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Abstract

Oblivious permutation routing in binary d-cubes has been well studied in the literature. In a
permutation routing, each node initially contains a packet with a destination such that all the
2d destinations are distinct. Kaklamanis et al. (Math. Syst. Theory 24 (1991) 223–232) used
the decomposability of hypercubes into Hamiltonian circuits to give an asymptotically optimal
routing algorithm. The notion of “destination graph” was 8rst introduced by Borodin and Hopcroft
to derive lower bounds on routing algorithms. This idea was recently used by Grammatikakis
et al. (Proceedings of the Advancement in Parallel Computing, Elsevier, Amsterdam, 1993) to
construct many–one routing algorithms for the binary 2-cube and 3-cube. In the present paper,
further theoretical development is made along this line. It is then applied to obtain algorithms for
binary d-cubes with d up to 12, which compare favorably with the above-mentioned “Hamiltonian
circuit” algorithm. Some results on t-nary cubes with t¿3 are also obtained. c© 2002 Published
by Elsevier Science B.V.

Keywords: Permutation routing; Hypercube; Oblivious routing; Destination graph; t-nary cube

1. Introduction

Let V = {(x1; : : : ; xd) : xi ∈{0; 1; : : : ; t− 1}; i = 1; : : : ; d} denote the set of td nodes of
a t-nary d-cube such that for any two nodes u; v∈V , there is a link from u to v if
their Hamming distance equals 1 (hence also a link from v to u). Thus, at each node,
there are d(t − 1) in-links and d(t − 1) out-links. In a permutation routing, each node
u initially contains a packet with destination D(u) ∈ V such that {D(u) : u ∈ V}=V .
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Under the multiport model, at each step a packet can either stay put or move to an
adjacent node by crossing a link, but no link can be crossed by two packets at the
same step. Cohabitation of multiple packets at the same node is allowed. The goal
is to minimize the number of steps required to route all packets to their respective
destinations. Since the diameter of the t-nary d-cube equals d, d is a (worst-case)
lower bound on the required number of steps. A routing algorithm is called tight if
it requires at most d steps. An algorithm is called minimum routing if a packet can
move from a node to an adjacent one only when the move corrects an incorrect digit
(implying that the total number of steps required for a packet with origin u equals the
Hamming distance between u and D(u) plus the number of staying-put steps).

Besides minimizing the number of steps, a routing algorithm must also be easy
to implement; namely, the routing at each step should be determined eHciently. One
such class, called oblivious routing (see [8]), has been extensively studied in the lit-
erature. For an oblivious algorithm, the routing of a packet is determined only by
its origin and destination. In other words, an oblivious algorithm speci8es, for each
pair of nodes u and v, a path Puv from u to v, such that a packet at node u with
destination D(u) moves along the path PuD(u). Let “+” denote addition modulo t. An
oblivious algorithm {Puv : u; v∈V} is called translation invariant (or simply invariant)
if P(u+w)(v+w) =Puv + w for all u; v; w∈V where the “+” in Puv + w means that the
“+w” operation is applied to each node in the path Puv. Thus, an invariant oblivious
algorithm is completely determined by paths Puv with all u∈V and v= 0 ≡ (0; : : : ; 0).

Since packets cohabiting at a node require a buNer to store, it is desirable to keep
their number small. However, this issue is not addressed in the present paper as the
worst-case analysis of the required buNer size is a very diHcult problem.

Borodin and Hopcroft [1] introduced the notion of destination graph (DG) for obliv-
ious algorithms. A DG associated with a given node v is the union of paths from all
origins to the destination v (i.e.

⋃
u∈V Puv). In general, an oblivious algorithm requires

to specify td DGs, one for each v∈V . However, an invariant oblivious algorithm is
determined by only one DG with v= 0, which will be referred to as the modular DG.

