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Discrete-Time Optimal Fuzzy Controller Design:
Global Concept Approach
Shinq-Jen Wu and Chin-Teng Lin, Senior Member, IEEE

Abstract—In this paper, we propose a systematic and the-
oretically sound way to design a global optimal discrete-time
fuzzy controller to control and stabilize a nonlinear discrete-time
fuzzy system with finite or infinite horizon (time). A linear-like
global system representation of discrete-time fuzzy system is
first proposed by viewing a discrete-time fuzzy system in global
concept and unifying the individual matrices into synthetical
matrices. Then, based on this kind of system representation,
the discrete-time optimal fuzzy control law which can achieve
global minimum effect is developed theoretically. A nonlinear
two-point-boundary-value-problem (TPBVP) is derived as the
necessary and sufficient condition for the nonlinear quadratic op-
timal control problem. To simplify the computation, a multistage
decomposition of optimization scheme is proposed and then a
segmentalrecursive Riccati-like equation is derived. Moreover, in
the case of time-invariant fuzzy systems, we show that the optimal
controller can be obtained by just solving discrete-time algebraic
Riccati-like equations. Grounding on this, several fascinating
characteristics of the resultant closed-loop fuzzy system can
be elicited easily. The stability of the closed-loop fuzzy system
can be ensured by the designed optimal fuzzy controller. The
optimal closed-loop fuzzy system can not only be guaranteed
to be exponentially stable, but also be stabilized to any desired
degree. Also, the total energy of system output is absolutely finite.
Moreover, the resultant closed-loop fuzzy system possesses an
infinite gain margin; that is, its stability is guaranteed no matter
how large the feedback gain becomes. An example is given to
illustrate the proposed optimal fuzzy controller design approach
and to demonstrate the proved stability properties.

Index Terms—Degree of stability, finite energy, gain margin,
global minimum, Riccati-like equation, two-point-boundary-
value-problem.

I. INTRODUCTION

A LTHOUGH the researches in fuzzy modeling and fuzzy
control have been quite matured [4], [5], [10], [14], [16],

[18], it seems that the field of optimal fuzzy control is nearly
open [20]. The goal of this work is to propose a systematic and
theoretically sound scheme for designing a global optimal fuzzy
controller to control and stabilize a discrete-time fuzzy system
with finite or infinite horizon.

Stabilityandoptimalityare the most important requirements
for any control system. Most of the existed works on the
stability analysis of fuzzy control are based on Takagi–Sugeno
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(T–S) type fuzzy model combined with parallel distribution
compensation (PDC) concept [16] and application of Lya-
punov’s method for stability analysis. Tanaka and coworkers
reduced the stability analysis and control design problems to
linear matrix inequality (LMI) problems [18], [17]. They also
dealt with uncertainty issue [14]. This approach had been ap-
plied to several control problems such as control of chaos [17]
and of articulated vehicle [15]. A frequency shaping method
for systematic design of fuzzy controllers was also done by
[13]. [10] developed a separation scheme to design fuzzy
observer and fuzzy controller independently. Methods based
on grid-point approach [9] and circle criteria [8], [12] were
introduced to do stability analysis of fuzzy control, too. [19]
adopted a supervisory controller and introduced stability and
robustness measures. [5] proposed a decomposition principle to
design a discrete-time fuzzy control system and an equivalent
principle to do stability analysis. On the issue of optimal fuzzy
control, [20] developed anoptimal fuzzy controller to stabilize
a linear continuous time-invariant system via Pontryagin
minimum principle. Although fuzzy control of linear systems
could be a goodstarting point for a better understanding of
some issues in fuzzy control synthesis, it does not have much
practical implications since using the fuzzy controller designed
for a linear system directly as the controller may not be a
good choice [20]. Moreover, the cited stability criteria may be
simple, but rough to do systematic analysis and also may result
in a controller with less flexibility.

Even with the aforementioned research results on the theo-
retic aspect of fuzzy control, the field of optimal fuzzy control
for continuous system is still nearly open [20] and that for dis-
crete-time system is fully open. Tanaka and others’ works men-
tioned in the above always treat the stability of general linear
feedback fuzzy controllers. The continuous optimal controller
constructed by [20] is suitable only to be a rough or initial con-
troller, since the system concerned is linear. All of them viewed
the fuzzy system by individual rules, i.e., from thelocal concept.
It is difficult for researchers to provide atheoretical demonstra-
tion on that the designed controller can reachglobal minimum
effect, if the design scheme is based on local concept approach.

Technical contributions of this paper can be described as
follows. Theentire fuzzy system representation is proposed to
maturate theformulation and simplification of thequadratic
optimal fuzzy controlproblem. This original global-concept
approach might initiate and activate the research inglobal
optimal fuzzy controller design. Further, a tricky unifying
of individual matrices intosyntheticalmatrices generates a
linear-likeglobal system representation of a fuzzy system. This
linear-like representation motivates us to develop the design
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scheme of global optimal fuzzy controller in the way of general
linear quadratic (LQ) approach. Moreover, a multistage-decom-
position approach is adopted to transform the optimal control
problem into an on-going stage-by-stage dynamic issue. This
decomposition operation can speed up numerical solution, and
keep the global optimality at the same time. The design scheme
meets thenecessary and sufficientcondition of global optimum.
The derived discrete-time fuzzy control law is theoretically
demonstrated to be the best for the entire system to reach
the optimal performance index. Finally, the in-depth analysis
(controllability, observability, stability, degree of stability and
gain margin) in Section IV gives the complete perspective of all
facets of the resultant closed-loop fuzzy system; we elicit that
this kind of fuzzy controller can stabilize a discrete-time fuzzy
system to any prescribed degree of stability; the corresponding
closed-loop fuzzy system possesses an infinite gain margin;
and the total energy of the system output of the closed-loop
fuzzy system is absolutely finite. The design methodology is
illustrated by one example.

