade approximant$MSL 1987). rate versus dimensionless time foy=3 andB=1 whena=1,

that is, when the aquifer formation is under the single-zone con-
dition. An approach of infinite series expansion given in Har-
vard’s problem report1950 is adopted to remove the singularity
Gaussian quadrature is widely used in performing the numerical of the integrand of E¢(24) when performing the integration from
integration of a known function. The integration limits of zero toe. For the integration limit frone to infinity, Eq. (24) is
J2f(x)dx are changed frorfa,b] to [—1,1] by a suitable transfor-  evaluated by previously suggested integration procedures. The
mation of variable when applying Gaussian quadrature. The for- flow rates estimated by the numerical inversion for the Laplace-

Gaussian Quadrature

mula for ann-point Gaussian quadrature may be writter(@sr- domain solution and those given in Jaeger and Cldd@12
ald and Wheatley 1989 agree to three decimal places when compared to that of the
. n closed-form solution as shown in Table 1. Table 2 shows the plot
_ f the dimensionless flow rate versus dimensionless time for
f(e)de= >, Wif(&, 28 0 . .
f_l (8)ds .21 (&) (28) =3 andB=1 whena=0.1 or 10. The formation has a negative

skin whena=0.1 and a positive skin whex=10. The flow rate
values obtained by numerical Laplace inversion agree well with
that of the closed-form solution. This indicates that this closed-
form solution yields accurate results for the presence of a well-
bore skin when estimated by the proposed numerical approach.
Fig. 3 shows that the curve representing the dimensionless flow
rate across the wellbore for the undisturliethgle-zong forma-
Integration Procedures for the Closed-Form Solution tion is quite different from that with positive or negative wellbore
skin. If a positive wellbore skin exists, then the dimensionless
flow rate is smaller than that when a negative wellbore skin exists
at the same dimensionless time. A smaller flow rate across the
wellbore reflects the result of lower hydraulic conductivity of the
positive skin. Conversely, a larger dimensionless flow rate is con-
sidered to reflect the increase of formation conductivity and stor-
age effects in the presence of a negative wellbore skin.

whereW; =weighting factor and; = integration point. Values for
W, and§; can be found in books on the fields of numerical meth-
ods (e.g., Burden and Faires 1989; Gerald and Wheatley Y1989
and the fields of finite element metho@sg., Reddy 1984; Bur-
nett 1987.

Fig. 2 demonstrates the plots of the integrand of @#§) versusu
for p=1, p;=3, B=1, andv=1 while «a=0.1, 1, or 10. The
two-zone aquifer becomes a homogendsisigle zong aquifer
system wheme=1; on the other hand, the aquifer has a negative
skin whena=0.1 and a positive skin whea=10. It can be
observed that the integrand of E@Q.9) approaches infinity as
tends to O; contrarily, the integrand tends to zeraudsecomes
very large.

The closed-form solution for the dimensionless flow rate, Eq.
(19), cannot be directly evaluated because the integrand containsA closed-form solution for describing the transient flow rate
a singular point at the origin as indicated in Fig. 2. Lettinp be across the wellbore in a two-zone confined ground-water system

Conclusions
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Table 1. Dimensionless Flow Rate versus Dimensionless Time Table 2. Dimensionless Flow Rate versus Dimensionless Tinkes-
Estimated by Closed-Form Solution, Numerical Inversion from timated by Closed-Form Solutiogf€S) and Numerical Inversion So-
Laplace-Domain Solution, and One Given in Jaeger and Clarke lution (NS) for p;=3 and@=1 whena=0.1 or 10

(1942 for p;=3 andB=1 whena=1 0=01 =10
Closed-form Numerical (negative skin (positive skin