Borodin and Hopcroft used DG to derive a lower bound �(
√
n=�3=2) for oblivious

algorithms on the number of steps for an n-node �-indegree graph. Applying to the
t-nary d-cube yields a bound �(t(d−3)=2=d3=2). For the binary d-cube, they gave an
O(2d=2) oblivious algorithm by dividing the routing into two subroutings, one on the
8rst d=2 dimensions and the other on the last d=2 dimensions (the former subrouting
is no longer permutation but many–one whereas the latter is one–many). Kaklamanis
et al. [6] improved the �(

√
n=�3=2) lower bound to �(

√
n=�), which was later shown

to be sharp by Borodin et al. [2]. For the binary d-cube, Kaklamanis et al. [6] gave
an O(2d=2=d) oblivious algorithm by using the decomposability of binary hypercubes
into Hamiltonian circuits. They commented that their algorithm may be practical for
small d.

Indeed, in practical applications, hypercubes are mostly binary with relatively small
d. Thus, it is of special interest to 8nd the best routing algorithm for such networks.
Note that the algorithm of Kaklamanis, Krizanc and Tsantilas is neither minimum
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routing nor tight, hence subject to improvement for small d. In this respect, Hwang
et al. [5] gave tight minimum-routing algorithms for binary d-cubes with d67, and
Grammatikakis et al. [3] gave tight oblivious minimum-routing algorithms for binary
d-cubes with d66. In particular, the latter showed a novel use of DG for constructing
a tight oblivious algorithm for the 6-cube.

In Section 2, we develop a theory of constructing invariant oblivious algorithms based
on DG. This enables us to obtain in Section 3 tight invariant oblivious minimum-routing
algorithms for the binary 7- and 8-cube, and a 11(14,19,24)-step invariant oblivious
minimum-routing algorithm for the 9(10,11,12)-cube. We also consider routing algo-
rithms for the t-nary d-cube with d64. In the special case t= 3; d= 4, Hwang et
al. [5] obtained a complicated tight invariant oblivious minimum-routing algorithm,
whereas we provide a very simple one using DG with little eNort. It is also shown
that there exists no tight invariant oblivious algorithm for permutation routing in the
t-nary 3-cube with t¿4.

2. The DG method from a tree viewpoint

In this section, we give results on using DG to construct invariant oblivious algo-
rithms for permutation routing as well as many–one routing where the latter means
that all packets have distinct origins but not necessarily distinct destinations.

For both permutation and many–one routings, it is clear that no competition for the
same link from two packets can occur at step 1. Moreover, for permutation routing, if
after a number of steps, all packets have at most one incorrect digit, then one more
step enables all packets to reach their destinations.

Since we shall only be concerned with invariant oblivious algorithms, it suHces to
consider a modular DG. A modular DG is viewed as a rooted tree with the root labeled
by the node 0, and td − 1 leaves each labeled by a distinct node of V other than 0,
such that the path from a leaf labeled u to the root is Pu0. (Note that we shall make
a conscious distinction between a node and a vertex by referring to a point of V as a
node and a point of a DG as a vertex.) When two paths agree on their last, say, k steps,
we shall merge this portion of the paths so as to simplify the expression of the modular
DG. Note that a simpli8ed DG may have fewer than td−1 leaves. As an example, the
two modular DGs in Figs. 1 (a) and (b) are equivalent. In Fig. 1(b), an edge connecting
two vertices labeled by the same node (0; 0; 1) indicates staying put at this node. In
a simpli8ed DG, for each node u∈V , the path from a vertex labeled u to the root
speci8es Pu0. In case that two (or more) vertices are labeled by u (as in Fig. 1(b) with
u= (0; 0; 1)), we would have two candidate paths for Pu0. To avoid such confusion, an
“∗” is attached to indicate the right vertex. Using the invariant algorithm induced by
the two equivalent modular DGs in Fig. 1, a packet with origin (1; 0; 1) and destination
0 moves along the path (1; 0; 1)→ (0; 0; 1)→ (0; 0; 1)→ 0 in three steps (staying put
at step 2), while a packet with origin (1; 1; 1) and destination (1; 0; 0) moves (by
invariance) along the path (1; 1; 1)→ (1; 0; 1)→ (1; 0; 0) in two steps. Note that in the
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Fig. 1. Two equivalent modular DGs for the binary 3-cube.