II. PROBLEM FORMULATION

In this section, we shall propose anentiresystem representa-
tion to maturate theformulationof the quadratic optimal fuzzy
control problem, and a sound unification of the individual ma-
trices into synthetical matrices to generate alinear-like global
system representation of a fuzzy system, which helps the deriva-
tion of a theoretical design scheme of the quadratic optimal
fuzzy controller. We consider a given nonlinear plant described
by the so-called T–S type fuzzy model

If is is then

(1)

where
th rule of the fuzzy model;

system states;
input fuzzy terms in the th
rule;
state vector;
system output vector;
system input (i.e., con-
trol output); and sequences

and are,
respectively,
and matrices whose
elements are real-valued func-
tions defined on nonnegative
real numbers, .

We, throughout this paper, assume is nonsingular for all
to ensure nodeadbeatresponse; in that case, and

cannot define uniquely, and the poles of the resultant
closed-loop system are all located at zero points.

We then assume the desired controller is a rule-based non-
linear fuzzy controller in the form

If is is then

(2)

where
elements of output vector ;
input fuzzy terms in theth con-
trol rule;

or plant input (i.e., control output)
vector.

Then, aquadratic optimal fuzzy control problemis described as
follows.

Problem 1: Given the rule-based fuzzy system in (1) with
and a rule-based nonlinear fuzzy controller

in (2), , find a controller, , which can
minimize the quadratic cost functional

(3)

over all possible inputs of class PC (piecewise continuous),
where and are belongs to symmetric positive semidefi-
nite matrices.

The grounding on distributed fuzzy subsystems and
rule-based fuzzy controller brings the researchers in struggle
to find out the controller , which can achieve global
minimum effect under quadratic performance consideration
defined on theentire fuzzy system and fuzzy controller. In
other words, it is a big troublesome challenge to achieve global
optimal solution under local-model consideration, and thus so
far, this issue has not been attacked directly even that the T–S
type fuzzy model has been available for many years. [20] tried
to open the deadlock by considering a linear system (instead
of fuzzy system) combined with a fuzzy controller. However,
the quadratic optimal fuzzy control issue, in fact, remains fully
open.

Since each penalty term in the performance index is with re-
gard to the entire fuzzy system and controller, it is realizable to
formulatethe distributed fuzzy subsystems and rule-based fuzzy
controller into one equation from the global concept. Therefore,
we “fuzzily blend” the well-known T–S type fuzzy model to ob-
tain the following entire fuzzy system formulation

(4)

and the entire controller is

(5)

with and ,
where and denote, respectively, the
normalized firing-strength of the th rule of the dis-
crete-time fuzzy model and that of theth fuzzy control
rule, i.e., and

with
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and , where
and are the membership functions

of fuzzy terms and , respectively. Thus, we obtain the
formulation of the quadratic optimal fuzzy control problem in
Problem 1 as follows.

Problem 2: Given the entire fuzzy system in (4) with the
fuzzy controller in (5) and

, find the optimal control law, ,
to minimize the quadratic cost functional

(6)

This kind of quadratic optimal control problems is, obviously,
still too tough for us to engage in. Introducing the followingsyn-
thetical matrices, and ,
can overcome the predicament, where

...
...

...

with and denoting the identity matrices of dimension
and , respectively. In other words, based on these synthetical
notations, Problem 2 can be rewritten as the following final for-
mulation.

Problem 3: Given a nonlinear butlinear-like fuzzy system

(7)

with , find the optimal synthetical control
law, , to minimize the quadratic cost functional

(8)

This linear-like synthetical matrix representation for the entire
T–S type fuzzy system materializes the design of the global
optimal fuzzy controller in the way of general linear quadratic
(LQ) approach, i.e., calculus-of-variation method.

It is important for us to mention here that the process of in-
tegrating all distributed fuzzy subsystems into one equation to

describe the entire fuzzy system is necessary in order to find out
theglobal optimalsolution. The proposedfuzzily blendedentire
fuzzy system in (4) provides a practical way to work out the
global optimal solution. However, even each fuzzy subsystem
in T–S model is linear, thefuzzily blendedentire fuzzy system
in (4) is complicated and highly nonlinear. The further proposed
synthetical matrixrepresentation of the entire fuzzy system in
(7) shall, in the sense ofglobal optimality, lower down the order
and difficulty of the problem. This kind of global system rep-
resentation will be the foundation and kernel of the following
fuzzy controller design scheme.

III. D ISCRETE-TIME OPTIMAL FUZZY CONTROLLERDESIGN

We are going to design the optimal fuzzy controllers for dis-
crete-time fuzzy system with finite-horizon in Section III-A and
for that with infinite-horizon in Section III-B. For brevity, we
shall not statediscrete-timeobviously in the following work.

