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Discrete-Time Optimal Fuzzy Controller Design:
Global Concept Approach

Shing-Jen Wu and Chin-Teng Lisenior Member, IEEE

Abstract—in this paper, we propose a systematic and the- (T-S) type fuzzy model combined with parallel distribution
oretically sound way to design a global optimal discrete-time compensation (PDC) concept [16] and application of Lya-
fuzzy controller to control and stabilize a nonlinear discrete-time punov’s method for stability analysis. Tanaka and coworkers

fuzzy system with finite or infinite horizon (time). A linear-like - . .
global system representation of discrete-time fuzzy system is reduced the stability analysis and control design problems to

first proposed by viewing a discrete-time fuzzy system in global linear matrix inequality (LMI) problems [18], [17]. They also

concept and unifying the individual matrices into synthetical dealt with uncertainty issue [14]. This approach had been ap-
matrices. Then, based on this kind of system representation, plied to several control problems such as control of chaos [17]
the discrete-time optimal fuzzy control law which can achieve and of articulated vehicle [15]. A frequency shaping method

global minimum effect is developed theoretically. A nonlinear f t tic desi f f troll Iso d b
two-point-boundary-value-problem (TPBVP) is derived as the or systematic design of Tuzzy controliers was also done by

necessary and sufficient condition for the nonlinear quadratic op- [13]. [10] developed a separation scheme to design fuzzy
timal control problem. To simplify the computation, a multistage observer and fuzzy controller independently. Methods based

decomposition of optimization scheme is proposed and then a on grid-point approach [9] and circle criteria [8], [12] were
segmentakecursive Riccati-like equation is derived. Moreovet, in introduced to do stability analysis of fuzzy control, too. [19]

the case of time-invariant fuzzy systems, we show that the optimal dopted . troll d introd d stabilit d
controller can be obtained by just solving discrete-time algebraic adopted a supervisory controlier and Introduced stabiiity an

Riccati-like equations. Grounding on this, several fascinating robustness measures. [5] proposed a decomposition principle to
characteristics of the resultant closed-loop fuzzy system can design a discrete-time fuzzy control system and an equivalent

be elicited easily. The stability of the closed-loop fuzzy system principle to do stability analysis. On the issue of optimal fuzzy
can be ensured by the designed optimal fuzzy controller. The ,niro| [20] developed aaptimalfuzzy controller to stabilize

optimal closed-loop fuzzy system can not only be guaranteed i ti fi - iant t ia Pont .
to be exponentially stable, but also be stabilized to any desired & 'IN€ar continuousime-invariant system via Fontryagin

degree. Also, the total energy of system output is absolutely finite. Minimum principle. Although fuzzy control of linear systems

Moreover, the resultant closed-loop fuzzy system possesses arcould be a goodstarting pointfor a better understanding of

infinite gain margin; that is, its stability is guaranteed no matter  some issues in fuzzy control synthesis, it does not have much

how large the feedback gain becomes. An example is given 1o 4tical implications since using the fuzzy controller designed

illustrate the proposed optimal fuzzy controller design approach . .

and to demonstrate the proved stability properties. for a Ime_ar system directly as the contrc_)lller may not be a
o ) . good choice [20]. Moreover, the cited stability criteria may be

Index Terms—Pegree of stability, finite energy, gain margin, =. . .
global minimum, Riccati-like equation, two-point-boundary- §|mple, but rough todo SySt,emat'C analysis and also may result
value-problem. in a controller with less flexibility.

Even with the aforementioned research results on the theo-
retic aspect of fuzzy control, the field of optimal fuzzy control
. . for continuous system is still nearly open [20] and that for dis-
A LTHOUGH the researches in fuzzy modeling and fuzzyrete-time system is fully open. Tanaka and others’ works men-
control have been quite matured [4], [3], [10], [14], [16]tjoned in the above always treat the stability of general linear
[18], it seems that the field of optimal fuzzy control is nearlyeedhack fuzzy controllers. The continuous optimal controller
open [20]. The goal of this work is to propose a systematic aggnstructed by [20] is suitable only to be a rough or initial con-
theoretically sound scheme for designing a global optimal fuzgy|jer, since the system concerned is linear. Al of them viewed
controller to control and stabilize a discrete-time fuzzy systefRe fuzzy system by individual rules, i.e., from fbeal concept
with finite or infinite horizon. It is difficult for researchers to providetheoretical demonstra-
Stability andoptimality are the most important requirementsjon on that the designed controller can reatbbal minimum
for any control system. Most of the existed works on thgffect if the design scheme is based on local concept approach.
stability analysis of fuzzy control are based on Takagi—Sugenotechnical contributions of this paper can be described as
follows. Theentire fuzzy system representation is proposed to
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scheme of global optimal fuzzy controller in the way of generathere

linear quadratic (LQ) approach. Moreover, a multistage-decom-y1, . .., ¥, elements of output vectdr (k);
position approach is adopted to transform the optimal controlSy;,. .., Su; input fuzzy terms in théth con-
problem into an on-going stage-by-stage dynamic issue. This trol rule;

decomposition operation can speed up numerical solution, andi(k) or r;(k) € R™ plant input (i.e., control output)
keep the global optimality at the same time. The design scheme vector.

meets thaecessary and sufficieabndition of global optimum. Then, aquadratic optimal fuzzy control probleimdescribed as
The derived discrete-time fuzzy control law is theoreticallfollows.
demonstrated to be the best for the entire system to reachProblem 1: Given the rule-based fuzzy system in (1) with
the optimal performance index. Finally, the in-depth analysi§ (k) = Xy € " and a rule-based nonlinear fuzzy controller
(controllability, observability, stability, degree of stability andn (2), k¥ € [ko, k1 — 1], find a controller,u.*(-), which can
gain margin) in Section IV gives the complete perspective of atlinimize the quadratic cost functional
facets of the resultant closed-loop fuzzy system; we elicit that 1
this kind of fuzzy controller can stabilize a discrete-time fuzzy S t t

) . A(u(-)) = XYRL(K)X (K k)u(k
system to any prescribed degree of stability; the correspondm&u( ) Z[ (R)L(R)X () + v (R)u(k)]
closed-loop fuzzy system possesses an infinite gain margin; . )
and the total energy of the system output of the closed-loop + X0 (k) QX (k) )

fuzzy system is absolutely finite. The design methodology yer all possible inputs(-) of class PC (piecewise continuous),

k=kq

illustrated by one example. whereL(k) andQ are belongs to symmetric positive semidefi-
nite n x n matrices.
Il. PROBLEM FORMULATION The grounding on distributed fuzzy subsystems and

In this section, we shall propose antiresystem representa- 'ule-based fuzzy controller brings the researchers in struggle
tion to maturate théormulationof the quadratic optimal fuzzy to find out the controllerv*(-), which can achieve global
control problem, and a sound unification of the individual maminimum effect under quadratic performance consideration
trices into synthetical matrices to generaténear-like global defined on theentire fuzzy system and fuzzy controller. In
system representation of a fuzzy system, which helps the derigéher words, it is a big troublesome challenge to achieve global
tion of a theoretical design scheme of the quadratic optinfptimal solution under local-model consideration, and thus so
fuzzy controller. We consider a given nonlinear plant describ&®, this issue has not been attacked directly even that the T-S

by the so-called T-S type fuzzy model type fuzzy model has been available for many years. [20] tried
‘ to open the deadlock by considering a linear system (instead
R @ isTyy,. .., 2, isTh;, then of fuzzy system) combined with a fuzzy controller. However,
X(k+1)= A(B)X (k) + B;(k)u(k) the quadratic optimal fuzzy control issue, in fact, remains fully
Y(k)=Ck)X(k), i=1,...,7 (1) Open. _ _ o
Since each penalty term in the performance index is with re-
where gard to the entire fuzzy system and controller, it is realizable to
R t¢th rule of the fuzzy model;  formulatethe distributed fuzzy subsystems and rule-based fuzzy
LlyennsTn system states; controller into one equation from the global concept. Therefore,
Tiiv- o, T input fuzzy terms in theith we “fuzzily blend” the well-known T-S type fuzzy model to ob-
rule; tain the following entire fuzzy system formulation
X(k)=[z1,...,z,]" € R™ state vector; .
Y(k) € R system output vector; ) _ ) AL E )
u(k) € R™ system input (i.e., con- A+ 1) ;]LZ(X(A))AZ(k)X(k)
trol output); and sequences r 6
Ai(k), Bi(k) and C(k) are, + D07 hiX )y (Y (R) B () ()
respectively,n x n,n x m =1 j=1
and n’ X n matrices whose Y (k) = C(k)X (k) (4)

elements are real-valued func-

tions defined on nonnegativeand the entire controller is

real numbersy. 5
We, throughout this paper, assumg k) is nonsingular for all u(k) = Z w; (Y (k))r; (k) (5)
k to ensure naleadbeatesponse; in that cas& (k + 1) and i=1
u(k) cannot defineX (k) uniquely, and the poles of the resultant

closed-loop system are all located at zero points. with S0 hi(X(k) = 1 and Y7 wi(Y(k)) = 1,
We then assume the desired controller is a rule-based n@fhere n;(X(k)) and w;(Y(k)) denote, respectively, the
linear fuzzy controller in the form normalized firing-strength of theith rule of the dis-
‘ crete-time fuzzy model and that of th#&h fuzzy control

R y1is Suiy o, Y 18 Srs, thenu(k) = 7;(k), rule, ie., hi(X(k)) = o(X(k)/S_, :(X(k)) and

i=1,...,6 (2 w(Y(E) = YK/, /(Y (k) with ay(X (k) =
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7

I iy, (5 (R)) and 3;(Y(k)) = I} s, (v;(k)), where describe the entire fuzzy system is necessary in order to find out

pr;; (x5(k)) and ps;, (y;(k)) are the membership functionstheglobal optimalsolution. The proposeftizzily blendeentire

of fuzzy termsZ}; and S;;, respectively. Thus, we obtain thefuzzy system in (4) provides a practical way to work out the

formulation of the quadratic optimal fuzzy control problem irglobal optimal solution. However, even each fuzzy subsystem

Problem 1 as follows. in T-S model is linear, th&uzzily blendecntire fuzzy system
Problem 2: Given the entire fuzzy system in (4) with thein (4) is complicated and highly nonlinear. The further proposed

fuzzy controlleru(k) in (5) and X (ko) = Xo € R*,k € synthetical matrixepresentation of the entire fuzzy system in

[ko, k1 — 1], find the optimal control lawy}(-),¢ = 1,...,6, (7)shall, inthe sense gfobal optimality lower down the order

to minimize the quadratic cost functional and difficulty of the problem. This kind of global system rep-

resentation will be the foundation and kernel of the following

ki—1 .
c . . fuzzy controller design scheme.
J(ri() =Y [ X' (R)Lk)X(R)
=k [ll. DISCRETETIME OPTIMAL FuzzY CONTROLLER DESIGN
S S
+ wi (Y (k))w; (Y (k) (k)r; (k We are going to design the optimal fuzzy controllers for dis-
;; (e (T (R R)rs ) crete-time fuzzy system with finite-horizon in Section Ill-A and
for that with infinite-horizon in Section III-B. For brevity, we
+ X (k)QX (k). (6) 4

shall not stateliscrete-timeobviously in the following work.