many–one routing setting, if two packets have respective origins (1; 0; 1) and (1; 1; 1)
but common destination 0, then they would compete for the link (0; 0; 1)→ 0 at step 3,
so that the modular DG does not induce a valid many–one routing algorithm. However,
for a permutation routing, the above situation cannot happen. Indeed, it follows from
Lemma 3 below that no competition for the same link from two packets can occur, so
that all packets reach their destinations in three steps. A modular DG is said to induce
a valid permutation (many–one) routing algorithm if competition for the same link
from two packets can never occur under the permutation (many–one) routing setting.
As another example, the modular DG in Fig. 2 induces, by Lemma 2 below, a valid
many–one routing algorithm which requires four steps to route all packets. It should be
remarked that if a modular DG induces a valid many–one routing algorithm, then it can
be used for the one–many routing setting by reversing the routing steps. For example,
based on the DG in Fig. 2, in a many–one routing, a packet with origin (1; 1; 0) and
destination 0 moves along the path (1; 1; 0)→ (0; 1; 0)→ 0 and then stays put at steps
3 and 4, while in a one–many routing, a packet with origin 0 and destination (1; 1; 0)
moves along the path 0→ 0→ 0→ (0; 1; 0)→ (1; 1; 0). (Note that in the latter case, if
the packet moves along the path 0→ (0; 1; 0)→ (1; 1; 0)→ (1; 1; 0)→ (1; 1; 0), then the
routing is not considered the reverse of the original many–one routing algorithm, and
the resulting algorithm may not be valid in the one–many routing setting.)
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Fig. 2. A modular DG for the binary 3-cube.

Lemma 1. Every algorithm for many–one routing in the t-nary d-cube requires at
least 	(td − 1)=d(t − 1)
 steps (in the worst case).

Proof. Consider the case that all packets have the same destination, say 0. As 0 has
d(t − 1) in-links, at most d(t − 1) packets can reach 0 at each step. It follows that
	(td − 1)=d(t − 1)
 is a (worst-case) lower bound on the number of steps needed.

Let T be a modular DG and pu≡Pu0 the path corresponding to node u. Let |pu|
denote the length of pu. Then l(T )≡ maxu∈V |pu| is simply the depth of T , which
is the (maximum) number of steps required by the invariant algorithm induced by T
provided that no competition for a link from two packets can arise at any step. In
the following, we provide in the many–one routing setting a necessary and suHcient
condition for modular DGs which guarantees that no two packets compete for the same
link at any step.

The root of a modular DG is called a level-0 vertex, its children level-1 vertices,
and so on. A level-k edge is an edge from a level-k vertex to a level-(k − 1) vertex.
For a vertex x, let u∗x ∈V denote the label of x. edge from vertex x to vertex y is said
to be of type 0 if u∗x = u∗y , and of type (i; j); 16i6d; 16j6t − 1 if u∗x �= u∗y and

(the ith digit of u∗x ) − j = (the ith digit of u∗y) (mod t)

where digits are numbered from left to right. When t= 2, type (i; j) will simply be
called type i since j always equals 1. Let Sn(u)≡ (S(1)

n (u); S(2)
n (u)); 16S(1)

n (u)6d; 16
S(2)
n (u)6t − 1; denote the type of the nth edge of path pu (n= 1; : : : ; |pu|) if it is not

of type 0; and let Sn(u)≡ (0; 0) if the nth edge is of type 0. We call S(u)≡ (S1(u); : : :,
S|pu|(u)) the type sequence for path pu. Note that

∑

{m:S(1)
m (u)=i}

S(2)
m (u) = (the ith digit of u) (mod t); i = 1; : : : ; d:
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Lemma 2. A modular DG induces a valid many-one routing algorithm if and only if
the following Condition (C1) holds.
Condition (C1): For any two type sequences S(u) and S(v); we have

∑

{m¡n:S(1)
m (u)=i}

S(2)
m (u) =

∑

{m¡n:S(1)
m (v)=i}

S(2)
m (v) (mod t) for all i = 1; : : : ; d;

whenever Sn(u) = Sn(v) �= (0; 0) for some n.