A. Finite-Horizon Problem

By describing the fuzzy system from the global concept in
Section II, our quadratic optimal fuzzy control problem for the
T–S type fuzzy system can be formulated and simplified into
Problem 3 in Section II. We shall use thecalculus of variations
methodcombined withLagrange multiplier methodto obtain
the necessary and sufficient condition for global optimum.
Since the membership functions in the fuzzy controller and
fuzzy system are piecewise continuous, it is reasonable to make
the following assumption.

Assumption 1:The membership functions ofperturbed ex-
tremesare equivalent to those ofextremes, i.e.,

, and

, where is a very small positive value.
For frequently used membership functions such as

bell-shaped, triangular and trapezoid membership func-
tions, this assumption soundly holds. We denote them as
nonsharp-profile membership functions. With this assumption,
the following theorem gives the necessary and sufficient
condition for global optimum.

Theorem 1 (Necessary and Sufficient Condition for Global
Optimum): For the fuzzy system in (1) and fuzzy controller
in (2) with nonsharp-profile membership functions, the optimal
control law is

(9)

and the corresponding global minimizer is

(10)

where satisfies the following nonlinear two-point-
boundary-value problem (TPBVP):

(11)

with and, by expressing explicit time-de-
pendence with lower index, as shown in the first equation at the
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bottom of the page, where is the corresponding optimal
state trajectory with , and the minimum perfor-
mance index is .

Proof: See the Appendix.
Solving the nonlinear TPBVP in (11) directly is achievable

in conceptual aspect, but is at length in computational aspect.
Therefore, searching another circumvent approach to over-
coming this difficulty is pressing. A multistage decomposition
of optimization scheme, from the essence of the dynamic
programming formalism, is used for this purpose [21].

Lemma 1 (Multistage Decomposition):A foregoing
optimization scheme is a dynamic allocation process
or a successive multistage decision process. In other
words, if we let

, and define the
two equations shown at the bottom of the page, with re-
gard to the state resulting from the previous decision, i.e.,

, then

(12)

Hence, we can, by Lemma 1, transform our optimization
problem into an on-going stage-by-stage dynamic issue, and
thereupon, successively focus on only one stage at a time. The
global optimal solution corresponding to each decomposed
quadratic optimal fuzzy control problem is as follows.

Corollary 1: The optimal control problem for
, i.e., for the th stage, is to find a controller to minimize

(13)

where equals to at the th stage and is a
zero matrix, otherwise; and the related fuzzy system is described
by (7) with the initial condition and

for . Then, the optimal fuzzy control
law for the th stage is in (9), where satisfies the
nonlinear TPBVP in (11) with .

We should emphasize that the multistage-decomposition ap-
proach in Lemma 1 can transform the optimal control problem
into an on-going stage-by-stage dynamic issue. Therefore,
the nonlinear TPBVP in Theorem 1 is decomposed into
segmentalnonlinear TPBVP in Corollary 1, which can be
solved by thecollocation method[7]. This decomposition
operation can speed up numerical solution, and keep the
global optimality at the same time. Moreover, though the
membership functions are dependent on the system state, the
state-penalty term in the cost functional
in (3) can encourage asmooth optimal trajectory[1]. For a
chosen nonsharpmembership function profile, it is, in concept,
reasonable and workable to increase the sampling frequency
such that the membership function of the optimal state
remains almost invariant during each stage. In other words, we
can further adjust the division, i.e., enlarge, to the extent
that and are almost invariant during the
whole single stage, and use and to denote those at the
th stage. Then, the optimal control law becomes

(14)

where satisfies the following
linear TPBVP, shown in (15), at the bottom of the page,
with

. The
following lemma indicates an efficient way to solve (15).

Lemma 2: Let . The TPBVP in (15)
is equivalent to one of the followingsegmentalrecursive Ric-
cati-like equation:

(16)

(17)

and
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where
. The optimal trajectory in (15) becomes

(18)

the optimal control law turns into

(19)

and the corresponding global minimizer is

(20)

Proof: See the Appendix.
We further define to be the number of stages at which

membership functions can be assumed to be invariant during the
whole single stage. Then, thebackward recursiveRiccati-like
equation in (16) or (17) becomes available due to the existence
of . This avoids the high computational complexity of the col-
location method at the expense ofapproximate optimalitydue
to the time-invariant assumption. We can ensure this assumption
by checking the following condition at the starting time-step of
the -th stage, saying time-step (i.e., time-instant )

(21)

and then keeping checking the following condition to find the
proper length (time steps) of this stage

(22)

where and are the given tolerance to ensure the al-
most-invariant criteria. The first inequality in (21) ensures that
the membership degrees corresponding to the optimal trajectory

at time-step does not change in abrupt shape, and also
gives a hint that an almost-invariant-membership-function stage
from time-step is achievable. The second inequality in (22)
is to check the almost-invariant criteria for the entire-th stage,
to find out the length (time steps) of the stage, and then, can
also provide the information about the value of. These two
inequalities are used to check the time-invariant criteria in the
dynamic decomposition algorithm(DDA) in Section V. Now, we
summarize the previous derivation in the following assertion.