Thls kind of quadratic optlmal_ control prqblems is, ob_\/loustA_ Finite-Horizon Problem
still too tough for us to engage in. Introducing the followsyg- o _
thetical matrices,H (X (k)), W (Y (k)), A(k), B(k) and R(k), By describing the fuzzy system from the global concept in

can overcome the predicament, where Section IlI, our quadratic optimal fuzzy control problem for the
T-S type fuzzy system can be formulated and simplified into
H(X(E)) = [h(X(E)L, ... he(X(E)) 1] Problem 3 in Section Il. We shall use tbalculus of variations
W (Y (k) = [wi (Y (E)) I . .. ws (Y (k) L], T}ethodcomblned wnhLa_grange mul.tl_pher methodo obtgln
AL (k) By (k) t_e necessary and s.uff|C|ent. coqdmon for global optimum.
Since the membership functions in the fuzzy controller and
Ak) = : B(k) = : fuzzy system are piecewise continuous, it is reasonable to make
| A (k) B,.(k) the following assumption.
[y (k) Assumption 1:The membership functions glerturbed ex-
R(k) = tremesare equivalent to those ektremesi.e., iz, (27 (k)) =
' pry (25 (k) + ez (k),d = 1,...,nyi = 1,...,r, and
s (k) ns, (Ui (0) = i (ui (k) + ev(k). 5 = 1,00 =

with [,, and,, denoting the identity matrices of dimensian L,...,8, wherec is a very small posmv_e value. .
. . _For frequently used membership functions such as
andm, respectively. In other words, based on these synthetl%al

notations, Problem 2 can be rewrittenasthefollowingfinalf0{.-e”'5haped’ trlangl_JIar and trapezoid membership _func-
mulation. ions, this assumption soundly holds. We denote them as

Problem 3: Given a nonlinear butnear-like fuzzy system nonsharp-proflle members_h|p functions. With this assum_pt_lon,
the following theorem gives the necessary and sufficient

Xk +1) = Hg(f)?)])f(g)fg? VENR(E Co'rllggfrgrfr?rlgl((l)\l?:::leoszirpyu;nﬁd Sufficient Condition for Global
+HX(R)BRW Y (k) R(k), Optimum): For the fuzzy system in (1) and fuzzy controller
Y(k) = C(k)X(k) () in (2) with nonsharp-profile membership functions, the optimal

. . . . control law is
with X (ko) = Xo € R™, find the optimal synthetical control

law, R*(-), to minimize the quadratic cost functional R (k) = —W Y ()WY *(E)WH Y *(k)]*
- x B (k) H' (X" (k)P (k + 1) ©)
J(R()) = k; (X (R)L(R)X (F) and the corresponding global minimizer is
+ RI()WHY (k)W (Y (k) R(E)] w(k) = —B'(k)H" (X" (k))P(k +1) (10)
+ X' (k1) QX (ky). (8)

where P(k + 1) satisfies the following nonlinear two-point-

This linear-like synthetical matrix representation for the entir@oundary-value problem (TPBVP):
T-S type fuzzy system materializes the design of the global X*(k +1)
optimal fuzzy controller in the way of general linear quadratic [ Plk+1)
(LQ) approach, i.e., calculus-of-variation method.

It is important for us to mention here that the process of iwith P(k;) = QX*(k1) and, by expressing explicit time-de-
tegrating all distributed fuzzy subsystems into one equationpendence with lower index, as shown in the first equation at the

|=rmn | TE ] ay
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bottom of the page, wher&*(-) is the corresponding optimal We should emphasize that the multistage-decomposition ap-
state trajectory withX (ko) = Xy, and the minimum perfor- proach in Lemma 1 can transform the optimal control problem
mance index isning, , _,, J(R()) = P*(ko)X (ko). into an on-going stage-by-stage dynamic issue. Therefore,
Proof: See the Appendix. [0 the nonlinear TPBVP in Theorem 1 is decomposed iMo
Solving the nonlinear TPBVP in (11) directly is achievablsegmentalnonlinear TPBVP in Corollary 1, which can be
in conceptual aspect, but is at length in computational aspesttlved by thecollocation method[7]. This decomposition
Therefore, searching another circumvent approach to oveperation can speed up numerical solution, and keep the
coming this difficulty is pressing. A multistage decompositioglobal optimality at the same time. Moreover, though the
of optimization scheme, from the essence of the dynamitembership functions are dependent on the system state, the
programming formalism, is used for this purpose [21]. O state-penalty termX*(k)L(k)X (k) in the cost functional
Lemma 1 (Multistage Decompositionp foregoing in (3) can encourage smooth optimal trajectory[1]. For a
optimization scheme is a dynamic allocation proceshosen nonsharmembership function profile, itis, in concept,
or a successive multistage decision process. In othereasonable and workable to increase the sampling frequency
words, if we letky = ki, ki = kI¥,ky = ki"'.i = such that the membership function of the optimal sfétek)
2,...,N; Ak = k' — kb,i = 1,...,N, and define the remains almost invariant during each stage. In other words, we
two equations shown at the bottom of the page, with rean further adjust the division, i.e., enlar@é to the extent
gard to the state resulting from the previous decision, i.¢hat H(X (%)) and W(Y (k)) are almost invariant during the
X(k§) = Xo; X(Ky) = X*(kKi71), i =2,...,N, then whole single stageand useH; and W; to denote those at the

SX(),u() = DX () () e+ &N (X)), (12 ith stage. Then, the optimal control law becomes

(B = —Wt [W.wt Bt t
Hence, we can, by Lemma 1, transform our optimization R (k) = =W [WZWZ] BA(k)H; Pi(kjl)’
problem into an on-going stage-by-stage dynamic issue, and ke ko, bk —1] (14)
thereupon,.successn./ely focus on oqu one stage at a time. Tvvq?ere Pk + 1),k € [W,k — 1] satisfies the following
global optimal solution corresponding to each decompost !
guadratic optimal fuzzy control problem is as follows. inear TPBVP, shown in (15), at the bottom of the page,
. . 714 with H, = H(Xo),Wl = W(Y(k‘o)),X(k}é) = 70;H7‘, =
Corollary 1: The optimal control problem fak € [k{, &} — i1 /i1 i Nt
1], i.e., for theith stage, is to find a controlle®*( -) to minimize HX (7)), Wi = W (k- ), X(ko) = X*(k),
T ' Vi = 2,...,N; P(kY) = @X*(k%), Vi = 1,...,N. The

K1 following lemma indicates an efficient way to solve (15).
JUR()) = Z (Xt (k)L(E)X (k) Lemma 2: Let P(k) = K(k)X*(k). The TPBVP in (15)
- is equivalent to one of the followingegmentatecursive Ric-
+ RBWHY (k)W (Y (k) R(E)) cati-like equation:
+X7 (k) QX (k) (13)  K(k) = L(k) + A" H! K (k+ 1) [1,
. —1
wherei = 1,..., N; Q' equals taQ at theNth stage and is a + H;B(k)B'(k)H{ K(k+1)] " H;A(k)  (16)
zero matrix, otherwise; and the related fuzzy systemis described K (k) = L(k) + A*(k)H; K(k + 1)H; A(k)
X*(ki7")fori = 2,...,N. Then, the optimal fuzzy control . . 1
law for theith stage isk*(k) in (9), whereP(k) satisfies the + B'(k)H{ K (k + 1)H; B(k)]
nonlinear TPBVP in (11) wittP(ki) = Q' X (k%). x B'(k)H]K(k + 1)H; A(k) (17)

e — [HO@ A~ HOGQBUBLH! (X LALHY (X L —H(X) BUBLH!CX) [ALH (X
ko -

—[ALHY X)) La [ALHY X
k1—1
¢Muwbdm]ZW®WM®
0M1 ko

+ u (k)u(k)] + X' (k)QX (ky)
and _
‘ min, | | ML L)X (B) + ut (B)w(k)], i=1,...,N—1,
F X0 ul)) :{ s Ekk_l,:ol[ S JL(k)X (k) E Ju(k)] t |
[XHE)L(k)X (k) + uf()u(k)] + X*(k1)QX (K1), =N

min, ,
u[kévvkl—l] k=k{Y
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wherek € [kj, b} — 1,4 = 1,...,N, k§ = ko, by = (X*(k), R*(k)),k € [ko, k1 — 1], be the optimal solution with
ki, K(ki) = Q. The optimal trajectory in (15) becomes respect to/ (R(-)) in (8), and(X* (k), R* (k)), k € [k, ki —