Proof. (Su7ciency) Consider two packets with respective origins u; v(u �= v), and des-
tinations D(u); D(v). By invariance, the two packets move along the paths pu−D(u) +
D(u) and pv−D(v) + D(v), with corresponding type sequences S(u′) and S(v′), where
u′ = u−D(u) and v′ = v−D(v). Suppose the packets compete for the same link at step
n. Thus, Sn(u′) = Sn(v′) �= (0; 0), and the packets are at the same node, say w, at the
beginning of step n. Then we have for i= 1; : : : ; d,

(the ith digit of u− w) =
∑

{m¡n:S(1)
m (u′)=i}

S(2)
m (u′) (mod t);

(the ith digit of v− w) =
∑

{m¡n:S(1)
m (v′)=i}

S(2)
m (v′) (mod t):

By Condition (C1), u= v, a contradiction.
(Necessity) Let T be a modular DG which does not satisfy Condition (C1), i.e.

there exist two type sequences S(u) and S(v) such that Sn(u) = Sn(v) �= (0; 0), but
�i(u) �= �i(v) for some n; i; where

�k(w) =
∑

{m¡n:S(1)
m (w)=k}

S(2)
m (w) (mod t); k = 1; : : : ; d; w = u; v:

We need to show that there exists a many–one routing where two packets would com-
pete for the same link at some step if we use the algorithm induced by T . Consider a
many–one routing in which two packets start at (distinct) nodes u′ = (�1(u); : : : ; �d(u))
and v′ = (�1(v); : : : ; �d(v)) with respective destinations u′ − u and v′ − v. Then by in-
variance, the 8rst packet moves along the path pu + u′ − u with the type sequence
S(u), while the second packet moves along the path pv+ v′− v with the type sequence
S(v). After n − 1 steps, both arrive at node 0. Then at step n, they compete for the
same link since Sn(u) = Sn(v).

Remark. The following stronger condition is often easier to check.

Condition (C1′): For any two type sequences S(u) and S(v); we have Sm(u) = Sm(v)
for all m¡n whenever Sn(u) = Sn(v) �= (0; 0) for some n

Lemma 3. A modular DG induces a valid permutation routing algorithm if and only
if the following Condition (C2) holds.
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Condition (C2) For any two type sequences S(u) and S(v); we have either

(i)
∑

{m¡n:S(1)
m (u)=i}

S(2)
m (u) =

∑

{m¡n:S(1)
m (v)=i}

S(2)
m (v) (mod t); for all i = 1; : : : ; d;

or

(ii)
∑

{m¿n:S(1)
m (u)=i}

S(2)
m (u) =

∑

{m¿n:S(1)
m (v)=i}

S(2)
m (v) (mod t); for all i = 1; : : : ; d;

whenever Sn(u) = Sn(v) �= (0; 0) for some n.

Proof. (Su7ciency) Following the suHciency part of the proof of Lemma 2, suppose
two packets compete for the same link at step n, which implies Sn(u′) = Sn(v′) �= (0; 0),
(u′ = u−D(u); v′ = v−D(v)), and the packets are at the same node at the beginning of
step n. By Condition(C2), either (i) or (ii) holds, the former leading to the same origin
for the packets and the latter leading to the same destination. Both are contradictory
to the permutation routing setting.

