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Thermal fluctuation correction to magnetization and specific heat of vortex solids
in type-ll superconductors
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A systematic calculation of magnetization and specific heat contributions due to fluctuations of vortex lattice
in strongly type-Il superconductors to precision of 1% is presented. We complete the calculation of the two
loop low temperature perturbation theory by including the umklapp processes. Then the Gaussian variational
method is adapted to calculation of thermodynamic characteristics of the two-dimensional and the three-
dimensional vortex solids in high magnetic field. Based on it as a starting point for a perturbation theory we
calculate the leading correction providing simultaneously an estimate of precision. The results are compared to
existing nonperturbative approaches.
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[. INTRODUCTION 3D, both quite far above the melting line. Generally, attempts
to extend the theory to lower temperature by Pagapo-
Existence of a vortex lattice in type-Il superconductors inlation were not successftillt is in fact doubtful whether the
magnetic field was predicted by Abrikosov and subsequentlyerturbative results based on Gaussian approximation assum-
observed in various materials ranging from metals to Aigh ing translational invariant liquid state should be attempted at
cuprates. In the original treatment the mean field Ginzburgdow a.
Landau(GL) theory, which neglects thermal fluctuations of In Ref. 9, it was shown that below;<—5 different
the vortex matter, was used. Thermal fluctuations are exGaussian states which are no longer translationally invariant
pected to play a much larger role in high superconductors have lower energy. We will present the detailed calculation
than in the low temperature ones, because the Ginzburg paere (optimized perturbation theory was used to study for
rameter Gi characterizing fluctuations is much lafgerad-  liquid state, see Refs. 9 and)1(t is in general a very non-
dition, the presence of a strong magnetic field and strongrivial problem to find an inhomogeneous solutions of the
anisotropy in superconductors like BSCCO effectively re-corresponding “gap equation(see Sec. Y. However, using
duces their dimensionality, thereby further enhancing effectprevious experience with low temperature perturbation
of thermal fluctuations. Under these circumstances fluctuatheory!'? the problem can be significantly simplified and
tions make the lattice softer, in turn influencing varioussolved using rapidly convergent “modes” expansion. A con-
physical properties like magnetization and specific heatsistent perturbation theory should start from these stdtes.
Eventually it leads to melting of the vortex lattice into a We then generalize the approach of Ref. 5 by setting up a
vortex liquid far below the mean field phase transition fife. perturbation theory around the Gaussian Abrikosov lattice
The first order melting transition was clearly demonstrated irstate.
both magnetizatichand specific heat experimerito de- Magnetization and specific heat contributions due to vor-
velop a theory of these fluctuations, even in the case of lowtex lattices are calculated in perturbation theory around this
est Landau leveLLL), corresponding to regions of the state to next to leading order. This allows to estimate the
phase diagram “close” td1.,, is a very nontrivial task and precision of the calculation. It is the worst, about 1%, near
several different approaches were developed. the melting point aar= —10 and becomes better for lower
At the high temperature enghamely far above the mean a;. At low temperature the result is consistent with the first
field transition temperature and thereby in the “vortex lig- principles low temperature perturbation theory advanced re-
uid” phase one can develop the traditional “loop” expan- cently to the two loop ordéf:*? The previous two loop cal-
sion. Since the melting line lies below the mean field line,culation is completed by including the Umklapp processes.
Thouless and Ruggéri proposed a perturbative expansion One can make several definitive qualitative conclusions us-
which can be defined below this line. It contains one looping the improved accuracy of the results. The LLL scaled
together with a certain class of higher loop diagramsspecific heat monotonously rises from its mean field value of
(“bubbles”) and therefore is “nonperturbative.” It was 1/8, atar= —cc to a slightly higher value of 1.0B/, where
shown in field theory that summation of all the bubble dia-3,=1.16 is Abrikosov parameter. This is at variance with
grams is equivalent to the Gaussian variational apprédch. theory Ref. 14 which uses completely different ideas and has
this approach one searches for a “Gaussian” state having tha freedom of arbitrarily choosing certain parameters on a 2%
lowest energy. The series provides accurate results at higbrecision level. Although we calculate the contribution of the
temperatures, but become inapplicable for LLL dimensiondLL only, corrections due to higher Landau levels calculated
less temperaturar~ (T—Tm(H))/(TH)Y2 smaller than 2 earlier in Refs. 15 and 16 using a less sophisticated method
in 2D and forar~ (T—Ty(H))/(TH)?? smaller than 1 in  can be included.
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The paper is organized as follows. The model is defined irwhere the 2D LLL reduced temperature
Sec. II. In Sec. lll a brief summary of existing results and
Umklapp corrected two loop perturbative results in both 2D _ [4ml—t—b
and 3D are given. Gaussian approximation and the mode =" Nbe 2
expansion used is described in Sec. IV. The basic idea of
expansion around the best Gaussian state is explained in Sé the only parameter in the thedt?”
V. The leading corrections are calculated. Results are pre- For 3D materials with asymmetry along thexis the GL
sented and compared with perturbation theory and otheiodel takes the form