L 1], be theith-stage optimal solution with respect.fé(R(+)) in

X*(k+1) = [l + HiB(k)B' () H{ K (k + 1)] (13). If N > N then
x H; A(k)X*(k) (18) 1) (X*(k),R*(k) = (X7(k),R"(k), for all
. , ke [ki,ki — 1), = 1,...,N; andk} = ko, kY =
the optimal control law turns into ko, Ky = el =9 N
’ - vl [ A .
R (k) = —W! [W,W}] -1 BYRHLK (k + 1) 2) if;)r theith stagek € [k}, K, — 1], the optimal control law
x [I, + H;B(k)B' (k) H! K (k +1)] "
x Hi A(k)X* (k) (19) R (k)= —W} [W,W}] ™ BUk)Hix' (k+ 1,k [L
N A (F A
and the corresponding global minimizer is + H;B(k)B (k) H;m (k +1, kl)]
x H; A(k)X™ (k) (23)
u*(k) = —B'(k)H!K(k +1)
x L, + H;B(k)B*(k)H! K (k + 1)] -1 and the corresponding global minimizer is

X HiAR)X" (R). (20) W' (k) = —B' (k) Hew' (k+1,K) [L,
Proof: See the Appendix. O + HB(k)B'(k)Hix' (k+1,k)] -1

We further defineV to be the number of stages at which « Hy A(K)X* (k) (24)
membership functions can be assumed to be invariant during the !
whole single stageThen, thebackward recursiveRiccati-like
equation in (16) or (17) becomes available due to the existence
of N. This avoids the high computational complexity of the col-
location method at the expenseagproximate optimalitydue
to the time-invariant assumption. We can ensure this assumptign
by checking the following condition at the starting time-step o

wherer’(k+1, k}) is the symmetric positive semidefinite
solution of thesegmentatecursive Riccati-like equation
in (16) or (17); theith-stage optimal trajectory is

(k+1) = [I, + HBR)B () Hix' (k+1,8)]

thei-th stage, saying time-stef (i.e., time-instant,.;) x HiA(k) X (k); (25)
HdH(X*(T)) < (21) 3) the minimum performance index is equal to
dr oy —0 SN X (k) (R, KX (KD).

) ) v ) N ] Proof: This theorem follows the above inference. [

and then keeping checking the following condition to find the s far, we have solved the optimal fuzzy control problem by
proper length (time steps) of this stage finding the optimal solution to the general time-varying case. In

w ke (14 the classical linear quadratic optimal control problem, a time-in-

|H(X*(k)) — H (X* (k)| < K variant system will give rise to time-invariant linear optimal

VE € [k, k1 — 1] (22)  control law. We are now eager to know if this phenomenon ex-
. ists in each segmental fuzzy system. Some useful lemmas are
wherery, andky, are the given tolerance to ensure the al3 . .
. . n2 S L emonstrated below in order to develop the design scheme of
most-invariant criteria. The first inequality in (21) ensures thgt . . : : .
oPtlmaI fuzzy control law regarding to the time-invariant fuzzy

the membership degrees corresponding to the optimal traject(S) tem

X*(.) attime-step:}, does not change in abrupt shape, and al$ Lemma 3: Consider a dynamical systen&(k + 1) =

gives a hint that an almost-invariant-membership-function sta . i i N a

from time-stepk is achievable. The second inequality in (ZZZ?X(M.’“.(I?)’t)'w.'thX(kO.) = X Letthe paif.X™(-), u"())

. . . L - e the infinite-horizon optimal solution with the performance

is to check the almost-invariant criteria for the entith stage, . dex Jlul())  — oo e (). ). ¢ d th :

to find out the length (time steps) of the stage, and then, chigex (u(-)) = E’F’{é Fol _( )>u( )’_ ), an _e pa_|r

also provide the information about the value/®f These two (<X () @"(-)) be the ﬂnlte-g_onlzon optimal solution  with

inequalities are used to check the time-invariant criteria in tfiespect to J(u()) = 35,1, fo(X(k),u(k),?), where

dynamic decomposition algorith@DA) in Section V. Now,we  f(-,-,-), fo(-,-,-) € PC(R™",R™ R), a mapping from

summarize the previous derivation in the following asserffibn.R™ x 1™ x R to piecewise-continuous real-valued functions. If
Theorem 2 (Multistage Optimization)For the fuzzy system X (ki) is a free point, thef X *(k), u*(k)) = (X*(k),u*(k))

and fuzzy controller represented, respectively, by (1) and (2), fet all k € [k, ki — 1].

[X*(k—i—l)} B [HiAk — H;B,BLH! [ALH!| "' Ly —H,B,BLH! [ALHJ]_I} y [X*(k)} (15)

P(k+1) |~ ~[ALHA ™ L —[ALHT P(k)
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Proof: Assume the infinite-horizon optimal solution fork € [ko, k1 — 1] andX € o( H(X (k))A), wheres(H(X (k))A)
somek € [k}, ki — 1] is not the finite-horizon optimal solution, denotes the spectrum &f (X (k))A.

then Lemma 5 (Observability):( 4;, C) is completely observable
i (c.o) foralli =1,...,rifand only if
(X*(k), u*(k), k -
kz; Jol (k). k) rank Aln HéX(k))A =n, VAeo(H(X(E))A).
ki—1
c . . Now, the aforementioned inference can be summarized into the
< Z Fo( X7 (), u” (), ). following lemma.
ke=ky Lemma 6: For each segmental dynamical fuzzy system
If we define a decision sequenéék) as X(k+1) = H AX (k) + H; BW,R(k),
N (X*(k),u"(k)), ke [kyk —1], Y (k) = CX(k) (27)
X(k),u(k <
05 = { e, £ ),

) with L = C*C andX (ki) known. If (4;, B;) is c.c. and A;, C)
whereX (k) denotes the corresponding state trajectory, thenugec.o.,Vi = 1,...,r, then

have 1) there exists an uniquex n symmetric positive semidef-
oo X inite solution, 7%, of the discrete-time algebraic Ric-
> fo(X(k), di(k), k) cati-like equation
k=kj _
v K =L+ A'H!K [I, + H;BB'H/K] " H;A (28)
=" Fo(X (k). (k). k) K=L+AHKHA- A'H!KH;B I,
P + B'H/KH;B] ™ B'H!K H;A; (29)
+ Z Fo(X*(Ek),u* (k) k) 2) the asymptotically optimal control law is
k=k! - _ .
o Ri(k) = -W} [WiW}] " B'H}xl, [,
<3 (X (k) ut (k) E). + H;BB'H!x' | " HAXU(K), ke [k o) (30)
k:ké

which minimizes
This conflicts with the notion tha{X*(k),v*(k)) is the

infinite-horizon optimal solution. Thus(X*(k),u*(k)) = J(R()) = i [X*(k)LX (k) + R'(k)W!W; R(k)] ;
(X*(k),u*(k)) holds for allk € [k}, k% — 1] positively. O > = ot ’
From the proof in Theorem 1, we know, for alle [k§, k% — o 31)

1], the optimal performance index has the following relation: 3y and the optimal closed-loop fuzzy system

ki1 ;11
S X' (k+1)=[I,+ H;BB'H!r" H,AX_(k),
min 7 [XUOLOX() + vt Ou()] R 7o) Coo(F)
Uiy ke [k o0) (32)
X' (K QX (k) = X7 (k)a (k,K}) X7 (k). (26) is asymptotically and exponentially stable;

4) the minimum performance index is equal to

S X G X ().

Proof: We know, from Lemmas 4 and 5(A,, B;

It is obvious thatr’(k, ki) is monotonic increasing witth’ .
On the other hand, completely controllable system guarantees
the infinite-horizon performance index to be finite. Hence,

7(k, k%) is bounded above for al. In other words, there IJEI ;:(Ck ZL H: 1’-3,7‘,_# an\(j)\ only if lrt?n)l;[)}an_
exists (k) such thatlimy, ., 7'(k,k}) = 7'(k), where n(d E’;xc)c)ordn I( (k )12 )\]I = ;A H% U(_ ( (V))\) :
7' (k) satisfies the recursive Riccati-like equation in (16) Or(H A0 ! 19 Yy, ran [(A 5) S vine ] 1— n; g an%
(17). Moreover, for the case of constaht A and B, 7 (k) - Vs Ly -

. : A, —H(X(K)A
becomes independent &f and accordingly, we can regardonly if rank| c | = n,VA € o(H(X(k))A),
it as the solution of the steady state version of (16) or (17), A, A
e, limy o7 mi(k, ki) = x_. Furthermore, we adopt two which ensuresank| C | = n. YA € o(H;A). There-

proposed lemmas [21] below to link the controllability andore, (4;, B;) c.c. and(4;,C) c.0.,¥i = 1,...,r, guarantee
observability of the fuzzy subsystem to those of the entire fuzzyi; A, H; B) c.c. and(H; A, C) c.o., respectively. Then, by the
system, and then a simple criteria for a more implementaldiassical discrete-time linear quadratic optimal control theorem

and concise optimal solution is available. [2], we have the optimal solution for the segmental fuzzy
Lemma 4 (Controllability): (A;,B;) is completely systemin (27). O
controllable (c.c.) for alli = 1,...,» if and only if Then, a more implementable and important theorem for the

rank[A, — H(X(k)A H(X(k))B] = n, for all time-invariant fuzzy system can be extracted on the ground of
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the aforementioned Lemmas and Theorem 2, which concefagthermore, by Lemma 3, the optimal solution with respect to
the time-varying fuzzy subsystem. (35) can be regarded as the one with respect to

Theorem 3 (Time-Ilnvariant Multistage  Optimiza-
tion): Consider the time-invariant fuzzy system and fuzzy
controller described, respectively, by (1) and (2) with

oo

Jnin > X (k)L(k) X (k)