(Necessity) Let T be a modular DG that does not satisfy Condition(C2), i.e. there
exist two type sequences S(u) and S(v) such that Sn(u) = Sn(v) �= (0; 0), �i(u) �= �i(v),
�i′(u) �= �i′(v) for some n; i; i′; where for w= u; v; k = 1; : : : ; d;

�k(w) =
∑

{m¡n:S(1)
m (w)=k}

S(2)
m (w); �k(w) =

∑

{m¿n:S(1)
m (w)=k}

S(2)
m (w):

Consider a permutation routing in which two packets start at (distinct) nodes

u′ = (�1(u); : : : ; �d(u)); v′ = (�1(v); : : : ; �d(v))

with (distinct) destinations u′′ = (−�1(u); : : : ;−�d(u)); v′′ = (−�1(v); : : : ;−�d(v)). Note
that the kth digit of u′ − u′′ equals

∑
{m:S(1)

m (u)=k} S
(2)
m (u) which is the kth digit of u.

Thus u′ − u′′ = u, and similarly v′ − v′′ = v. Based on T , the packets move along the
paths pu + u′′ and pv + v′′. After n− 1 steps, both arrive at node 0; and then compete
for the same link at step n since Sn(u) = Sn(v) �= (0; 0). This completes the necessity
part.

Remark. The following stronger condition is often easier to verify.

Condition (C2′): For any two type sequences S(u) and S(v); we have either Sm(u)
= Sm(v) for all m¡n or Sm(u) = Sm(v) for all m¿n whenever Sn(u) = Sn(v) �= (0;
0) for some n.

A modular DG is called a many–one (permutation) modular DG if it satis8es Condi-
tion (C1) (Condition (C2)). Obviously, a many–one modular DG is also a permutation
modular DG.

Theorem 1. Let T (T ′) be a many–one modular DG for the t-nary d(d′)-cube. Then
T and T ′ combined yields an invariant oblivious algorithm with l(T ) + l(T ′) steps
for permutation routing in the (d+ d′)-cube.
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Proof. We consider the following two-phase algorithm. For phase 1, packets move
along the 8rst d dimensions using T (as a many–one routing) while in phase 2, packets
move along the last d′ dimensions using the reverse of T ′ (as a one–many routing).
More precisely, in phase 1, the td+d′ nodes are divided into td

′
subsets of size td where

the nodes in a subset all have the same last d′ digits. As each subset is isomorphic
to the d-cube, routing packets in a subset is equivalent to many–one routing in the
d-cube, which can be done in l(T ) steps by using T . In phase 2, the nodes are divided
into subsets of size td

′
where the nodes in a subset all have the same 8rst d digits.

Since routing packets in each of these subsets is equivalent to one–many routing in
the d′-cube, it can be done in l(T ′) steps by using the reverse of T ′.

Remark. Consider a situation where each node contains a sequence of packets to
be transmitted to other nodes. Suppose the 8rst packets of all nodes have distinct
destinations, and so do the second (third, etc.) packets. In other words, a sequence
of permutation routings is to be conducted. Then the idea of combining T and T ′ in
Theorem 1 can be modi8ed so as to transmit packets two at a time as follows. In
phase 1, transmit the 8rst packets along the 8rst d dimensions using T while moving
the second packets along the last d′ dimensions using T ′. In phase 2, transmit the 8rst
packets along the last d′ dimensions using the reverse of T ′ while moving the second
packets along the 8rst d dimensions using the reverse of T . Thus, two packets per
node are successfully transmitted in 2max {l(T ); l(T ′)} steps. If d=d′ and T =T ′,
this will save the number of steps per packet by a factor of 2.

3. Oblivious algorithms for small d

The following theorem provides invariant oblivious algorithms for binary d-cubes
with d612.

Theorem 2. There exists a 7(8; 11; 14; 19; 24)-step invariant oblivious minimum-routing
algorithm for permutation routing in the binary 7(8; 9; 10; 11; 12)-cube.