Theorem 2 (Multistage Optimization):For the fuzzy system
and fuzzy controller represented, respectively, by (1) and (2), let

, be the optimal solution with
respect to in (8), and

, be the th-stage optimal solution with respect to in
(13). If then

1) , for all
; and

;
2) for the th stage, , the optimal control law

is

(23)

and the corresponding global minimizer is

(24)

where is the symmetric positive semidefinite
solution of thesegmentalrecursive Riccati-like equation
in (16) or (17); the th-stage optimal trajectory is

(25)

3) the minimum performance index is equal to

.
Proof: This theorem follows the above inference.

So far, we have solved the optimal fuzzy control problem by
finding the optimal solution to the general time-varying case. In
the classical linear quadratic optimal control problem, a time-in-
variant system will give rise to time-invariant linear optimal
control law. We are now eager to know if this phenomenon ex-
ists in each segmental fuzzy system. Some useful lemmas are
demonstrated below in order to develop the design scheme of
optimal fuzzy control law regarding to the time-invariant fuzzy
system.

Lemma 3: Consider a dynamical system,
, with . Let the pair

be the infinite-horizon optimal solution with the performance
index , and the pair

be the finite-horizon optimal solution with

respect to , where
, a mapping from

to piecewise-continuous real-valued functions. If
is a free point, then

for all .

(15)
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Proof: Assume the infinite-horizon optimal solution for
some is not the finite-horizon optimal solution,
then

If we define a decision sequence as

where denotes the corresponding state trajectory, then we
have

This conflicts with the notion that is the
infinite-horizon optimal solution. Thus,

holds for all positively.
From the proof in Theorem 1, we know, for all
, the optimal performance index has the following relation:

(26)

It is obvious that is monotonic increasing with .
On the other hand, completely controllable system guarantees
the infinite-horizon performance index to be finite. Hence,

is bounded above for all . In other words, there
exists such that , where

satisfies the recursive Riccati-like equation in (16) or
(17). Moreover, for the case of constant and
becomes independent of, and accordingly, we can regard
it as the solution of the steady state version of (16) or (17),
i.e., . Furthermore, we adopt two
proposed lemmas [21] below to link the controllability and
observability of the fuzzy subsystem to those of the entire fuzzy
system, and then a simple criteria for a more implementable
and concise optimal solution is available.

Lemma 4 (Controllability): is completely
controllable (c.c.) for all if and only if

, for all

and , where
denotes the spectrum of .

Lemma 5 (Observability): is completely observable
(c.o.) for all if and only if

Now, the aforementioned inference can be summarized into the
following lemma.

Lemma 6: For each segmental dynamical fuzzy system

(27)

with and known. If is c.c. and
is c.o., , then

1) there exists an unique symmetric positive semidef-
inite solution, , of the discrete-time algebraic Ric-
cati-like equation

(28)

(29)

2) the asymptotically optimal control law is

(30)

which minimizes

(31)
3) and the optimal closed-loop fuzzy system

(32)

is asymptotically and exponentially stable;
4) the minimum performance index is equal to

.
Proof: We know, from Lemmas 4 and 5,

is c.c., , if and only if
,

and accordingly,
is c.o., , if and

only if ,

which ensures . There-

fore, c.c. and c.o., , guarantee
c.c. and c.o., respectively. Then, by the

classical discrete-time linear quadratic optimal control theorem
[2], we have the optimal solution for the segmental fuzzy
system in (27).

Then, a more implementable and important theorem for the
time-invariant fuzzy system can be extracted on the ground of
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the aforementioned Lemmas and Theorem 2, which concerns
the time-varying fuzzy subsystem.

Theorem 3 (Time-Invariant Multistage Optimiza-
tion): Consider the time-invariant fuzzy system and fuzzy
controller described, respectively, by (1) and (2) with

. Let , de-
note the optimal solution with respect to in (8),

, denote the th-stage
optimal solution with respect to in (13), and

, be the th-stage asymp-
totically optimal solution with respect to in (31). If

is c.c. and is c.o., for all ,
then

1) See (33), shown at the bottom of the page, where
;

2) for the th stage, , the optimal control law
is in (30), and the optimal trajectory is in
(32), where is the unique symmetric positive semidef-
inite solution of the discrete-time algebraic Riccati-like
equation in (28) or (29);

3) as for the last stage, theth stage, the optimal control law
is in (23), and the optimal trajectory is in
(25), where is the symmetric positive semidef-
inite solution of the segmental recursive Riccati equation
in (16) or (17);

4) the minimum performance index is

Proof: (1) Based on Lemma 1, the whole optimization
is decomposed into an -stage decision process with, at each
stage, the initial state resulting from the decision of its previous
stage. Now, our optimal fuzzy control problem, Problem 3, can
be attacked in the following two issues, with both regarding to
the same dynamical fuzzy system described by (7) except that
the initial stage is and the time interval is for
the th stage

(a)

(34)

(b)

(35)

Furthermore, by Lemma 3, the optimal solution with respect to
(35) can be regarded as the one with respect to

(36)

Notice that this equivalence only exists in period .
Therefore, we, hereinafter, can pay attention only to (36) for the
time interval , and to (34) for the
time interval .
(2) For and in the dynamical
fuzzy system described by (7) can be replaced, respectively, by
constant matrices and for the th stage. Therefore, the
whole fuzzy system in (7) can be rewritten as a linear system
represented by (27). Theth-stage optimal solution indeed fol-
lows the optimal solution in Theorem 2. As for the other stages,
we know, from the proof of Lemmas 6, c.c. and
c.o., , guarantee, respectively, c.c.
and c.o., , where and are, re-
spectively, the number of rules of the fuzzy system in (1), and
the number of stages of the process described by the dynamical
fuzzy system in (27). Hence, we can obtain the optimal solution
for the first stages via Lemma 6.