L = C'C. Let (X*(k).R*(k)),k € [ko,k1 — 1], de- K
note the optimal solution with respect té(R(-) in (8), + R ()WY (k)W (Y (k) R(K)],
(X (k),R" (k)),k € [ki,ki — 1], denote theith-stage i=1,...,N—1. (36)

optimal solution with respect to/*(R(-)) in (13), and

(XL (k), R (k). k € [k§, ki — 1], be theith-stage asymp- Notice that this equivalence only exists in periéf, & — 1].
totically optimal solution with respect td:,(R(-)) in (31). If Therefore, we, hereinafter, can pay attention only to (36) for the
N > N,(A;,By)isc.c.and4;,C)isc.o, foralli = 1,...,r, timeintervalk}, ki —1],i = 1,..., N — 1, and to (34) for the

then time interval[ky’, k1].
1) See (33), shown at the bottom of the page, whgre= (2) For N > N,H(X(k)) and W(Y (k)) in the dynamical
k{‘l,i =2,...,N;k§ = ko; fuzzy system described by (7) can be replaced, respectively, by
2) fortheithstagei = 1,..., N—1,the optimal control law constant matricesf, and W, for the sth stage. Therefore, the

is R'_(-) in (30), and the optimal trajectory i&’_(-) in  whole fuzzy system in (7) can be rewritten as a linear system
(32), wherer?_ is the unique symmetric positive semidefrepresented by (27). Théth-stage optimal solution indeed fol-
inite solution of the discrete-time algebraic Riccati-likdows the optimal solution in Theorem 2. As for the other stages,
equation in (28) or (29); we know, from the proof of Lemmas 64;, B;) c.c.and 4;, C)
3) as forthe last stage, téth stage, the optimal control law c.0.,¥¢ = 1,...,r, guarantee, respectivelyd; A, H;B) c.c.
is R (-) in (23), and the optimal trajectory &° (-) in and(H;A,C) c.0.,Vi = 1,...,N, wherer and N are, re-
(25), wherer'(k, k!) is the symmetric positive semidef-spectively, the number of rules of the fuzzy system in (1), and
inite solution of the segmental recursive Riccati equatidhe number of stages of the process described by the dynamical
in (16) or (17); fuzzy systemin (27). Hence, we can obtain the optimal solution
4) the minimum performance index is for the first NV — 1 stages via Lemma 6. O

N1 So, for the firstV — 1 stages, a time-invariant fuzzy system

. N N LR can still give rise to the time-invariant linear optimal fuzzy con-
[kg.ky1—1] izl A
N*f N N N N* N
+X (ko ) Q (ko vkl) X (’fo ) . B. Infinite-Horizon Problem

Proof: (1) Based on Lemma 1, the whole optimization The purpose of this section is to design the optimal fuzzy
is decomposed into aiV-stage decision process with, at eackontroller concerning the infinite-horizon problem, which is the
stage, the initial state resulting from the decision of its previog&se that the operating time goes to infinity or is much larger
Stage_ NOW, our Opt|ma| fuzzy control problem, Problem 3, Céhan the time-constant of the dynamiC SyStem. Itis critical to no-
be attacked in the following two issues, with both regarding féF€ the problem: Does the minimal performance index finitely
the same dynamical fuzzy system described by (7) except tR¥tSts? We introduce the concept proposed by Macki and Strauss

the initial stage is\ (k) and the time interval ik, ki — 1] for  (1982):If the linearized system of a nonlinear system with re-
the ith stage spectto (w.r.t) some stafé, € R" is c.c., thenX, is an interior

point of the controllable set (the set of all initial points which

. Rl . can be steered to the targeow, the linearized system of the
(@) [ M | Z [XP(R)L(K)X (k) fuzzy system in (7) with respect to poift, is
BV k-1 kzké\’
+ R EYWHY ()W (Y (k) R(k)] X(k+1)=H(X,)AR)X (k) + H(X,)B(k)u(k). (37)
+ X' (k1) QX (ky), (34) _ -
W1 Therefore, to ensure that our problem is solvable, it is neces-

sary that the paitH (X,)A(-), H(X,)B(:)) is controllable at

all time and for allX, € &". We can now find out the design

scheme of the infinite-horizon optimal fuzzy controller.

+ R EYWHY (k)W (Y (k) R(k)], Theorem 4 (Multistage Optimization)Eor the fuzzy system
i=1 N —1. (35) and fuzzy controller described by (1) and (2), respectively, let

(b) min > [X'(k)L(K)X (k)

[kl k1],
0" k=k}

PR

(X5 (R RE(D) - V€ [lph —1], i=1, N =1,

oo

(X*(k), R*(k)) = { (X]\r* (k’),RN* (k)) . Vke kY, k —1], ¢
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(Xz (k),R: (k)),k € [ko,o0), be the optimal solution with ~ 2) the minimum performance index is

respect to
p N

N nin Jo(RO) = 30 [XE (k) wi X5 ()]
_ ‘i ' [kg,oc) =1
Joo(R() = > [X"(K)L(k)X (k)
k=ko , , Proof: This Theorem obviously holds according to The-
+ R (k)WHY (k)W (Y (k) R(k)] (38) orem 3. O

and(X* (k), R’ (k)), k € [k}, k| — 1], be theith-stage optimal
solution with respect to (39), as shown at he bottom of the page. _ _ _
If the linearized fuzzy system in (37) is controllable, and there In this section, we shall show that the designed control law

IV. STABILITY AND GAIN MARGIN

exists NV such that ifN > N, then can not only asymptotically and exponentially stabilize the
1) (X2 (k), RE(K)) = (X" (B), R (K)), k € [k, ki — fuzzy system, but also form a closed-loop fuzzy ;ystem with
1,i=1,... N;whereki = ki ' i =2 . Nkb= 2aWV desired degree of stability. We also concern with the range
ko, kY = o0; of the feedback gaingain margin to which we can increase

2) for theith stagek € [k, ki — 1],4 = 1,..., N, the op- under the stability consideration.
timal control law, the corresponding global minimizer, the o
optimal trajectory and the minimum performance indeﬁ\' Global Stability
satisfy the same corresponding equations in Theorem 2As remarked earlier, the whole optimal trajectory is decom-
except thak{’ = oo andQ? =0foralli=1,..., N. posed intaV segments, and more, if each fuzzy subsystemin (1)
Proof: This theorem obviously holds with TheoreniS Well-behaved (c.c. and c.0.) asd > N, then each segment
2. For the Nth stage, the controllable criterion can encan be described by its corresponding asymptotically optimal
sure the existence of the limit value of¥(k,k;); ie., trajectory during the same period of this segment; i.e.,
aN(k) = limg, —oo 7 (k, k1) exists for allk € [k{', k], and - - o
7N (k) is still the symmetric positive semidefinite solution of X2 (k)= X' (k) = X! (k),  Vke [k, k] —1] (41)
the segmental recursive Riccati-like equation in (16) or (I).
For the time-invariant case, the pdiH (X,)A, H(X,)B) wherei = 1,...,N andk} = ko, k¥ = ki, ki = ki 1i =
c.c. is equivalent taank[X,, — H(X,)A, H(X,)B] = 2,...,N.Thatis, the behavior of the closed-loop fuzzy system
n,YA € o(H(X,)A), and this condition, by Lemma 4, can becan be captured by the corresponding asymptotic behavior of
satisfied if(4;, B;) is c.c., for all: = 1,...,. So, we need theseN segments.
the following assumption as the prerequisite for the optimal Theorem 6: For the time-invariant fuzzy system and fuzzy
controller design in the time-invariant infinite-horizon case. controller described, respectively, in (1) and (2) with= C*C.
Assumption 2:(A;, B;)isc.c., foralli = 1,..., 7. If there existsN such that ifN > N,(A;, B;) is c.c., and
Theorem 5 (Time-Invariant Multistage Optimiza{A4;,C) is c.o. fori = 1,...,r, then
tion): Consider the time-invariant fuzzy system and fuzzy 1y the optimal closed-loop fuzzy system
controller described, respectively, by (1) and (2) witk= C*C.
If there existsN such that if ¥ > N,(A;, B;) is c.c. and
(4;,C)isc.o, foralli =1,...,r, then
1) For each stage

X2 (k+1)=[I, + H;BB'H!7' |~ x HiAXZ (k),
ke [kiki—1] (42)

. . wherei = 1,..., N,k = ko, kY = oo, ki = ki1 i =
(X (), BL (k) = (Xcéo(k)7 Rc%o(k)) , 2,..., N, is exponentially stable;
Vie [ki ki —1], k§=ko, kY =cc (40) 2) the total energy of system output is finite, i.e.,
Dk Y (B < o0

where R’ (k) is the ith-stage asymptotically optimal Proof: (1) Recall thatX? (-) is the ith-stage asymp-
control law in (30), andX?_(k) is the corresponding totically optimal trajectory of the quadratic optimal control
asymptotically optimal trajectory in (32), where_ is problem, i.e., minimizing the performance indgk (R(-)) in
the unigue symmetric positive semidefinite solution of31) with respect to the dynamical fuzzy system in (27). More-
the discrete-time algebraic Riccati-like equation in (28ver,(A;, B;) c.c. and(4;,C) c.0.,Vi = 1,...,r, guarantees,
or (29); from part (2) in the proof of Theorem 8H,; A, H;B) c.c. and

2wy (XHR)L(R)X (F) + RUR)WHY ()W (Y (k) R(E)), Vk € [k, 00),  i=N,

s = KRR R) + R )W F )R, ¥l < [k K — 1), otherwise

(39)
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(H;A,C)c.0.,¥i = 1,...,N. Hence, we know, from Lemma wherek¥ = oc. We know that the first two terms are finite and
6, the:th-stage asymptotically optimal trajectory the others are infinitesimal, and thereupon, the total energy of
system output is absolutely finite. O

X (k+1)= [I. + HiBBtwaéo] -t The stability of the closed-loop fuzzy system in time-varying

x HiAXD(K), ke I:kz ) case can still be ensured if the corresponding asymptotically
e o optimal trajectory of each segment is exponentially stable.