Proof. By Theorem 1, it suHces to construct a 3(4,7,12)-step many–one modular DG
for the binary 3(4,5,6)-cube. Figs. 3–6 present such modular DGs. In these 8gures, “•”
indicates staying put, e.g. in the path (0; 1; 0; 1)→ (0; 1; 0; 0)→ •→ (0; 1; 0; 0)→ (0; 0; 0;
0); “•” is interpreted as (0; 1; 0; 0). Also, if several vertices are labeled by the same
node u, the path pu is determined by the vertex closest to the root. In the following
discussion, we shall abuse notation by writing Sn(u) for S(1)

n (u) since the second com-
ponent of Sn(u) equals 1 (unless Sn(u) is type-0). It is easily veri8ed that the modular
DGs for d= 3; 4; 5 satisfy Condition (C1′) by noting:

(i) Sn(u) = Sn(v) �= 0 never occurs when there is an edge of type 0 just before the
nth edge in the path pu (or pv);
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Fig. 3. A modular DG for the binary 3-cube.

Fig. 4. A modular DG for the binary 4-cube.

Fig. 5. A modular DG for the binary 5-cube.
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Fig. 6. A modular DG for the binary 6-cube.

(ii) All paths (with no edges of type 0) have cyclic type sequences, i.e. type i
is followed by type i − 1 (mod d). Hence, Sn(u) = Sn(v) �= 0 forces Sm(u) = Sm(v) for
m¡n.

Due to the presence of many type-0 edges, it is more involved to check that the
modular DG for d= 6 satis8es Condition (C1′). For any two paths containing no type-
0 edge, Condition (C1′) is easily veri8ed since the corresponding type sequences are
cyclic. Also, note that except for u= (1; 1; 1; 1; 1; 1); |pu|65 if pu contains no type-0
edge. On the other hand, if a path includes some type-0 edge(s), the type-0 edges form
one or two strings each of length at least 4, and the non-zero-type edges are divided
into two or three segments each of length at most 3. Thus, if pu contains no type-0
edge and pv contains at least one type-0 edge, then “Sn(u) = Sn(v) �= 0” can occur only
when n63, which would force Sm(u) = Sm(v) for all m¡n due to the cyclic property.

It remains to consider the case that pu and pv each contain some (in fact at least 4)
type-0 edges. For each i= 1; : : : ; 6, consider all paths including one edge of type i (after
some type-0 edges). In most cases, this type-i edge appears in diNerent positions for
diNerent paths. For example, for i= 3, among all paths containing a type-3 edge (after
some type-0 edges), there are only two pairs of paths ({p(011010); p(001010)}; {p(011011);
p(001011)}) such that the two paths in the 8rst (second) pair have the 6th (7th) edge
being of type 3. For these two pairs, Condition (C1′) is satis8ed.
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Fig. 7. A modular DG for t= 3; d= 2.

Remark. The modular DG in Fig. 5 attains the lower bound 	(25 − 1)=5(2 − 1)
= 7
given in Lemma 1, so that it cannot be improved. The modular DG in Fig. 6 misses the
lower bound (11) by 1. It is of interest to know whether the lower bound for this case
can be attained by an invariant oblivious many–one algorithm. In the many–one routing
setting, for d66, our algorithm requires fewer steps than that of Kaklamanis et al. [6].
Valiant and Brebner [9] introduced a random (permutation) routing in binary d-cubes
with 2d steps which succeeds with high probability. By Theorem 2, our (deterministic)
algorithm requires fewer steps (except for d= 12). On the other hand, the permutation
routing algorithm of Kaklamanis et al. attains the optimal order as d→∞. Again,
our (small d) algorithm requires fewer steps in the permutation routing setting. (They
also proposed to save a factor of two in the time complexity by dividing the packets
into two halves where the 8rst half uses one of the two edge-disjoint partitions in the
many–one routing phase, while the second half uses the second; and similarly for the
one–many routing phase. However, this is shown in [4] to be impossible.) Finally, it
may be worth noting that, by the lower bound of Theorem 3:23 in [7] (which is a
slight modi8cation of Theorem 1 in [6]), tight oblivious permutation-routing algorithms
for binary d-cubes cannot exist for d¿19.

For the rest of this section, we give partial results on the t-nary d-cubes with d64.

Lemma 4. There exists a 	(t + 1)=2
-step invariant oblivious minimum-routing algo-
rithm for many–one routing in the t-nary 2-cube (t¿2).