T solution inversion solution Jaeger and Clarke . cs NS cS NS
0.01 6.127 6.129 6.219 0.01 22.479 22.488 1.830 1.833
0.02 4.470 4.472 4.472 0.02 17.144 17.152 1.307 1311
0.03 3.735 3.736 3.736 0.03 14.754 14.763 1.075 1.079
0.04 3.295 3.297 3.297 0.04 13.316 13.324 0.937 0.941
0.05 2.995 2.997 2.997 0.05 12.324 12.333 0.843 0.847
0.06 2.773 2.774 2.775 0.06 11.581 11.592 0.773 0.777
0.07 2.600 2.601 2.602 0.07 10.990 11.003 0.719 0.723
0.08 2.461 2.462 2.463 0.08 10.497 10.513 0.676 0.679
0.09 2.345 2.346 2.347 0.09 10.073 10.090 0.639 0.643
0.1 2.247 2.248 2.249 0.1 9.698 9.713 0.609 0.613
0.2 1714 1.715 1.715 0.2 7.198 7.080 0.443 0.447
0.3 1.475 1.476 1.476 0.3 5.726 5.480 0.370 0.374
0.4 1331 1.332 1.333 0.4 4.749 4.443 0.326 0.330
0.5 1.232 1.233 1.234 05 4.066 3.739 0.296 0.300
0.6 1.159 1.160 1.160 0.6 3.569 3.241 0.273 0.277
0.7 1.101 1.102 1.102 0.7 3.195 2.877 0.256 0.260
0.8 1.054 1.056 1.056 0.8 2.908 2.603 0.242 0.246
0.9 1.015 1.017 1.017 0.9 2.681 2.391 0.231 0.235
1 0.982 0.984 0.984 1 2.498 2.205 0.221 0.225
2 0.799 0.800 0.800 2 1.675 1.515 0.167 0.171
3 0.715 0.716 0.716 3 1.390 1.282 0.144 0.148
4 0.663 0.664 0.664 4 1.236 1.156 0.129 0.133
> 0.627 0.628 0.628 5 1.135 1.073 0.119 0.123
6 0.599 0.601 0.601 6 1.063 1.012 0.112 0.116
7 0.578 0.579 0.579 7 1.008 0.965 0.106 0.110
8 0.560 0.561 0.562 8 0.963 0.927 0.102 0.106
9 0.545 0.547 0.547 9 0.927 0.895 0.099 0.102
10 0.532 0.534 0.534 10 0.896 0.868 0.096 0.100
20 0.460 0.461 0.461 20 0.728 0.718 0.083 0.089
30 0.425 0.426 0.426 30 0.653 0.649 0.080 0.087
40 0.403 0.404 0.404 40 0.606 0.605 0.079 0.086
S0 0.387 0.388 0.388 50 0.574 0.575 0.078 0.085
60 0.375 0.376 0.376 60 0.550 0.552 0.077 0.084
70 0.365 0.366 0.366 70 0.530 0.533 0.077 0.083
80 0.357 0.358 0.358 80 0.515 0.518 0.076 0.083
90 0.350 0.351 0.352 90 0.501 0.505 0.076 0.082
100 0.344 0.346 0.346 100 0.490 0.494 0.075 0.082
200 0.309 0.311 0.311 200 0.425 0.431 0.073 0.079
300 0.292 0.293 0.294 300 0.393 0.400 0.072 0.077
400 0.281 0.282 0.282 400 0.373 0.380 0.071 0.076
500 0.272 0.274 0.274 500 0.359 0.366 0.070 0.075
600 0.266 0.267 0.268 600 0.348 0.355 0.070 0.075
700 0.261 0.262 0.263 700 0.339 0.347 0.069 0.074
800 0.256 0.258 0.258 800 0.332 0.340 0.069 0.074
900 0.253 0.254 0.255 900 0.326 0.333 0.069 0.074
1000 0.246 0.251 0.251 1000 0.320 0.328 0.069 0.073

has been developed for the constant-head test with the presence aofellbore skin, the results of the closed-form solution agree with
a wellborn skin. This solution was derived using Laplace trans- those of the Laplace-domain solution to two decimal places. This
form and a contour integral method. In a single-zone aquifer sys- provides a double check for the correctness of the closed-form
tem, the transient dimensionless flow rates computed from thesolution.

closed-form solution match well with those given by Jaeger and  The flow rate decreases rapidly with increasing time at the
Clarke (1942 and the Laplace-domain solution. Under the two- early stage of the test and asymptotically approaches a constant
zone condition, i.e., in the presence of a positive or negative value for a long test period. For small times the differences be-
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h,=0 for r—oo (32)

20.00 hy;=h, for r=r, (33)
B Closed-form solutions and
o Solutions obtained by numerical inversion o _
Sk S L 34
. o or r=r
gy T2 gr 1 (34)

Dimensionless flow

The solutions of Eqs(8) and(9) to the hydraulic head in the
Laplace domain in the skin and the undisturbed formation can
then be obtained asarslaw and Jaeger 1969

hy=Cylo(asr) +CoKo(asr) (35)

and

0.01 0.10 '1.00 . 10.90 100.00 1000.00 _

Dimensionless time . h2= D1| o(Q2r) 4 DZKO(QZr) (36)

Fig. 3. Results of the closed-form solution evaluated by the numeri-

cal approach and the solution obtained from the numerical inversion
by using the modified crump approach.