is asymptotically and exponentially stable, i.e([l, +

. tgrt, i 1—1 7.
;BB HﬂO?] .HZA) c D(0,1), where D(0,1) Qenotes B. Stabilization to any Desired Degree
the open unit disc in the complex plane. Hence, via (41), the
optimal trajectory described by (42) is asymptotically and gefore investigating further, we demonstrate the importance

exponentially stable since all eigenvalues of the system matfjXihe resultant closed-loop fuzzy system with a degree of sta-
characterizing the dynamical behavior of each segment Bﬁity of at least some prescribed constante > 1, which

inside the unit circle. means that the state approaches zero at least by the raté of
(2) From (7) or the poles of the resultant closed-loop fuzzy system are all
constrained to lie inside a circle with the radius Iofo. Let

Z IY*(R)||? = Z |CX* (k)| X(k) = X(k)o* u(k) = a(k)a®, the performance index
K=Fo P Joo(R(+)) in (38) with u(t) = W(Y'(¢))R(t) can be rewritten
oo asJoo(R() = Yop o[ X (#) LX (t) + 4 (k)a(k)]. To ensure

< > lCIPIxs k)1 that the optimal value of .. (R()) is finite, the item should ap-
k=hkq proach zero ag approaches infinity, and hencé’,(-) should

N ki—1 ) decay faster than—* ask approaches infinity. This is equiva-

= Z Z IlC|1? HXéo(/%)H . (43) lenttorequiring the modified closed-loop fuzzy system to have
i=1 k=t a degree of stability of at least. Of course, the larger the

desired degree of stability is, the more stable the closed-loop
From (1) in the proof, théth-stage asymptotically optimal tra-fuzzy system is. However, a high degree of stability may only be
jectory X7 (-) is exponentially stable. The terraxponentially achieved at the expense of excessive control energy consump-
stable meansuniformly asymptotically stablen the stability tion.
concept [3], which means that for all(k}) € R™ andkj € Lemma 7:For a systemizy = [A,B,C|: X(k + 1) =

N, X! (k) satisfies the following two properties. AX (k) + Bu(k),Y(k) = CX_(k), whereA,B and_C are
a) The range of mapping fror to X7 (k) is bounded on 7 X 7,7 X m andn’ x n matrices,(A, B) c.c. is equivalent
k> ki uniformly, i.e., to (wA, aB) c.c., and A, C) c.0. is equivalent tda A, C) c.0.,

for any complex valuex.
Proof: (1) (A,B) is c.c. if and only Iif

rank[B AB...A""'B] = n.let B 2 a~*B. Then we
have rank[B AB...A""'!B] = rank[B AB.. AR,
which meang A, B) is c.c. if and only if( A, B) is c.c. Similar
operation, except’ = O, can be adopted to show that

Jg < oo st

Xg‘;(k)H <q VE>K.

b) The range of mapping fromto X?_(k) tends to zero as
k — oo uniformly, i.e.,

Ve >0, IJanintegetl(e) > 0 (A,C) is c.o. if and only if(A, O) is c.0. Now, consider two
o systemsX(k + 1) = AX(k) + Bu(k),Y (k) = CX(k) and
s.t Aoo(’f)H Se Vk2T(). X(k+1) = aAX (k) + aBu(k),Y (k) = CX (k). Obviously,

they are related by a nonsingular linear transformatidn
Assumel’(¢) is located in theV,-th stage, i.e.k)” < T'(e) < Therefore,(A, B) is c.c. if and only if(aA, aB) is c.c. and

kNe. Then, (43) becomes (4,C) is c.o. if and only if(aA, C) is c.0., for any complex
value«. From (1) and (2), we conclude that Lemma 7 holds.

oo No—1 K ) Theorem 7: Consider the time-invariant fuzzy system and
Z IV (k)||? < Z Z e|? HX;O(I{;)H fuzzy controller described, respectively, by (1) and (2) itk
k=ko =1 k=k] C*'C. There existsV such that ifN > N, (A;, B;) is c.c., and

T(e)—1 (4;,C)isc.o.foralli = 1,...,r, then the fuzzy system can be
on? llxi 2 stabilized to any desired degree of stability; i.e., all the poles of
+ > O || XLk - :
v the resultant closed-loop fuzzy system are located inside a circle
k=kNe+1 . .
.- with the radius ofl /«, wherea > 1. -
k1 T 2 Proof: (1) As we know, forN > N and well-behaved
+ Z el HXoo(k)H fuzzy subsystems, the behavior8f,(-) is fully described by
k=T'(e) X' ()i = 1,...,N. Hence, we now pay attention to such

N ky 9 quadratic optimal control problem: minimizing the perfor-
+ Z Z lC|I? HX;;)(I{)H (44) mance index in (31) with respect to the linear time-invariant
i=No+1 ki +1 fuzzy system in (27). Letd:, Bi and» denote, respectively,
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H; A, H;B andW; R. Then, we have the following optimizationsystem becomes unstaf& Now, letv(k) 2 u(k)/B, and then

problem: we have
min - Z [(XT(E)LX (k) 4w (k)u(k)] w.r.t. J(u()) = i (X'(R)LX (k) + u' (k)u(k))
k=k{ k=k}
X(k+1) = AiX(k) + Biu(k o
{Y&ﬁimw)() " (45) = S (XUR)LX (k) + B2t (kyo(k)), B> 1.
b=k}
Let X (k) = o*X(k),Y(k) = oY (k) andiu(k) = oFu(k). (51)
Equation (45) can be rewritten as
- We further consider
min - a2 X (k)LX (k) + @t (k)a(k)] w.rt. N o0
;Z% T = 3 (X (R LX () + ! (k)o(k)),
X(k+1) = adiX (k) + aBia(k), k=kj
{Y((k) - é‘f((k). " * (46) g>0. (52)

(2) From Lemma 7, we know th&tii, B) c.c. and Ai, C) c.0., Notice that/_(u(-)) = #2Ji_(v(-)) andg = 1/32. Comparing
Vi =1,...,r ifand only if (c« Az, @« B%) c.c. and Az, C) c.0., (52) to (51), we find that the larger thigis, the smaller the is,
v¥i = 1,...,N. Hence, following Lemma 6, the global mini-which means that whesm goes to zero, the gain margin of the
mizer for the modified fuzzy system in the aboveis (k) = ith-stage closed-loop fuzzy system becomes infinite.
—Bit#l (a)[a~2, + BiBitil ()] AiX (k)i = The following theorem shows that the resultant closed-loop
1,...,N, where#_(«) is the positive—semidefinite solutionfuzzy system possesses an infinite gain margin. We shall first
of the modified discrete-time algebraic Riccati-like equation show that the closed-loop fuzzy system ¥ (k), k € [k, ki]
possesses an infinite gain margin, and then, via (41), concludes
K(a) = L+ Ai'K(a)[a™?I, + BiBi' K(«)] 7" A7 (47) that the gain margin of the resultant closed-loop fuzzy system
K(a) = L+ o Ai' K (a) Ai — o® Ai' K () Bi[a™ %1, is infinite.
+ Bt K () Bi] " Bit K () Ai (48) Lemma 8: For the fuzzy system in (27), fH;A,H;B) is
c.c.,(H;A,C)isc.0.,andr’_(q) is the positive semidefinite so-
and the modified fuzzy system is asymptotically stable, i.dution of one of the following modified discrete-time algebraic
X (k) - 0,Vi=1,...,N, ask — oo. Then,X‘_(k),Vi = Riccati-like equation

NI

1,..., N, decays faster than=* ask — oo sinceX?_(k) = o

o X7 (k). Via (41), X7 (-) will approach zero at least by the K(q) = ¢L + A'H{K(q) [I, + H;BB'H; K (q)] ~ HiA,
rate ofa%, i.e., the poles of the resultant closed-loop fuzzy (53)
system are all located inside the circle of radiys.. O K(q) = qL + A'H!K(Q)H, A — A'H!K(q)H,B [I

C. Gain Margin + BtHfK(q)HiB]_1 B'H!K(q)H; A, (54)

In the remainder of Section IV, we examine another CharaCt%\;ﬁereK(q) is the dependent variable of the algebraic equation,

istic,_gain_margin of the resulting closed-loop fuzzy sy_stenj. Fo{henlim 0 (q) exists and is equal t6:_(0), which is the
the t'mf —mvgrlan_t We"'behf"“’e‘;'f“zzy subsysterr:/SVg’> N, symmet(;ic poosjtive—semidefinite solutionocéf discrete-time Ric-
thenX? (k) is coincident withX’_(k), for all k € [k}, k] — 1], cati-like equation

wherei = 1,..., N. Therefore, we can only discuss the asymp-
totic behavior of the dynamical fuzzy system of each stage, and
then turns it into the behavior of the entire dynamical fuzzy

system via (41). From Lemma 6, the desigutdstageasymp- Proof: DenoteH; A and H;B by Ai and Bi to simplify
totically global minimizer is

K(0) = A'H!K(0) [I, + H;BB'H/K(0)] " H;A. (55)

notation.
uﬁ;(k) — _B'H'r [In n HiBBtwaio] -1 (1) We now consider the optimal solution for minimizing
x HiAXL (k), k€ [k§,00) . (49) - N .
[55,00) Fu()) = 3 (@X RILXE) + ' (D),
In order to measure the gain margin, we consider the following k=k{
corresponding controller: Yq > 0.

u(k) = — [[3 (Btwai [I. + H;BB'H}x. ] - HZA)} Itis realizable to include into the state penalty matrik. From

X(k), B>1, kel[k, o). (50) Lemma 6, for any; > 0, the global minimizer is

~7 ctad st At -1
The gain margin othe ith-stage closed-loop fuzzy system oo (k) = —Bi Woo(Q)A [In + BiBi Woo(Q)] ‘
defined as the amount by whighcan be increased until the x X (k), B>1, ke [kjo0)
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where#?_(q) is the symmetric positive semidefinite solution);| < 1,V¥\; € o([I, + BiBit#i_(q)]~!A4), and the asymp-
of the modified discrete-time algebraic Riccati-like equation itotically behavior of the enlarged closed-loop fuzzy system for
(53) or (54), and the corresponding closed-loop system each segment is

Xi(k+1) = [I, + BiBit7i (q)] " AiX7(k), XL(k+1) = - /3ﬁi3itffigEQ) (2 |
ke [ki,~) (56) + BiBit#l (q)] }AiXé;(/v), k€ [ko,00). (62)

is exponentially stable; i.e., the radius of spectrum of syste@( (41), the modified closed-loop fuzzy system is
matrix, p{[I, + BiBit7_(q)]~*Ai}, is less than 1. . _ i pptai it i -1
) NOV\E, we will make éu)r]e if the limit value of’_(q) exists Hoolk+1) = (I" BBIBI'Re(g) [In BB *eol)] )
and is equal tat?_(0). For simplifying notation, we usé(, x AiXZ(k), k€ [ky o) (63)
and K to denoter’ (q) and#?, (q + <), wheren’ (q+ ) is
the symmetric positive—semidefinite solution of the followin%’
equation: ’

herei = 1,...,N, andk} = ko, k) = ook} = ki 1i =
..., N. We will make sure{(,, — BBiBi*#i_(1/8*)[I, +
BiBit#t (1/8%)]71)Ai} < 1forall g > 1.