Proof. Consider the following modular DG. The path for node (i; 0) (node (0; j))
is simply (i; 0)→ (0; 0) ((0; j)→ (0; 0)). Let A≡{1; : : : ; 	(t − 1)=2
} and B≡{	(t +
1)=2
; : : : ; t − 1}. For i; j∈A, the path for node (i; j) is (i; j)→ (i; 0)j → (0; 0) where
(i; 0)j ≡ (i; 0)→ (i; 0)→ · · · → (i; 0) (j(i; 0)′s); for i; j∈B, the path for node (i; j) is
(i; j)→ (i; 0)j−�(t−1)=2	 → (0; 0); for i∈A; j∈B, the path for node (i; j) is (i; j)→ (0; j)i
→ (0; 0); for i∈B; j∈A, the path for node (i; j) is (i; j)→ (0; j)i−�(t−1)=2	 → (0; 0). It
is easily checked that Condition (C1′) is met. (Fig. 7 plots the modular DG for t= 3:)

The algorithm given in Lemma 4 attains the lower bound of Lemma 1, since
	(td − 1)=d(t − 1)
= 	(t + 1)=2
. In particular, for t= 3, we have a tight invariant
oblivious minimum-routing algorithm for many–one routing in the ternary 2-cube.
By Theorem 1, we have a tight invariant oblivious minimum-routing algorithm for
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permutation routing in the ternary 4-cube. This algorithm based on the DG method is
much simpler than that given in Hwang et al. [5].

Our 8nal result concerns the existence of a tight invariant oblivious algorithm for
permutation routing in the t-nary 3-cube. While such an algorithm can be readily con-
structed for t= 2; 3, we show in Theorem 3 below that there exists no such algorithm
for t¿4. (It is worth noting that as a consequence of Theorem 3:23 in [7], there exists
no tight oblivious algorithm for t¿322.)

Theorem 3. There exists no tight invariant oblivious algorithm for permutation rout-
ing in the t-nary 3-cube with t¿4.

Proof. Suppose there is a 3-step invariant oblivious algorithm for permutation routing
with its modular DG denoted by T . Necessarily, all the vertices labeled by nodes
(i; j; k) with i; j; k �= 0 are level-3 (i.e. leaves of the tree). Let X denote the set of these
vertices so that |X |= (t−1)3. Let E2 denote the set of level-2 edges below which there
is at least one (level-3) vertex in X . (Thus, none of the edges in E2 can be of type
0.) For each e∈E2, let Xe = {x∈X : x is below e}. Denote the type of an edge e by
�(e). For a level-2 edge e∈E2 which is below a level-1 edge e′, if �(e) = (i; j) and
�(e′) = (i′; j′), then every vertex in Xe must have a label with the ith and i′th digits
being j and j′. Consequently, for e∈E2; 16|Xe|6t − 1.

Claim 1. For x3; y3 ∈X; the following situation cannot happen:

x3
e3→ x2

e2→ x1
e1→ 0; y3

f3→y2
f2→y1

f1→ 0;

and �(e2) = �(f2); �(e1) �= �(f1); �(e3) �= �(f3) where x3
e3→ x2 signi9es level-3 edge e3

connecting level-3 vertex x3 with level-2 vertex x2.

Proof. This follows from the necessity of Condition (C2) in Lemma 3.

For i = 1; 2; 3; j = 1; : : : ; t − 1; let E2(i; j) = {e ∈ E2: �(e) = (i; j)}:

Claim 2. If E2(i; j) contains an e2 with |Xe2 |¿2, then |E2(i; j)|= 1.

Proof. Suppose to the contrary that E2(i; j) contains another edge f2. Let x3; x′3 ∈Xe2 ;
y3 ∈Xf2 with respective paths

x3
e3→ x2

e2→ x1
e1→ 0; x′3

e′3→ x2
e2→ x1

e1→ 0;

y3
f3→y2

f2→y1
f1→ 0:

Since e2 �=f2 and �(e2) = �(f2) = (i; j), we must have �(e1) �= �(f1) (otherwise x1 =y1;
x2 =y2; and e1 and e2 would be merged with f1 and f2). On the other hand, �(f3)
must be diNerent from one of �(e3) and �(e′3) since the latter two cannot be the same.
By Claim 1, this leads to a contradiction, thereby proving Claim 2.