whereC,, C,, D4, andD, are constants.
Substituting Eqs(35) and (36) into Egs.(31)—(34), one can

obtain
_ hW ¢ 7

tween the flow rate in an aquifer with a positive or negative Cl_? d1lo(0ar ) — doKo(darw) (37)
wellbore skin and an aquifer without a wellbore skin are large. In
addition, the effect of a negative wellbore skin on the flow rate is hy — b,
larger than that of a positive wellbore skin. Obviously, the mag- szg b11o(Garw) — doKo(Galw) (38)
nitude of the flow rate across the wellbore strongly depends on
the hydraulic properties of both the formation and the wellbore D,;=0 (39)
skin.
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Science Council of ROC under Contract No. NSC89-TPC-E-099- obtained by a similar manner. Note that E8), representing the
001. head distribution in the undisturbed formation, slightly differs

from the one given in Chang and Ché&r999. Their inaccuracy
may be due to typing errors.

Appendix |. Derivation of Egs. (8) and (9)

Chang and Chef1999 presented the Laplace-domain solutions Appendix II. Derivation of Eq.  (13)
of the hydraulic head and the flow rate across the wellbore in a
two-zone ground-water system without giving the derivations.
Nevertheless, such solutions in the Laplace domain, &jand

(9), can be derived based on the procedures given in Carslaw an

The inverse Laplace transform of Ed2) in the time domain can
e obtained by using the Laplace inversion intedkildebrand

Jaegen(1959. 979 as
Applying the Laplace transform on Egd) and (2) yields 1 (L+io =
S _ =5 p 41
Y Q=75 fwe Qudp (41)
oz trar ~dih (29) S _
where p=complex variable;i=imaginary unit; and{=large,

and real, positive constant, so much so that all the poles lie to the left
h. 1 dh. of the line —io,{+i).
- 2,72 qzﬁ (30) A single branch point with no singularitypole) at p=0 exists
dr? " r dr 1272

in the integrand of Eq.12). Thus, this integration may require the

Furthermore, Laplace transforms of boundary conditions, Eqgs.Us€ of the Bromwich integral for the Laplace inversion. The
(4—(7), are closed contour of the integrand is shown in Fig. 4 with a cut of

_ the p plane along the negative real axis, wheérés taken suffi-
hy=h,/p for r=r, (31) ciently small to exclude all poles from the circle about the origin.
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y Likewise, introducingp=u?e™T,/S,, the integral alondgEF
A gives minus the conjugate of E¢5) as

_ 2r,T1hy, Jw_ o(T1/Sput [Ag(u)—iAz(u)]
0

— Quz=5 EXOEERM) Rl

A The closed-form solution of Eq13) can then be obtained by
combining Eqs(45) and(46).

J
. > X
Appendix Ill. Formulas of Bessel Functions
The Bessel functions dfy(u), 1;,(u), Ky(u), andK,(u) may be
evaluated by the formulas given in Abramowitz and Stegun
—/A (1964. The argumenti in these formulas can be divided into two
H ranges[0,10] and(10°) for Io(u) andl4(u) and[0,2] and(2 )
for Ko(u) and K;(u) for better accuracy. For 9u<10, the
asymptotic expansions fog(u) andl,(u) may be expressed re-
spectively agAbramowitz and Stegun 1964, p. 375