So, for the first stages, a time-invariant fuzzy system
can still give rise to the time-invariant linear optimal fuzzy con-
trol law.

B. Infinite-Horizon Problem

The purpose of this section is to design the optimal fuzzy
controller concerning the infinite-horizon problem, which is the
case that the operating time goes to infinity or is much larger
than the time-constant of the dynamic system. It is critical to no-
tice the problem: Does the minimal performance index finitely
exists? We introduce the concept proposed by Macki and Strauss
(1982): If the linearized system of a nonlinear system with re-
spect to (w.r.t) some state is c.c., then is an interior
point of the controllable set (the set of all initial points which
can be steered to the target). Now, the linearized system of the
fuzzy system in (7) with respect to point is

(37)

Therefore, to ensure that our problem is solvable, it is neces-
sary that the pair is controllable at
all time and for all . We can now find out the design
scheme of the infinite-horizon optimal fuzzy controller.

Theorem 4 (Multistage Optimization):For the fuzzy system
and fuzzy controller described by (1) and (2), respectively, let

(33)
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, be the optimal solution with
respect to

(38)

and , be the th-stage optimal
solution with respect to (39), as shown at he bottom of the page.
If the linearized fuzzy system in (37) is controllable, and there
exists such that if , then

1)
; where

;
2) for the th stage, , the op-

timal control law, the corresponding global minimizer, the
optimal trajectory and the minimum performance index
satisfy the same corresponding equations in Theorem 2,
except that and for all .

Proof: This theorem obviously holds with Theorem
2. For the th stage, the controllable criterion can en-
sure the existence of the limit value of ; i.e.,

exists for all , and
is still the symmetric positive semidefinite solution of

the segmental recursive Riccati-like equation in (16) or (17).
For the time-invariant case, the pair

c.c. is equivalent to
, and this condition, by Lemma 4, can be

satisfied if is c.c., for all . So, we need
the following assumption as the prerequisite for the optimal
controller design in the time-invariant infinite-horizon case.

Assumption 2: is c.c., for all .
Theorem 5 (Time-Invariant Multistage Optimiza-

tion): Consider the time-invariant fuzzy system and fuzzy
controller described, respectively, by (1) and (2) with .
If there exists such that if is c.c. and

is c.o., for all , then

1) For each stage

(40)

where is the th-stage asymptotically optimal
control law in (30), and is the corresponding
asymptotically optimal trajectory in (32), where is
the unique symmetric positive semidefinite solution of
the discrete-time algebraic Riccati-like equation in (28)
or (29);

2) the minimum performance index is

Proof: This Theorem obviously holds according to The-
orem 3.

IV. STABILITY AND GAIN MARGIN

In this section, we shall show that the designed control law
can not only asymptotically and exponentially stabilize the
fuzzy system, but also form a closed-loop fuzzy system with
any desired degree of stability. We also concern with the range
of the feedback gain,gain margin, to which we can increase
under the stability consideration.

A. Global Stability

As remarked earlier, the whole optimal trajectory is decom-
posed into segments, and more, if each fuzzy subsystem in (1)
is well-behaved (c.c. and c.o.) and , then each segment
can be described by its corresponding asymptotically optimal
trajectory during the same period of this segment; i.e.,

(41)

where and
. That is, the behavior of the closed-loop fuzzy system

can be captured by the corresponding asymptotic behavior of
these segments.

Theorem 6: For the time-invariant fuzzy system and fuzzy
controller described, respectively, in (1) and (2) with .
If there exists such that if is c.c., and

is c.o. for , then

1) the optimal closed-loop fuzzy system

(42)

where
, is exponentially stable;

2) the total energy of system output is finite, i.e.,
.

Proof: (1) Recall that is the th-stage asymp-
totically optimal trajectory of the quadratic optimal control
problem, i.e., minimizing the performance index in
(31) with respect to the dynamical fuzzy system in (27). More-
over, c.c. and c.o., , guarantees,
from part (2) in the proof of Theorem 3, c.c. and

otherwise
(39)
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c.o., . Hence, we know, from Lemma
6, the th-stage asymptotically optimal trajectory

is asymptotically and exponentially stable, i.e.,
, where denotes

the open unit disc in the complex plane. Hence, via (41), the
optimal trajectory described by (42) is asymptotically and
exponentially stable since all eigenvalues of the system matrix
characterizing the dynamical behavior of each segment lie
inside the unit circle.
(2) From (7)

(43)

From (1) in the proof, theth-stage asymptotically optimal tra-
jectory is exponentially stable. The term,exponentially
stable, meansuniformly asymptotically stablein the stability
concept [3], which means that for all and

satisfies the following two properties.

a) The range of mapping from to is bounded on
uniformly, i.e.,

s.t.

b) The range of mapping from to tends to zero as
uniformly, i.e.,

an integer

s.t.

Assume is located in the -th stage, i.e.,
. Then, (43) becomes

(44)

where . We know that the first two terms are finite and
the others are infinitesimal, and thereupon, the total energy of
system output is absolutely finite.