®)

theories in Sec. VI together with conclusions. B o 2 42
F=Jd3x (V——A I+ =—|a?
Il. MODELS 2mgp he 2m ' *
To describe fluctuations of order parameter in thin films or +al ¢|2+E| e )
layered superconductors one can start with the Ginzburg— 2

Landau free ener . . .
%y which can be again rescaled into

h2
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b/
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where A= (By,0) describes a constant magnetic fiébdn- (7)
sidered nonfluctuatingin Landau gauge and covariant de- by X—&x, Y&y, z—ézlyM2 y2—(2aT./b')¢?, where

rivative is defined byD=V —i(2m/d)A, ®o=hc/e”. For =m./m,, is anisotropy. The Ginzburg number is now
strongly type-Il superconductors like the high cuprates g]/ivencby ab py- g

(k~100) and not too far fromH., (this is the range of
interest in this paper, for the detailed discussion of the range 1 ( 32me? i 2ET M2
. Cc
==
2

2
of applicability see Ref. I5magnetic field is homogeneous
to a high degree due to superposition from many vortices.
For simplicity we assuma(T)=aT.(1-t), t=T/T., al-
though this temperature dependence can be easily modifi

to better describe the experimentdl,(T). The thickness of dimensionless free energy becomes

®

CZhZ

e\/(\{ithin the LLL approximation, and rescaling—>x/\/5, y

a layer isL,.

Throughout most of the paper we will use the coherence 1 1 1
length é= \A2/(2m,aT,) as a unit of length and f= —J dx| 5 |9,9]%+ar| >+ —|¢|4}- ©)

477\/5 2 2
dHeo(Te) - Po The 3D reduced temperature is
dT ¢ 2mé?
bo | **1-t—b

as a unit of magnetic field. After the order parameter field is ar= _( ) . (10)
rescaled as)’— (2aT./b")y?, the dimensionless free en- 477\/E 2

ergy (the Boltzmann factoris From now on we work with rescaled quantities only and

relate them to measured quantities in Sec. V.

F 11,1 , 1=t 1
7= o | X IDYE - ——lyl*+ Slel*|. @
lll. PERTURBATION THEORIES AND EXISTING
The dimensionless coefficient describing the strength of fluc- NONPERTURBATIVE RESULTS
tuations is A variety of perturbative as well as nonperturbative meth-
, 5 2.pm \ 2 ods have been used to study this seemingly simple model.
w=2 Gimt= Mg t iEE 32me k€. There are two phases. Neglecting thermal fluctuations, one
2h2al, ' 2 c?hL, ' obtains the lowest energy configuratigri=0 for a;>0 and
() S
where Gi is the Ginzburg number in 2D . When 1 =1/ _,B_T(P’
—b)/12b<1, the lowest Landau levéLLL ) approximation A
can be used® The model then simplifies due to the LLL "
constraint, —(D%2)¢=(b/2)y, rescaling x—x/\b, y o 27 S expli wl(1-1) 2_7T|X
—yl\b, and|¢|>—|#|?\bwl/4x, one obtains Jma, 157 2 A
1 2 2 L l( 277-I 2] (11
= o= | o adduiz+ 51l @ S
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for a;<0, wherea, = \4/ /3 is the lattice spacing in our k) =
units andB,=1.16. ealk)=—ar

T ]
B P g
(15)