Fig. 4. Plot of closed contour integration of for inverse Laplace

transform(Hildebrand 197§ 1 1 2 1 3
—u?  |=u? —u?
_ 4 4 4
lo(W=1+ gzt ~mnz T @nz T (47)
The closed contour consists of the pAB of the Bromwich line and
from —o to %, semicirclesBCD and GHA, lines DE and FG
parallel to the real axis and a circleF of radiusd about the
origin. The integration along the small cirdid- around the origin 1, 1, 2 1, 8
asd—0 is carried out by using the Cauchy integral and the value u 24 24 24
of the integration is equal to zero. The integrals taken aBG® Il(u)=(— I+t =t 5rnan Tt rran T
and GHA tend to zero aRR— . Consequently, Eq.12) can be 2 (IHH - (2HEhH - (HAY (48)
superseded by the sum of the integrals albigandFG. In other ]
words, the integral can then be written as The Bessel functions ofy(u) andI(u) for 10<u<c are
respectively approximated débramowitz and Stegun 1964, p.
L 377
Qu= lim =— f eP'Q,dp+ J eP'Q,dp (42)
5027 | JpE FG 2 2y 22 2y A2 E2
R_o e u " 1 . 12x3 +1 X 32x5 L
0 J2mu (11)(8u) ~ (21)(8u)* = (3!)(8u)®
For the first term on the right-hand sidBRHS) of Eq. (42) (49)
along DE we introduce the change of variabpe=u“e™™'T,/S,;
and use the formuléCarslaw and Jaeger 1959, p. 490 and
. 1 _ _
Kv(z€(1’2)“')=izwie*“’z)”'[alv(z)iiYU(z)] (43)
L e {1 4-1? . (4—12)-(4—3?)
u)= _
and (=1 anew T @neu?
+ (12w — o+ (12vmwi
|U(Ze_ ) e JU(Z) (44) (4_12)(4_32)(4_52)
wherev=0,1,2 . .. . Thefirst term on the RHS of Eq42) then - (31)(80)° + (50)
leads to
= M fx_e(Tllsl)uth For O<u=2, the asymptotic expansions fip(u) andK,(u)
i | 0 [By(u)+iBy(u)] may be written respectively d&bramowitz and Stegun 1964, p.
(45) 3795
|
1 1 2 1 3
2 Z2 2
K —Iu) I . 11(4u> 111(U) 51
O(U)__ n z +vy O(u)+(l!)2+ +§ (2|)2 + +§+§ (3|)2 t+ee ( )
and
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2 3
r 411“2 1 %”2) 11 (%”2) \
u 1 o] lan@n © “§<2!)(3!)+(“5+§)W+“'
Ki(u)= In(E)er I4(u)+ G—Z< 1 1 2 ’ (52)
_u2 —U2
1\ 4 1 1\\2 ) ]

wherey=0.577215664901533 is the Euler’s constant. Fan<«, Ky(u) andK,(u) are respectively taken &8bramowitz and Stegun
1964, p. 378

K ()= el [1 12 12x32  12x32x5? ) 53
o(W= =11~ neew " @nEu? @nEw? T (53)
and
G 4-12 (4-12)-(4-3?%) (4-1?)-(4-3%-(4-5?
Kl‘“)\Twu[”u!)(sm+ ENC ENCDE ] (54)

These functions ofy(u), J;(u), Yo(u), andY,(u) may be evaluated by the formulas given in Abramowitz and Sté$064 and
Watson(1958. The argument in these four functions may be split into two rangg®,12] and (12), for good accuracy. ForQu
<12, these functions may be written respectively(Alsramowitz and Stegun 1964, p. 360

1 1 .\%2 (1 8
22 22 22
i (2] (3]

4 4
‘]O(u):l_(l!)2+ (2!)2 (3!)2 (55)
1 1 .\2 (1 .\®
) u[ i z“z) (z“z
Jl(“)_(§> "@ney fenen @hen T (56)
1 1 2 1 8
2 (u i 1 (Z“Z) 11 (Z”Z)
YO(U):F In(§)+y JO(U)'F; (l!)2_<1 E)W+(l+§+§) (3|)2 — (57)
and
p 2 3
{ s . %“2> (1 1 1) (;1“2) ]\
> 2[ (|u u aneh T\ tT2jenen (T2 a)Enen T
Yl(u):_ﬁ+F In 5 +y Jl(u)+§< 1 1 2 ’ (58)
1, L ]
1\ 4 1 1)\ 14
Note that azi=0, Jyo(u) andJ,(u) are equal to one and zero respectively, wheMgs) andY,(u) approach—o.
The functions ofly(u), J;(u), Yo(u), andY,(u) for 12<u<eo are approximated respectively @&atson 1958, p. 199
[2 | w (1™ (0,2m)| | < (—1)™(0,2m+1)
Jo(u)= E{C()S(u_Z) mzzow}—sm u-7 mEzo (20)2m+ 1 ] (59)
2 3m\| < (—1)™(1,2m)| 3m\| - (—1)™(1,2m+1)
Jl<“>:\/ﬂ—u{°°§(“‘f) 2(2—>}‘<‘T) 2 } (60
[2] | =< (=)™ ©.2m] [ & (—1m(0,2m+1)
Yo(u)= E{SIH(U_Z)_mE:O—(Zu)Zm _+cos(u—z) mz=o 22T J (61)
and
2 [ 3m\[ & (=1)™-(1,2m)] 3m\[ & (=1)™(1,2m+1)
Y1<U>—\/w—ufS'“(“‘ﬂ_EoW_*“ﬂ(“‘T) & e ] 2
where
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r 1
v+m+§

(v,m)=

o

(63)

1
v—m+§

andI'(m) is the Gamma functiofAbramowitz and Stegun 1964, p. 255
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