The stability of the closed-loop fuzzy system in time-varying
case can still be ensured if the corresponding asymptotically
optimal trajectory of each segment is exponentially stable.

B. Stabilization to any Desired Degree

Before investigating further, we demonstrate the importance
of the resultant closed-loop fuzzy system with a degree of sta-
bility of at least some prescribed constant , which
means that the state approaches zero at least by the rate of
or the poles of the resultant closed-loop fuzzy system are all
constrained to lie inside a circle with the radius of . Let

, the performance index
in (38) with can be rewritten

as . To ensure
that the optimal value of is finite, the item should ap-
proach zero as approaches infinity, and hence, should
decay faster than as approaches infinity. This is equiva-
lent to requiring the modified closed-loop fuzzy system to have
a degree of stability of at least. Of course, the larger the
desired degree of stability is, the more stable the closed-loop
fuzzy system is. However, a high degree of stability may only be
achieved at the expense of excessive control energy consump-
tion.

Lemma 7: For a system
, where and are

and matrices, c.c. is equivalent
to c.c., and c.o. is equivalent to c.o.,
for any complex value .

Proof: (1) is c.c. if and only if

. Let . Then we
have ,
which means is c.c. if and only if is c.c. Similar

operation, except , can be adopted to show that
is c.o. if and only if is c.o. Now, consider two

systems: and
. Obviously,

they are related by a nonsingular linear transformation.
Therefore, is c.c. if and only if is c.c. and

is c.o. if and only if is c.o., for any complex
value . From (1) and (2), we conclude that Lemma 7 holds.

Theorem 7: Consider the time-invariant fuzzy system and
fuzzy controller described, respectively, by (1) and (2) with

. There exists such that if is c.c., and
is c.o. for all , then the fuzzy system can be

stabilized to any desired degree of stability; i.e., all the poles of
the resultant closed-loop fuzzy system are located inside a circle
with the radius of , where .

Proof: (1) As we know, for and well-behaved
fuzzy subsystems, the behavior of is fully described by

. Hence, we now pay attention to such
quadratic optimal control problem: minimizing the perfor-
mance index in (31) with respect to the linear time-invariant
fuzzy system in (27). Let and denote, respectively,
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and . Then, we have the following optimization
problem:

w.r.t.

(45)

Let and .
Equation (45) can be rewritten as

w.r.t.

(46)

(2) From Lemma 7, we know that c.c. and c.o.,
, if and only if c.c. and c.o.,

. Hence, following Lemma 6, the global mini-
mizer for the modified fuzzy system in the above is

, where is the positive–semidefinite solution
of the modified discrete-time algebraic Riccati-like equation

(47)

(48)

and the modified fuzzy system is asymptotically stable, i.e.,
, as . Then,

, decays faster than as since
. Via (41), will approach zero at least by the

rate of , i.e., the poles of the resultant closed-loop fuzzy
system are all located inside the circle of radius .

C. Gain Margin

In the remainder of Section IV, we examine another character-
istic,gain margin, of the resulting closed-loop fuzzy system. For
the time-invariant well-behaved fuzzy subsystems, if ,
then is coincident with , for all ,
where . Therefore, we can only discuss the asymp-
totic behavior of the dynamical fuzzy system of each stage, and
then turns it into the behavior of the entire dynamical fuzzy
system via (41). From Lemma 6, the designedth-stageasymp-
totically global minimizer is

(49)

In order to measure the gain margin, we consider the following
corresponding controller:

(50)

The gain margin ofthe th-stage closed-loop fuzzy system is
defined as the amount by whichcan be increased until the

system becomes unstable[2]. Now, let , and then
we have

(51)

We further consider

(52)

Notice that and . Comparing
(52) to (51), we find that the larger theis, the smaller the is,
which means that when goes to zero, the gain margin of the
th-stage closed-loop fuzzy system becomes infinite.

The following theorem shows that the resultant closed-loop
fuzzy system possesses an infinite gain margin. We shall first
show that the closed-loop fuzzy system for
possesses an infinite gain margin, and then, via (41), concludes
that the gain margin of the resultant closed-loop fuzzy system
is infinite.

Lemma 8: For the fuzzy system in (27), if is
c.c., is c.o., and is the positive semidefinite so-
lution of one of the following modified discrete-time algebraic
Riccati-like equation

(53)

(54)

where is the dependent variable of the algebraic equation,
then exists and is equal to , which is the
symmetric positive–semidefinite solution of discrete-time Ric-
cati-like equation

(55)

Proof: Denote and by and to simplify
notation.

(1) We now consider the optimal solution for minimizing

It is realizable to include into the state penalty matrix. From
Lemma 6, for any , the global minimizer is
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where is the symmetric positive semidefinite solution
of the modified discrete-time algebraic Riccati-like equation in
(53) or (54), and the corresponding closed-loop system

(56)

is exponentially stable; i.e., the radius of spectrum of system
matrix, , is less than 1.

(2) Now, we will make sure if the limit value of exists
and is equal to . For simplifying notation, we use
and to denote and , where is
the symmetric positive–semidefinite solution of the following
equation:

(57)

Define , then

(58)

Let and denote, respectively, and
, then

(59)

Let , then we obtain
a discrete-time Lyapunov-like equation

(60)

From (1), we know , and accordingly, the
unique solution is

(61)

In other words, for all .
Hence, the function is monotonic decreasing as ,
and bounded below by 0; i.e., constantly exists
for all . We can pick special’s to let ,
i.e., .