(2) For any eigenpaif\;,v1 ), of [I,, + BiBi'#t_(q)] * Ai,
we know [In + BLBLthéo(q)]ilALvl = Av. By (53),
_ A we have (7..(q) — qL)nn = MAi'7l (g)vi. Hence,
Define 6K, = K — K,, then |#: (q) — gL — MAie'7° (¢g)] = 0. Therefore, for all

A1 € o([l, + BiBit#l_(q)]7tAi), A\, is also the eigenvalue
6Kq:cL+Ait{Kq+ (L, + BiBi' K} ™ of (i(q) — qL)(Ai7l(¢))~!, which is equivalent to
. A7l (@, + BiBital ()]t Ai(Ai*7 ()" To ensure
— [I. + K,BiBi'] Kq}Az‘. (58) this, Ai'#4_(q) commutes with[l,, + BiBi'#! (q)]~'Ai
obviously, i.e.,

K = (q+ o)L+ Ai* [I, + K}BiBi'] ' KFAi. (57)

Let A and A, denote, respectively],, + BiBi*K | ! Ai and y i -1
(I, + BiBi* K]~ Ai, then ! AiFe(a) [In + BiBiTL ()] AL
= [In + BiBi*al (q)] ~ Ai- A7l (q),
0K =L+ A6K Ay (59) ALAPE(g) - [I, + BiBita ()] ' - Ai
. c et A -1 coatad
LetZ, = (9K, /9q) = lim._o((K; — K,)/¢), then we obtain = Ai- [I, + BiBi't(q)] - AiAi'7l(q)

a discrete-time Lyapunov-like equation and then,A: commutes withI,, + BiBit7’_(¢)]~* or, more

precisely, withBi Bi* 7% _(q).
(3) The above analysis shows that+(1—3) BiBi' 7., (q)]
commutes withZ,, + BiBi'#’_(q)]~!Ai. Recall that ifA and

From (1), we knowp(A), p(A+) < 1, and accordingly, the p 5o commutative operators, thepdB) < p(A)p(B). So
unique solution is -

Zy =L+ A'Z,A,. (60)

- o { (In — BBiBi'%’_(q) [T, + BiBi'#_(q)] ’1) Ai}
Z,= > (AFyL(4%) > 0. (61) _ p{[In +(1- B)BiBi‘i(q)]
x [I + BiBi'#i (g)] " Ai}

In other wordsz?Z,x = (8/9q9)x' K, 0 for all R, )
v Zan = (0/00)x Kqr > v € < p {1+ (- HBiBF ()}

Hence, the function’ K,z is monotonic decreasing @s— 0,

and bounded below by 0; i.dim,_.o z' K,z constantly exists p { [I, + BiBi'#l (q)] -t Ai}
forall x € ™. We can pick speciat’s to letlim, .o K, = Ky, e
i.e.,liquO fréo(q) = ’ZATZ)C(O) I:l < p {I" - (/3 - 1)B[’BL WOO((.Z)} < 17

Theorem 8: Consider the time-invariant fuzzy system and Vg=1/3*>0, (64)
fuzzy controller described, respectively, by (1) and (2) with, i )
L =C'C.if N > N,(4;,B;)isc.c.,(4;,0)is c.o., for all sincel > 1= (B = DNBIBi' (1)) > 1 = lims o (8~
i1 andlimg_)oo(B—i)p(HiBBtH?fri (1/82)) < 2 1))\(Bszt7r;?(1//32_)) -1 Ther_efore, since the_ spectrum of
then the global minimizer in (49) generates a closed-loop fuzgyStem matrix, which char-gctenze.s the dynamlcgl behavior of
system with an infinite gain margin: i.e., the modifiec ch segment of the modified optimal trajectory, is always lo-
closed-loop fuzzy systen{7, — /3H<B,BtH;7Ar7" @l + cated in the unit disc of complex space, the resultant closed-loop
H,BB'H!#_ ()" VH,A, k g [k ki v 1,4 2T ]’\} i fuzzy system possesses infinite gain margin. O

T 2 oo 14 0r V1 [t I ’
always stable for ang > 1, whereq = 1/3% and#’_(q) is the
positive—semidefinite solution of (53) or (54).

Proof. (1) DenoteH; A and H;B by A: and B¢ to sim- In this section, we propose an algorithm to implement the the-

plify notation. From (1) of the proof in Lemma 8, we knoworems in Section 1V, and consider an optimal backing up control

V. PRACTICAL APPLICATION
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of a computer simulated trunk-trailer to illustrate the proposed We then propose the followindynamic decomposition algo-

optimal fuzzy control scheme. rithm to check the two inequalities in (21) and (22), and to find
_ . _ the proper number of time steps in each stageand also the
A. Dynamic Decomposition Algorithm value of N to ensure that the membership functions are almost

We shall propose a procedure to check the two inequalitig®ariant during a whole stage.
in (21) and (22), which can ensure the almost-invariant-mem-
bership-function criteria during a whole single stage. Nowgorithm DDA: Dynamic Decomposition Algorithm
denoting the time-dependence as a lower index (Xe.,for  Input: the initial chosen membership functions; initial statéko ); sampling periodr’s;
X*(7)) and substitutings{, by & (i.e., time-instant,,; by t,) maximum number of design triais..
for notation simplification, we can rewrite (21) as follows: Output: optimal controller.” (-); optimal trajectoryX * (-); value of N;; value of N' (N

" being
H M H Avid *hl( ) initialized asN = 0).
T=ty Step Q (set threshold parameters) Set the default valuds/Qfk 71 andek grs.
dxz dX: - (initi
) T L..... vt . h,,(X:) ) T I’n,] (65) Step 1 (|n|t|aLcheck)
dar z dr et IF (I(H (X" (7))/dm)lr=t,, < rmy), THEN {gotoStep 2}
. ELSE {choose a more smooth membership function and go baBkefo 1, or break after
where VX: h; (X:) = n, times of failing trials}
[(dhi(X2)/dzy), ... (@hi(XD) /)i = 1,....r, and g
(dX7/dT)|r=t, = ((X*(k+) - X*(_k))_/’{T)i Where_ kr Step 2 (k' denoting the time step in thigh stage, i.e.k’ C [k, ki — 1])
denotes a very short time 5k|p' SUbStltUtlﬁg = KkX; Into (a) Find out the solutiorx, ; of (68) with the membership functio (X', ).
the TPBVP in Theorem 1, we have (6) Calculateu?, and X, , | by o
Ky=L;+ AgHt(Xl*)Kl_Fl [In
— wii =Bl H (X! ) 7u |In + H (XL
+ H(X])BBIH(X{) K] H(X)A v ( 0) ¥ [ - ( "0)
Ki, =Q (66) x sl (X ) mi]
wherel € [ko, k1 — 1]. Though the entire backward recursive x H (XZ;J) A Xy 1)
Riccati equation in the above is unavailable in practice, the re- T Bostnt (x0 ) w —1
lationship between two time-steps is always available. In other BT [ + ( ) ( ‘o) ﬁ’“}
words, at time-stef, we have < H (X)A Xt 72)
K} RN R
Ky = L + ALHY (X)) Ky (I, )
©IF(IH X ) = HXOI < ra, ) THEN {Go to (a}

+ H(X})ByBLH(X]) K] ' H(X)Aw.  (67) eno

And, according to Lemma 3, the finite-horizon optimal solution @ ' *" = #1 = L) THEN {N: = k1 = ko Stop)

for the free-end problem is the same as the optimal solution of EN

the infinite-horizon issue. Therefore, the SO|Uti®m, for (67) Step 3 (find the starting point of the next stage, i.e., the starting tlmelisgéLp1 and the
is also the solutiongy, of the following asymptotic Riccati-like
equation:

corresponding time instattf ; 1.1)
o
IF (I[(dH X" (7))/d7)llr=

kP41 T
N, = kTt — ki —1
k7+1’ 0

Kp=1Lp+ AZHf(X;)Kk [[n N = N + 1; jump toStep 2}
_ .- (T et . K Tl = Kt =
+ H(X}) By BLH(X{) Ky "  H(X) Ay, (68) 058 FUMHETIN/ Tl < ) THEN AR T0 = Rt 1

tas Ny = kTN — Kl — 1

< mmy) THEN (BETY = B+ 158,540
o

Also, we have N = N +1;jump toStep 2
ELSE{decreasd’; to get finer division (if it is adjustable) or choose another membership
k+ — [I + H(X*)BkBkH(XZ )ﬁk] -1 H(X;:)AkX;: function and jump tStep 1, or break aftern, times of failing trials}
(69) END.
Therefore, we obtain (70), shown at the bottom of the page.
Hence, via (65) and (70), we can check the inequality in (21) For the time-invariant finite-horizon (except théh stage) or
for any time-step (time-instant), and teristencef N is guar- infinite-horizon problem, the estimated optimal solution$,
anteed if the inequality holds at the starting time step of eveiry(71) andX;; in (72), are also the optimal solutiong_(k) in
stage. (49) andX?_(k) in (32), where the estimatet),: equals tor?_