A. High temperature expansion in the liquid phase
eo(k)=—ar

2 1
o . _1+—,3k+—|7k|)-
Homogeneous “vortex liquid” phaséwhich is not sepa- Ba Ba
rated from the “normal” phase by a transitipmas been where g, is defined in Appendix A. In particular, whela
studied using high temperature perturbation theory by Thou-_ (Ref. 22,
less and Ruggeri.Unfortunately these asymptotic series
(even pushed to a very high ordEbsare applicable only ea~0.12aq||k|*. (16)
when a;>2. In order to extend the results to lowey,
attempts have been made to Paelsum the seri@smposing  The second excitation mode, has a finite gap. The free
a constraint that the result matches the Abrikosov mean fiel@nergy to the two loop order was calculated in Ref. 12, how-
as a;— —. However, if no matching to the limit is im- ever the Umklapp processes were not included in some two
posed, the perturbative results cannot be significantljoop corrections. These processes correspond to momentum
improved® Experiments* Monte Carlo simulation’s and  nonconservingup to integer times inverse lattice conspant
nonperturbative Bragg chain approximafibrall point out ~ four leg verticegsee Appendix A, Eq(A2)]. We therefore
that there is a first order melting transition aroumg  recalculated these coefficients. The result in 2[Dsie Figs.
=—12. If this is the case it is difficult to support such a 1(a) and 1b)]
constraint. )

Py |aT|—&;+cv, (17)

f =
B. Low temperature perturbation theory in the solid phase: eff2b 2Ba 472 a%
Umklapp processes

. here c, = (log[(ea(k) eo(k)/a2])=—2.92. In 3D, similar
R_ecently a l.OW temperature perturbation theory arouncr/alculation(extending the one carried in Ref. 11 to Umklapp

Abrikosov solution Eq(11) was developed and shown to be processasgives
consistent up to the two loop ordért?®Since we will use
in the present study the same basis and notations and also 2 24

. . T .
will compare to the perturbative results we recount here a feffap=— —+2-8433T|1/2+ - (18)
few basic expressions. The order parameter fieis divided 2pa ar
into a nonfluctuatingmean field part and a small fluctuation

C. Nonperturbative methods

N Few nonperturbative methods have been attempted. Te-
0= Ba PO F X(X). (12 sanovic and co-worket developed a method based on an

approximate separation of the two energy scales. The larger
The field y can be expanded in a basis of quasi momentungontribution (98%) is the condensation energy, while the
eigenfunctions on LLL in 2D: smaller ong2%) describes motion of the vortices. The result
for energy in 2D is

/ Jal(1-1) 271'(X—ky)I K - ) .

A"*” T e PO iy i 2+2arcsm ary

, ef 4 2 4 g2 22|
w
——(y+k |) ] (13) (19

s 1 ’_{ ilf1 1 )
+tan — -] |

Then we diagonalize the quadratic term of free energy Eq. \/_ \/_ \/— 2 V2 B

(4) to obtain the spectrum. Instead of the complex figld

two “real” fields O and A will be used. Corresponding expressions in 3D were also derived.

No melting phase transition is seen since it belongs to the
2% which cannot be accounted for within this approach.

( :if eXF[_'ak/ZJ‘Pk(X)(O +iAY There exist several Monte CarlMC) simulations of the
X V2 (V2m)2 kK system® The expression Eq(19) agrees quite well with
(14) high temperature perturbation theory and MC simulations
and has been used to fit both magnetization and specific heat
f exfi 9k/2]<Pk(X)( LAY experiment$, but only the mean field level agrees with low
X \/— k temperature perturbation theory. Expanding @§) in 1/at,

one obtains an opposite sign of the one loop contribution, see
where y,=|yexdié] and definition ofy, (and all other Fig. 1(@ and discussion in Sec. VI.
definitions of functions can be found in Appendix A. The Other interesting nonperturbative methods include the
eigenvalues found by Eilenberger in Ref. 21 are 1/N expansiofi*?*in which the GL model is generalized to
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an N component theory and the phenomenological “Bragg
chain fluctuation approximatios® based on the elasticity K= %kakGSé(k)OfﬁAkGX/i(k)Afk
theory of the vortex matter.
+ 0L GoA(K)A -+ AGoA(K)O ., (23)

IV. GAUSSIAN VARIATIONAL APPROACH with matrix of functionsG(k) on Brillouin zone to be deter-
A. General anzatz mined together with the constantby the variational prin-

ciple. The corresponding Gaussian free energy is
Gaussian variational approach originated in quantum me-

chanics and has been developed in various forms and areas Ba
of physics?>2®In quantum mechanics it consists of choosing fgauss= arv 2+ ?v4—2 (log[ (47)? del( G)])
a Gaussian wave function which has the lowest energy ex-

pectation value. When fermionic fields are present the ap- +{(ar(Goo(K) +Gaa(k)) + v (2Bx+ | vk ) Goo(k)
proximation corresponds to BCS or Hartree—Fock varia-
tional state. In scalar field theory one optimizes the quadratic +(2Bk= | ) GaaK) il Br-1[Goo(K) + Gaa(k) ]

part of the free energy 1
X[Goo(l)+Gaa() Dii+ ﬁ{d Y (Goo(k)

1
f:f ~ 56" D LR V(¢?)