Theorem 8: Consider the time-invariant fuzzy system and
fuzzy controller described, respectively, by (1) and (2) with

. If is c.c., is c.o., for all
, and ,

then the global minimizer in (49) generates a closed-loop fuzzy
system with an infinite gain margin; i.e., the modified
closed-loop fuzzy system

, is
always stable for any , where and is the
positive–semidefinite solution of (53) or (54).

Proof: (1) Denote and by and to sim-
plify notation. From (1) of the proof in Lemma 8, we know

, and the asymp-
totically behavior of the enlarged closed-loop fuzzy system for
each segment is

(62)

By (41), the modified closed-loop fuzzy system is

(63)

where , and
. We will make sure

for all .
(2) For any eigenpair, , of ,

we know . By (53),
we have . Hence,

. Therefore, for all
, is also the eigenvalue

of , which is equivalent to
. To ensure

this, commutes with
obviously, i.e.,

and then, commutes with or, more
precisely, with .

(3) The above analysis shows that
commutes with . Recall that if and

are commutative operators, then . So

(64)

since
. Therefore, since the spectrum of

system matrix, which characterizes the dynamical behavior of
each segment of the modified optimal trajectory, is always lo-
cated in the unit disc of complex space, the resultant closed-loop
fuzzy system possesses infinite gain margin.

V. PRACTICAL APPLICATION

In this section, we propose an algorithm to implement the the-
orems in Section IV, and consider an optimal backing up control
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of a computer simulated trunk-trailer to illustrate the proposed
optimal fuzzy control scheme.

A. Dynamic Decomposition Algorithm

We shall propose a procedure to check the two inequalities
in (21) and (22), which can ensure the almost-invariant-mem-
bership-function criteria during a whole single stage. Now,
denoting the time-dependence as a lower index (i.e.,for

) and substituting by (i.e., time-instant by )
for notation simplification, we can rewrite (21) as follows:

(65)

where
, and

, where
denotes a very short time skip. Substituting into
the TPBVP in Theorem 1, we have

(66)

where . Though the entire backward recursive
Riccati equation in the above is unavailable in practice, the re-
lationship between two time-steps is always available. In other
words, at time-step, we have

(67)

And, according to Lemma 3, the finite-horizon optimal solution
for the free-end problem is the same as the optimal solution of
the infinite-horizon issue. Therefore, the solution,, for (67)
is also the solution, , of the following asymptotic Riccati-like
equation:

(68)

Also, we have

(69)
Therefore, we obtain (70), shown at the bottom of the page.
Hence, via (65) and (70), we can check the inequality in (21)
for any time-step (time-instant), and theexistenceof is guar-
anteed if the inequality holds at the starting time step of every
stage.

We then propose the followingdynamic decomposition algo-
rithm to check the two inequalities in (21) and (22), and to find
the proper number of time steps in each stageand also the
value of to ensure that the membership functions are almost
invariant during a whole stage.

Algorithm DDA: Dynamic Decomposition Algorithm

Input: the initial chosen membership functions; initial state ; sampling period ;

maximum number of design trials .

Output: optimal controller ; optimal trajectory ; value of ; value of (

being

initialized as ).

Step 0: (set threshold parameters) Set the default values of and .

Step 1: (initial check)

IF , THEN go toStep 2

ELSE choose a more smooth membership function and go back toStep 1, or break after

times of failing trials.

END

Step 2: ( denoting the time step in theth stage, i.e., )

(a) Find out the solution of (68) with the membership function .

(b) Calculate and by

(71)

(72)

(c) IF THEN Go to (a)

END

(d) IF THEN ; Stop

END

Step 3: (find the starting point of the next stage, i.e., the starting time step and the

corresponding time instant )

IF THEN

;

; jump toStep 2.

ELSE IF THEN

;

; jump toStep 2

ELSE decrease to get finer division (if it is adjustable) or choose another membership

function and jump toStep 1, or break after times of failing trials.

END.

For the time-invariant finite-horizon (except theth stage) or
infinite-horizon problem, the estimated optimal solutions,
in (71) and in (72), are also the optimal solutions in
(49) and in (32), where the estimated equals to

(70)
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Fig. 1. Profile of the chosen membership function� (k) in (73).

in (28) or (29). As for the other case, we can obtain the optimal
solutions in (25) and via (20) with the aid of the
estimated and in (16) or (17).

B. Numerical Simulations

In this section, we consider an optimal backing up control
of a computer simulated truck-trailer to illustrate the proposed
optimal fuzzy control scheme and its theoretic aspect. Tanaka
and Sano [6] described a computer simulated truck-trailer with
the mathematical model

where
length of truck;

length of trailer;

sampling time;

constant speed of the backward movement.

Then, they used the following fuzzy model to represent the
truck-trailer system:

If is about

then

If

is about or

then

and the system output is with
and

, where
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Fig. 2. (a) and (b) The normalized firing strengths,h (X (k)) andh (X (k)), corresponding to the optimal trajectory. (c) The value of the norm ofH(X (k)).
(d) The outputs of the optimal fuzzy controller(X = [��=2;�3�=4;�10] ).