(U + HOX) BiBLH(X) R ™ HOXE) Ak — 1) X7
_ -~ . (70)

dXx:
dr

T=t},
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Fig. 1. Profile of the chosen membership functien(k) in (73).

in (28) or (29). As for the other case, we can obtain the optiméhen, they used the following fuzzy model to represent the
solutionsX® (k) in (25) andu® (k) via (20) with the aid of the truck-trailer system:
estimatedV; and~’(k, k) in (16) or (17).
RY:F 2(k) = 2o(k) +v -t/ /{2L'} - 21 (k) is about0,
thenX(k + 1) = A1 X (k) + Byu(k)
R 2(k) = xo(k) +v -t/ /{2L"}
-z1(k) is aboutr or — ,
thenX (k + 1) = Ax X (k) + Bau(k)

B. Numerical Simulations

In this section, we consider an optimal backing up control
of a computer simulated truck-trailer to illustrate the proposed
optimal fuzzy control scheme and its theoretic aspect. Tanaka
and Sano [6] described a computer simulated truck-trailer with
the mathematical model

and the system output i¥(k) = CX(k) with C =
00 1,0 = 28L = 55v = —10,# = 20 and

alf+ 1) == v O e E) + -/ ulk) X(k) = [ra (K)ms(R)s(R)]', where

2ok +1) =az2(k) +v-t'/L -z (k)
x3(k +1) = x3(k) +v -t - sin(za(k)

S T 13636 0 0
o202 (k) A = |-0363 1.0 0
| 0.0120 -20 1.0
where [ 1.3636 0 0
{ length of truck; Ay = | —0.3636 1.0 0
L' length of trailer; L 0 —0.0064 1.0
t sampling time; B — B _0'5143
v constant speed of the backward movement. LT 0
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Fig.2. (a)and (b) The normalized firing strengths(X *(k)) andh, (X * (k)), corresponding to the optimal trajectory. (c) The value of the norf @k *(k)).
(d) The outputs of the optimal fuzzy controlleK, = [—x /2, —37 /4, —10]%).
We further assume our fuzzy controller is system can be described by (7) with — [Al] B =
AV
B -
R 2(k) = aa(k) +v -t/ /{20'} [B;],R = [:,;],H(X(k)) = [h(X(k)) h(X(K))] and
-z1(k) is about0, thenu(k) = r1(k) WY (k) = [wi(Y (k) wa(Y(k))].
R 0f 2(k) = aa(k) +v - ¢ /{2L'} For the finite-horizon free-end optimal control problem, the
- z1(k) is aboutr or — 7, thenu(k) = r2(k). performance index is
99
With the chosen membership functions shown in Fig. 1 [6], th&(R(-)) = > _[X'(k)LX (k) + R (k)W (k)'W (k) R(k)]
firing-strength is k=0
+ X*(100)QX (100) (75)
1
hi(X(k)) = ar(k) = <1 7 _3(Z(k)_7r/2)) whereL = C'C and@ = I3. As for the infinite-horizon case,
. te the performance index is
1 4 ¢=3(z(k)+=/2) ) .
Joo( RYEYW (B)'W (k)R(K)].
ha(X (k) = az(k) =1 — as (k) (74) kzzo )+ R(R)W (k)W (k) R(F)]
(76)
which, in this case, are also the normalized firing-strengths
of the rules for fuzzy system and controller, i.@,(Y(k)) = Though the fuzzy subsystem is unstable (the spectrum of
hi(X(k)),© = 1,2. Therefore, thelinear-like dynamical system matrixo(4;) = {1,1,1.36},¢ = 1,2), it is time-in-

fuzzy system representation for the nonlinear truck-trailemriant and well-behaved; i.e., the fuzzy subsystem is c.c. and
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Fig. 3. State responses of the discrete-time fuzzy system with the designed optimal fuzzy controller in the finite-horizon quadratic optinpabbtartraf
Section V at the four initial conditionsY (0) = (—#/2, =37 /4, —10)*, (-7 /2,37 /4,—-10)%, (x/2,—37/4,—10)* and(x /2,37 /4,—10)*.

c.0. fank[Al3 — A;B;] = rank[Al3 — 4,C] = 3, for all fuzzy controller with the aid of the DDA algorithm for
A € o(4;)). Moreover, the asymptotic Riccati-like equation irdetermining appropriate segmentation under the almost-in-

(68) becomes variant-membership-function criteria. For the initial state
_ o Xo = [-7/2,—3n/4,—10]*, the individual normalized firing
Ky =L+ ATH (X)) Kyl strengths for the optimal trajectory (i.eh;(X*(k)) and

+ H(X})BB'H(X;)K]| " H(X) A. (77)  h2(X*(k))), and also the value of the norm of their synthetical

) ) matrix (i.e., [|H(X™*(k))||) are shown in Figs. 2(a), (b) and

Therefore, the steps &) and b)Step 2in Algorithm DDA can () respectively; the outputs of the designed optimal fuzzy
be simplified as controller are shown in Fig. 2(d). The state responses of the
a) find out the constant solutighof (77) with the member- resultant closed-loop fuzzy system in the finite-horizon case is

ship functionH (X7, ); shown in Fig. 3, which reveals that the designed optimal fuzzy

b) calculateu;; and X}, by controller can promptly push the simulated truck-trailer system
from various initial states to and stay at the desired state. Hence,

-1 S . .
i, = —B'H* ( X7, ) 7 [_fn +H ( X7, ) BB'H! ( X7, ) ﬂ the finite-state-trajectory penalty vanishes and Theorems 3
0 0 0 and 5 are coincident. Our simulation results also show that the
x H (X ,fé) AXG, (78) state responses of the resultant closed-loop fuzzy system in the
-1 infinite-horizon case are the same as those in Fig. 3.
Xjipy = [Lo+ H (x3,) BBH' (X5, ) 7]

< H (X,’})AX;-. (79) VI. CONCLUSION
! The entire fuzzy system representation was proposed to for-
Since the chosen membership functions are smooth Gaussrariate the quadratic optimal fuzzy control problem, and further,

functions (see Fig. 1), we can efficiently obtain the optimahe unification of the individual matrices into synthetical ma-
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trices was proposed to generatinaar-like global system rep- P(l + 1) in the following derivation. Then, substituting these
resentation of discrete-time fuzzy systems. Based on this repsiables into (80) and assuming Assumption 1 holds, we have
resentation, the design scheme of global discrete-time optimal

fuzzy controllers was derived theoretically. Furthermore, a mul-  _ N . )

tistage decomposition of optimization scheme was proposed to Q(X(), R()) = @(X7(), () +@(Z(), V()

design the global optimal fuzzy controller more efficiently and il f ook P N
keep the global optimality at the same time. Grounding on this + 2 Z {Z LY+ VW WER
efficient design scheme, several fascinating characteristics have tl:k

been shown to exist in the resultant closed-loop discrete-time - PlnlZi — HAZ - HBWV]}
fuzzy system. +2e2;, QX5

Overall, the fuzzily-blended entire fuzzy system is consid-
ered to formulate the quadratic optimal fuzzy control problem,
and the global optimal effect can then be achieved even thou\gﬁ"
the chosen system model is composed of distributed rule-based
fuzzy subsystems. This formation sheds light on the deadlock of OB(X (), R()) .
the research of quadratic optimal fuzzy control. Moreover, the — 57— =0, T 92
proposedinear-like synthetical matrix representation and the
systematic design procedures might activate a new research di-
rection in the quadratic optimal fuzzy control. Furthermore, thEne second criteria holds positively since
proposed in-depth analysis on the degree of stability and gain
margin can provide the researchers with complete perspect%(X(.) R("))
of all facets of the resultant closed-loop fuzzy system. Simg————5—"
lation results have manifested that the designed optimal fuzzy

k1—1
controllers can effectively drive the fuzzy system to the target =207t QZy, + lz: [Z'LZ + VIW'WV] b > 0.
points in short time. v

know that a minimum ob(X(-), R(-)) requires

=k

APPENDIX A Hence, the necessary and sufficient condition for optimality is

Proof of Theorem 1:(1) Define k1

> AZ'LX* — Pl \Zuyy + Pl HAZ + VIW'WR®
ki—1 =k

(X (), R(-)) Z (XYDLOX () + R(OWHY (D) + P, HBWV } + Z;, QX;; = 0. (81)

l .

=k
1
x WY (D)R(D)] + X' (k1)QX (ky), k€ [ko, k1 —1] Via the factyk1 ! Pl Zis = Bptz) 4 Pl 7, -
PtZy, andZ;, = 0, We have
whereX (k) = X*(k) is the initial state at timé. By Lagrange
multiplier method, we turn the optimization problem into the

Ce .. ki1—1
problem of minimizing .