= Gan(kN)*+4(| v Goa(k)ich (24
1 B ~ where(---), denotes average over the Brillouin zone. The
— b( 40— b
_f§(¢a_va)G (PP —v") +V(G, ¢ minimization equations are
=K+V. 20 ar
20 v== 2L (2Bt W Goolk

To obtain “shift” v? and “width of the Gaussian'G, one

minimizes the Gaussian effective free enéfwhich is an + (2B [7) Ganalk) )i, (25)
exact upper bound on the eneree proof in Ref. 26 The

result of the Gaussian approximation can be thought of as [G(K) " Hoo=ar+v*(2Bk+| )

resummation of all the “cacti” or loop diagranis. Further ol
corrections will be obtained in Sec. V by inserting this solu- < 2B+ i )Goo(|)
tion for G and taking more terms in the expansionZof Ba
|7k||7l|
B. 2D Abrikosov vortex lattice (Zﬂk (e Gaa(k) ), (26
[
In our case of one complex field one should consider the
most general quadratic form [G(K) Yaa=ar+v2(28c—| )
|7k||7||
- fxyw*(x)—v*(x))G1(x,y><¢<y>—v<y))+<¢ < 2Bt g | CaalD)
—v(X)H* (f=v (X)) +(* —v* (X)) H(Y* —v* (X)). +(2/3k|— |7k||y'|)eoo(k)> , (27
Ba |
(21
Assuming hexagonal symmeta safe assumption for the [G(K)Hoa= — Goa(k)
present purpoge the shift should be proportional to the OA Goo(K)Gaa(k) —Goa(k)?
mean field solution Eq12), v (x) =v ¢(X), with a constant
taken real thanks to global() gauge symmetry. On LLL, _4|7k| Gl 28
as in perturbation theory, we will use variabl®g and A, _<|7"| oa(D)r- (28)

defined in Eq(14) instead ofy(x),
These equations look quite intractable, however they can be

simplified. The crucial observation is that after we have in-
() (O +iAL). serted t.he phase e[>_<pi6k/2] in Eq. (22) using ogr.experi-
ence with perturbation theorg o appears explicitly only
(220  on the right-hand side of the last equation. It also implicitly
appears on the left-hand side due to a need to invert the
The phase defined after E(L.4) is quite important for sim- matrix G. Obviously Goa(k)=0 is a solution and in this
plification of the problem and was introduced for future con-case the matrix diagonalizes. However general solution can
venience. The most general quadratic form is be shown to differ from this simple one just by a global

_ L1 f F{_iﬂ
P(X)=ve(X) 22m keX 5
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gauge transformation. Subtracting E26) from Eq.(27) and
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TABLE |. Mode expansion 2D.

using Eq.(28), we observe that matri@& ! has the form

ar 1 mode 2 modes 3 modes
-1 ( Eo(k) EOA(k)) —1000 —446023.8395 —431171.9948 —431171.9757
Eoa(k)  Ea(k) —300 —40131.29217 —38796.0277 —38796.02297
—100  —4450.41636 —4303.28685 —4303.28593
E(k)+Aq] vl Ay
= , -50 —1106.51575 —1070.63806 —1070.63791
Azl E(k)—Aq| w -20 ~171.678045 —166.690727 —166.690 827
whereA ;,A, are constants. Substituting this into the Gauss- 10 —389.292885 —38.433571 —38.433645
ian energy one finds that it depends &p,A, via the com- —7.3153440 —7.2237197 —7.2237422
bination A=A 21+A22 only. Therefore without loss of gen-
erality we can sef\,=0, thereby returning to th&o,=0
7
case. (k)= EnBa(K). (33

Using this observation the gap equations significantly

simplify. The functionE(k) and the constank satisfy

E(k)=aT+2UZ/3k+2</3k|(EO(I)+EA(|))> , (29
|

IBAA:aT_2<ﬁk (30)

o1 )>
Eo(k)  Eak))/,’

The Gaussian energy becomes

fq <Iog > )

k

f2:_2+<a'|' (zﬁk+|7k|)
X )

k

1,1
Eo() ~ Ea(l)

1 1 2
'”'( Eo(k) EA<k)) }

Using Eq.(29), a formula

(31
Eo(k)

472

Ea(k)

+log

+0v?