F.K. Hwang et al. / Theoretical Computer Science 270 (2002) 111–124 123

Claim 3. If |Xe|= 1 for all e∈E2(i; j); then |E2(i; j)|6t − 1.

Proof. For any two diNerent e2; f2 ∈E2(i; j), let e1(f1) be the edge above e2(f2),
and e3(f3) the level-3 edge below e2(f2) that connects the only vertex in Xe2 (Xf2 ).
Since �(e1) �= �(f1), we must have �(e3) = �(f3) (otherwise a contradiction would
arise by Claim 1). Suppose the 8rst component of �(e3) = �(f3) equals i′( �= i). Then
the 8rst component of �(e1) (and �(f1)) must be the only value in {1; 2; 3} other
than i and i′. Hence, there are only t − 1 possible choices for �(e1), establishing the
claim.

By Claims 2 and 3 together with the fact that |Xe|6t − 1, we have
∣
∣
∣
∣
∣

⋃

e∈E2(i;j)
Xe

∣
∣
∣
∣
∣
6t − 1 for each i; j;

so that

|X | =

∣
∣
∣
∣
∣

⋃

e∈;E2

Xe

∣
∣
∣
∣
∣
63(t − 1)2:

This contradicts |X |= (t − 1)3 if t¿5.
It remains to consider the case t= 4. Let X (i; j) =

⋃
e∈E2(i;j) Xe, for i; j= 1; 2; 3. Since

|X (i; j)|6t − 1 = 3 and since
∣
∣
∣
∣
∣

⋃

i; j=1;2;3
X (i; j)

∣
∣
∣
∣
∣
= |X | = 27;

it follows that the nine sets X (i; j); i; j= 1; 2; 3 are disjoint each having three elements.
Denote by [a; b; × ] the set {(a; b; c) : c= 1; 2; 3} (similarly for [a; × ; b] and [× ; a; b]).
Letting U (i; j) = {u∗x : x∈X (i; j)}, it follows from the proofs of Claims 2 and 3 that
U (1; j) must be one of [j; k; × ]; [j; × ; k]; k = 1; 2; 3 (similarly for U (2; j) and U (3; j)).
We may assume, without loss of generality, that U (1; 1) = [1; 1; × ]. Then U (2; 1) must
be either [2; 1; × ] or [3; 1; × ], since U (1; 1)∪U (2; 1) =). Without loss of generality,
assume U (2; 1) = [2; 1; × ]. Then U (1; 2) is either [2; 2; × ] or [2; 3; × ]. Again, with-
out loss of generality, assume U (1; 2) = [2; 2; × ]. Then U (2; 2) is either [1; 2; × ] or
[3; 2; × ]. We need to consider these two cases separately.
Case (i) : U (2; 2) = [1; 2; × ]. We have U (3; 1) = [3; × ; 1] or [× ; 3; 1]. If U (3; 1) =

[3; × ; 1], then U (1; 3) = [3; × ; 2] or [3; × ; 3], the former resulting in no choice for
U (3; 2) and the latter resulting in no choice for U (3; 3). If U (3; 1) = [× ; 3; 1], then
U (2; 3) = [× ; 3; 2] or [× ; 3; 3], the former resulting in no choice for U (3; 2) and the
latter resulting in no choice for U (3; 3).
Case (ii) : U (2; 2) = [3; 2; × ]. We have U (1; 3) = [3; 1; × ] or [3; 3; × ], the latter re-

sulting in no choice for U (3; 1). Thus, U (1; 3) = [3; 1; × ], implying U (3; 1) = [× ; 3; 1]
and U (3; 2) = [× ; 3; 2] and U (3; 3) = [× ; 3; 3]. Then there is no choice for U (2; 3).
This completes the proof for t= 4.
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