Z VHW!'WR" +W'B'H' P ]
=k

k1—1 ki—1
B(X(), R()) = ®(X(), R() =2 3 PU+1)[X(1+1) + 3 ZULX" + A'H! Py, — P)
=k =k
— HX@)ADX WD) + Z8[QXT, - PU)] =0. (@2
— H(X(1)BOW (Y (1)) R(1)] (80)

SinceZ(-) andV'(-) are independent, we obtain the global min-
where P(I + 1) € ®™ is the Langrange multiplier vector_imizery*(k) in (10), and the corresp.onding_optimal control law
Now, we assume the optimal solutionX *(-), Y*(-), R*(-)) £’ (k) in(9), whereP(k) and the optimal trajectory( " (k) sat-
exist, and, according to the calculus of variations methol§fies (11) withX (ko) = Xo andP(k;) = QX .
let X(I) = X*(1) + eZ(0), Y1) = Y*() + e(l), (3) Now, we step for finding the minimum performance
R(l) = R*(D)+eV(),1 € [k, ky — 1], whereV(l) € R isthe index:
perturbation vector with respect®(!), andZ(k) = 0 since the

initial state at timek is X (k) = X* (k). To simplify notations, ki—1
we shall omit the explicit time- and state-dependence; e.g., W€X(-), R(:)) = Z {X'LX +v'u
write H for H(X (1)), X for X(I),..., and useXy,, Zx, , Zi+1 =k

and P,y to denote, respectivelyy (k1), Z(k1), Z(l + 1) and — P/ [Xiy1 — HAX — HBul} .
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From (82), we know’/, | HA = P* — X* LandP/ HB =

—v*", and accordingly

ki—1
min  J(R()) = Y _{P'(OX(1) - P+ 1)X(1+1)]
=k

R gy -1)

+ X' (k1)QX (k1)
— PUR)X(R).

Hence,J(R(:)) = P'(ko)X (ko). This completes the proof]

Proof of Lemma 2:(1) SinceP(k) = K(k)X*(k) and
P(k) = Q'X*(k%), we obtainK (ki) = Q' On the other
hand, (15) gives

P(k) = L(k)X* (k) + A"(k)H{P(k +1) (83)
X*(k+1) = HiAK)X*(k)
— H;B(k)B'(k)H!P(k +1). (84)

SubstitutingP(k + 1) = K(k + 1)X*(k + 1) into (84), we
obtain the optimal trajector)X*(k) in (18), and accordingly,
we rewritten (83) as

{K (k) = Lik) = A" HEK (R + 1)
x [Hil, + H;B(k)B'(k)H{ K (k+1)]
HiA(k)} X*(k) = 0.

1

To ensure existence of the above equality no matter whak )
is, (16) holds positively.

(2) Through standard matrix manipula-

tions, {[H;B(k)B'(k)H!K(k + D1]7* + I,}7! =
H;B(k)[L,+B'(k)H!K (k+1)H;B(k)| 1B (k)H! K (k+1).
Therefore, (17) becomes

K(k) = L(k) + A'(k)H!K (k + 1)
x A [H:B(k) B (k) HUE (k+1)] 7+ 1, )
= L(k) + AY(k)H;K(k+ 1) [I,,
+ H;B(k)B'(k)H!K(k+1)] " H;A(k).

\H, Ak)

Moreover, substituting®(k + 1) = K(k + 1)X*(k + 1) and
X*(k+ 1) in (18) into (9), we obtaink* (k) in (19) and then
w*(k) in (20). This completes the proof. O

REFERENCES

[1] B. D. O. AndersonLinear Optimal Contral Upper Saddle River, NJ:
Prentice-Hall, 1971.

[2] B.D. O. Anderson and J. B. Moor®ptimal Control: Linear Quadratic
Methods Upper Saddle River, NJ: Prentice-Hall, 1990.

[3] F. M. Callier and C. A. Desoel inear System Theory New York:
Springer-Verlag, 1991.

Automaticavol. 33, no. 6, pp. 1017-1028, 1997.

(5]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

——, “Analysis and design for a class of complex control systems, part
II: Fuzzy controller design,Automaticavol. 33, no. 6, pp. 1029-1039,
1997.

——, “Lyapunov-like stability theorems for discrete-time fuzzy control
systems,'Int. J. Syst. Scivol. 28, no. 3, pp. 297-308, 1997c.

J. Douglas,Collocation Methods for Parabolic Equations in a Single
Space Variable: Based in C’-Piecewise-Polynomial Spacé&ew
York: Springer-Verlag, 1974.

H. J. Kang and C. Kwon, > robust stability analysis for the fuzzy
feedback linearization regulator,” Proc. FUZZ-IEEE'97 vol. 1, 1997,

pp. 277-280.

H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Stable and robust fuzzy
control for uncertain nonlinear systems based on a grid-point approach,”
Proc. FUZZ-IEEE'97 vol. 1, pp. 281-285, 1997.

X.J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy con-
troller and fuzzy observerfEEE Trans. Fuzzy Systol. 6, pp. 41-51,
Feb. 1998.

J. Macki and A. Straustntroduction to Optimal Control Theory New
York: Springer-Verlag, 1982.

K. S. Ray and D. D. Maunder, “Application of the circle criteria for
stability analysis of linear SISO and MIMO systems associated with
fuzzy logic controllers,lEEE Trans. Syst. Man Cybernol. SMC-2,

pp. 345-349, 1984.

K. Tanaka and M. Sano, “Frequency shaping for fuzzy control systems
with unkown nonlinear plants by a learning methods of neural network,”
Fuzzy Sets Systol. 71, pp. 71-84, 1995.

K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of
uncertain nonlinear systems via fuzzy control: Quadratic stabilizability,
H = control theory and linear matrix inequalitie$EEE Trans. Fuzzy
Syst, vol. 4, pp. 1-13, Feb. 1996.

K. Tanaka and T. Kosaki, “Design of a stable fuzzy controller for an artic-
ulated vehicle,IEEE Trans. Syst. Man Cybern, ®l. 27, pp. 552-558,
June 1997.

H. Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensation
of nonlinear systems by Takagi and Sugeno’s fuzzy modelPruc.
FUZZ-IEEE'95 1995, pp. 531-538.

H. O. Wang and K. Tanaka, “An LMI-based stable fuzzy control of non-
linear systems and its application to control of chaosPiac. FUZZ-
IEEE’96, vol. 2, 1996, pp. 1433-1438.

H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control
of nonlinear system: Stability and design issudEEE Trans. Fuzzy
Syst, vol. 4, pp. 14-23, Feb. 1996.

L. X. Wang, “A supervisory controller for fuzzy control systems that
guarantees stability,” ifProc. FUZZ-IEEE'94 Orlando, FL, 1994, pp.
1035-1039.

——, “Stable and optimal fuzzy control of linear system&EE Trans.
Fuzzy Systvol. 6, pp. 137-143, Feb. 1998.

S.J. Wu and C. T. Lin, “Optimal fuzzy controller design in continuous
system: Global concept approackEEE Trans. Fuzzy Systol. 8, pp.
713-729, Dec. 2000.

Shing-Jen Wureceived the B.S. degree in chemical
engineering from the National Taiwan University,
Taipei, Taiwan, R.O.C., the M.S. degree in chemical
engineering from the National Tsing-Hua Univer-
sity, Hsinchu, Taiwan, R.O.C., the M.S. degree
—_ in electrical engineering from the University of
California at Los Angeles, and the Ph.D. degree in
electrical engineering from the National Chiao-Tung
University, Hsinchu, Taiwan, R.O.C., in 1986, 1989,
1994, and 2000, respectively.
From September 1989 to July 1990, she was with

the Laboratory for Simulation and Control Technology of the Chemical Engi-
neering Division of Industrial Technology Research Institute, Hsinchu, Taiwan,
R.O.C. In 1991, she joined the Chemical Engineering Department, Kao-Yuan
Junior College of Technology and Commerce, Kaohsiung, Taiwan, R.O.C. From
1995 to 1996, she was an Engineer at the Integration Engineering Department,
Macronix International Co., LTD, Hsinchu, Taiwan, R.O.C. She is currently
with the Electrical Engineering Department, Da-Yeh University, Chang-Hwa,
Taiwan, R.O.C. Her research interests include thermodynamics, transport phe-
nomena, process control and design especially in VLSI, biomedical and Petro-
[4] S. G. Cao, N. W. Rees, and G. Feng, “Analysis and design for a classim industy, system and control theory especially in optimal control, filtering

of complex control systems, part I: Fuzzy modeling and identificationtheory, fuzzy system theory, and optimal fuzzy controller and tracker design.
Dr. Wu is a member of the Phi Tau Phi Scholastic Honor Society.



38 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 1, FEBRUARY 2002

Chin-Teng Lin (S'88-M'91-SM'99) received the
B.S. degree in control engineering from the National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C.,
and the M.S.E.E. and Ph.D. degrees in electrical
engineering from Purdue University, West Lafayette,
IN, in 1986, 1989, and 1992, respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science,
National Chiao-Tung University, Hsinchu, Taiwan,
R.O.C., where he is currently a Professor and
Chairman of the Electrical and Control Engineering
Department. He served as the Deputy Dean of the Research and Development
Office of the National Chiao-Tung University from 1998 to 2000. His current
research interests are fuzzy systems, neural networks, intelligent control,
human-machine interface, image processing, pattern recognition, video and
audio (speech) processing, and intelligent transportation systems (ITSs). He is
the coauthor oNeural Fuzzy Systems—A Neuro-Fuzzy Synergism to Intelligent
SystemgUpper Saddle River, NJ: Prentice Hall), and the authoNefiral
Fuzzy Control Systems with Structure and Parameter Lear(8iggapore:
World Scientific). He has published over 60 journal papers in the areas of
soft computing, neural networks, and fuzzy systems, including 35 IEEE
TRANSACTIONS papers.

Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He is also a member
of the IEEE Computer Society, the IEEE Robotics and Automation Society, and
the IEEE Systems, Man, and Cybernetics Society. He has been an Executive
Council Member of the Chinese Fuzzy System Association (CFSA) since 1995,
and the Supervisor of Chinese Automation Association since 1998. He has been
the Chairman of the IEEE Robotics and Automation Society, Taipei Chapter,
since 2000, and the Associate Editor of IEEEANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICSsince 2001. He won the Outstanding Research Award
granted by National Science Council (NSC), Taiwan, from 1997 to 2001, the
Outstanding Electrical Engineering Professor Award granted by the Chinese
Institute of Electrical Engineering (CIEE) in 1997, and the Outstanding Engi-
neering Professor Award granted by the Chinese Institute of Engineering (CIE)
in 2000. He was also elected to be one of the 38th Ten Outstanding Young Per-
sons in Taiwan, R.O.C., (2000).