1ot
Eo(k) * Ea(k)

1 1
(32)

_ 1 1
fa=| At Egtio T Enl)

1
" 2Ba

\

Bi= go X"Bn(K),

Bo(k)= X

2_ .2
[X[*=na}

exdik-X]

The integem determines the distance of a points on recipro-
cal lattice from the origin(see Fig. 4 and y=exy —a3/2]
=ex{—27//3]=0.0265. One estimates thd,=y"ar,
therefore the coefficients decrease exponentially witdote
(see Fig. 4 that for some integers, for example=2,5,6,
B,=0. Retaining only the firss modes will be called “thes
mode approximation.” We minimized numerically the
Gaussian energy by varying A and the first few modes of
E(k). The sample results for various; and number of
modes are given in Table I.

We see that in the interesting region of not very low tem-
peratures the energy converges extremely fast. In practice
two modes are quite enough. The results for the Gaussian
energy are plotted in Fig. 1 and will be compared with other
approaches in Sec. VI. Furthermore one can show that
aroundar<—4.6, the Gaussian liquid energy is larger than
the Gaussian solid energy. So naturally wiagr< — 4.6, one
should use the Gaussian solid to set up a perturbation theory.
For a;>—4.2, there is no solution for the gap equations.

C. 3D Abrikosov vortex lattice

In 3D, we expand in bases of plane waves in the third
direction times previously used quasimomentum function,

1 f ;{_iak}
\/_(277)3’2 kkex 2

X pi(x)expi(K,-2) (O +iAy). (34)

P(X,2)=ve(X

The quadratic form is

kGOO (k)O_ k—I—AkGAA(k)A K, (35

sfj

derived in Appendix A and the hexagonal symmetry of thewhere integration ovek is understood as integration over
spectrum, one deduces th&(k) can be expanded in Brillouin zone and ovek,. Most of the derivation and im-

“modes”

portant observations are intact. The modifications are
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K2
Goo(k) "‘ Eo(k),

k2
Gaa(k)= + Ea(k).

The corresponding Gaussian free energy deraftgr in-
tegration ovek,) is

f=vzaT+ %U4+fl+f2+f3,

o= (VESR+ VEATT ) 0
1 1 )
2=aT<m+ m>k+<v (2Bt )
X;+(2,3k_|7k>;1 ,
Eo(k) VEA() ],
(37)
f3:<ﬂk—| - - >
VEo(k)  VEA(K) ][ VEo()  VEAD][
+i <|7k| L )>r
28\ 0 VBl ),

PHYSICAL REVIEW BG65 024514

the Gaussian approximation. This is necessary in order to fit
experiments and compare with low temperature perturbation
theory and other nonperturbative methods.

First we review a general idea behind calculating system-
atic corrections to the Gaussian approximafivithe proce-
dure is rather similar to calculating corrections to the
Hartree—Fock approximations used in fermionic systems.
Gaussian variational principle provided us with the hHasa
certain sengeguadratic part of the free energfyfrom which
the “steepest descent” corrections can be calculated. The
free energy is divided into the quadratic part and a “small”

perturbationV. For a general scalar theory defined in Eq.
(20) it takes the form

f=K+aV,

K:%d)aG—labd)b, (38)

V=— _¢aD 1¢a+ V( ¢a) ¢aG—1ab¢b_

Here the auxiliary parameter was introduced to set up a
perturbation theory. It will be set to one at the end of the
calculation. Expanding the logarithm of the statistical sum in
powers of«,

Minimizing the above energy, gap equations similar to that in

2D can be obtained. One finds that
Eo(k)=E(k)+A[yd,

Ea(k)=E(k)—A[wl.

zzf Do exp(—K)exp( — aV)

1 .
= J D(f)agom(aV)”exp(—K), (39

E(k) can be solved by modes expansion 2D. We minimized

numerically the Gaussian energy by varyingA and first

few modes ofE(k) The Samp|e results of free energy den-one retains only the first few terms. It was shown in Ref. 26

sity for variousar with three modes are given in Table II. that generally only two-particle irreducible diagrams contrib-
In pract|ce two modes are also qu|te enough in 3D. As |nute to the post- -Gaussian correction. The Gaussian apprOXI-

the case of 2D, one can show that aroumg< —5.5, the ~ Mmation corresponds to retaining only the first two terms,

gaussian liquid energy is larger than the Gaussian solid er= 0,1, while the post-Gaussian correction retains in addition

ergy. So naturally whera;<—5.5, one should use the the contribution of order?.