We further assume our fuzzy controller is

If

is about then

If

is about or then

With the chosen membership functions shown in Fig. 1 [6], the
firing-strength is

(73)

(74)

which, in this case, are also the normalized firing-strengths
of the rules for fuzzy system and controller, i.e.,

. Therefore, thelinear-like dynamical
fuzzy system representation for the nonlinear truck-trailer

system can be described by (7) with

and

.
For the finite-horizon free-end optimal control problem, the

performance index is

(75)

where and . As for the infinite-horizon case,
the performance index is

(76)

Though the fuzzy subsystem is unstable (the spectrum of
system matrix ), it is time-in-
variant and well-behaved; i.e., the fuzzy subsystem is c.c. and



WU AND LIN: DISCRETE-TIME OPTIMAL FUZZY CONTROLLER DESIGN: GLOBAL CONCEPT APPROACH 35

Fig. 3. State responses of the discrete-time fuzzy system with the designed optimal fuzzy controller in the finite-horizon quadratic optimal control problem of
Section V at the four initial conditions:X(0) = (��=2;�3�=4;�10) ; (��=2;3�=4;�10) ; (�=2;�3�=4;�10) and(�=2;3�=4;�10) :

c.o. ( , for all
). Moreover, the asymptotic Riccati-like equation in

(68) becomes

(77)

Therefore, the steps a) and b) inStep 2in Algorithm DDA can
be simplified as

a) find out the constant solutionof (77) with the member-
ship function ;

b) calculate and by

(78)

(79)

Since the chosen membership functions are smooth Gaussian
functions (see Fig. 1), we can efficiently obtain the optimal

fuzzy controller with the aid of the DDA algorithm for
determining appropriate segmentation under the almost-in-
variant-membership-function criteria. For the initial state

, the individual normalized firing
strengths for the optimal trajectory (i.e., and

), and also the value of the norm of their synthetical
matrix (i.e., ) are shown in Figs. 2(a), (b) and
(c), respectively; the outputs of the designed optimal fuzzy
controller are shown in Fig. 2(d). The state responses of the
resultant closed-loop fuzzy system in the finite-horizon case is
shown in Fig. 3, which reveals that the designed optimal fuzzy
controller can promptly push the simulated truck-trailer system
from various initial states to and stay at the desired state. Hence,
the finite-state-trajectory penalty vanishes and Theorems 3
and 5 are coincident. Our simulation results also show that the
state responses of the resultant closed-loop fuzzy system in the
infinite-horizon case are the same as those in Fig. 3.

VI. CONCLUSION

The entire fuzzy system representation was proposed to for-
mulate the quadratic optimal fuzzy control problem, and further,
the unification of the individual matrices into synthetical ma-
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trices was proposed to generate alinear-likeglobal system rep-
resentation of discrete-time fuzzy systems. Based on this rep-
resentation, the design scheme of global discrete-time optimal
fuzzy controllers was derived theoretically. Furthermore, a mul-
tistage decomposition of optimization scheme was proposed to
design the global optimal fuzzy controller more efficiently and
keep the global optimality at the same time. Grounding on this
efficient design scheme, several fascinating characteristics have
been shown to exist in the resultant closed-loop discrete-time
fuzzy system.

Overall, the fuzzily-blended entire fuzzy system is consid-
ered to formulate the quadratic optimal fuzzy control problem,
and the global optimal effect can then be achieved even though
the chosen system model is composed of distributed rule-based
fuzzy subsystems. This formation sheds light on the deadlock of
the research of quadratic optimal fuzzy control. Moreover, the
proposedlinear-like synthetical matrix representation and the
systematic design procedures might activate a new research di-
rection in the quadratic optimal fuzzy control. Furthermore, the
proposed in-depth analysis on the degree of stability and gain
margin can provide the researchers with complete perspective
of all facets of the resultant closed-loop fuzzy system. Simu-
lation results have manifested that the designed optimal fuzzy
controllers can effectively drive the fuzzy system to the target
points in short time.

APPENDIX A

Proof of Theorem 1:(1) Define

where is the initial state at time. By Lagrange
multiplier method, we turn the optimization problem into the
problem of minimizing

(80)

where is the Langrange multiplier vector.
Now, we assume the optimal solutions
exist, and, according to the calculus of variations method,
let

, where is the
perturbation vector with respect to , and since the
initial state at time is . To simplify notations,
we shall omit the explicit time- and state-dependence; e.g., we
write for for , and use
and to denote, respectively, and

in the following derivation. Then, substituting these
variables into (80) and assuming Assumption 1 holds, we have

We know that a minimum of requires

The second criteria holds positively since

Hence, the necessary and sufficient condition for optimality is

(81)

Via the fact
and , We have

(82)

Since and are independent, we obtain the global min-
imizer in (10), and the corresponding optimal control law

in (9), where and the optimal trajectory sat-
isfies (11) with and .

(3) Now, we step for finding the minimum performance
index:
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From (82), we know and
, and accordingly

Hence, . This completes the proof.
Proof of Lemma 2:(1) Since and

, we obtain . On the other
hand, (15) gives

(83)

(84)

Substituting into (84), we
obtain the optimal trajectory in (18), and accordingly,
we rewritten (83) as

To ensure existence of the above equality no matter what
is, (16) holds positively.

(2) Through standard matrix manipula-
tions,

.
Therefore, (17) becomes

Moreover, substituting and
in (18) into (9), we obtain in (19) and then

in (20). This completes the proof.
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