Gaussian solid to set up a perturbation theory in 3D. When Feynman rules in our case are shown in Fig. 5. We have

aroundar>—5, there is no solution for the gap equations. two propagators for field& and O and three and four leg
vertices. Using these rules the postgaussian correction is pre-

sented on Fig. 6 as a set of two and three loop diagrams. The
corresponding expressions are given in Appendix B. The

In this section, we calculate the lowest order correction tBrillouin zone averages were computed numerically using
the Gaussian approximatiothat will be called post- the three modes gaussian solution of the previous section.
Gaussian correctionwhich will determine the precision of Now we turn to discussion of the results.

V. CORRECTIONS TO THE GAUSSIAN APPROXIMATION

TABLE Il. Mode expansion 3D.

ar —300 —100 —50 —30 —20 —10 —55

f —38757.2294 —4283.2287 —1057.6453 —372.2690 —159.5392 -—33.9873 -6.5103
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0
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8
P > 02
& -200 e 8
2 4 s T <
& -100 -80 -60 N0
-300 s =
- z
.- - 5 P~ -
% 2 -02 -— t]
. ef. 14 -15 - .
-400 = ~ ’
e -20 ~ o s
~04 S~
-30 =25 -20 -15 -10
(@ SCALED TEMPERATURE -30 -25 -20 -15 -10 -5
SCALED TEMPERATURE
1
FIG. 2. Thermal fluctuations correction to magnetization of vor-
Z 08 tex solid. From top to bottom, one and two loop perturbation theory
E 06 gaussian (solid Ii_nes_pl and p2, respecti_va:,I)Gaussian and post-Gaussian
2 approximationgdashed—dotted lines g and pg, respectiyeheory
g 04 Ref. 14(dashed line,)t
o
5 0.2 Sian
3 o
z
[sa]
-02 1 phenomenological estimafds) where the lines become
tw .
04 oo closer again. It never gets larger than 10% though. To effec-
-300 -250 =200 -150 -100 -50 0 tively quantitatively study the model one has to subtract the
(b) SCALED TEMPERATURE dominant mean field contribution. This is done in the inset of

FIG. 1. Scaled free energy of vortex solid. From top to bottom,F'g' 1(a). We plot the gaus_3|an resulthe .da_ShEd_doned
Gaussian approximationdashed—dotted ling mean field(solid  in€), the one loop perturbative resithe solid ling and Eq.
line), theory Ref. 14(dashed ling Inset, corrections to mean field (19 (the dashed gray linein an expanded regior-100
calculated using(from top to bottor) Gaussian(dashed—dotted ~<ar< —10. The Gaussian approximation is a bit higher than
line), one loop perturbation theokgotted ling, and theory Ref. 14  the one loop.
(dashed ling (b) More refined comparison of different approxima- ~ To determine the precision of the Gaussian approximation
tions to free energy. Mean field as well as the one loop perturbativand compare with the perturbative two loop result, we fur-
contributions are subtracted. ther subtracted the one loop contribution on Fi¢h)1As
expected the post-Gaussian result is lower than the Gaussian
though higher than the two loop. The difference between the
Gaussian and the post-Gaussian approximation in the region
VL. RESULTS, COMPARISON WITH OTHER shown is aboutA f|=0.2, which translates into 0.2% at
APPROACHES AND CONCLUSION =-30, 0.4% ata;=—20 and 2% af;=—12. The fit for

Results for LLL scaled energy, magnetization and specific
heat in 2D are presented in Figs. 1, 2, and 3, respectively.

115 |
A. Energy

The Gaussian energy provides a rigorous upper bound or, . 11|
free energy> Figure Xa) shows the 2D Gaussian energfye
dashed—dotted lingewhich in the range o from —30 to
— 10 is just above the mean fie{the solid gray ling This is
because it correctly accounts for tljgositive logarithmic
one loop correction of Eq17). In contrast the results of the g N S -
theory by Tesanoviet al!* (the dashed gray lineare lower TTe~e
than the mean field. This reflects the fact that although the
correct largelas| limit is built in, the expansion of the ex- -30 -25 -20 -15 -10 -5
pression Eq.(19) gives negative coefficient of the Ifag| SCALED TEMPERATURE
term. This is inconsistent with both the low temperature per- G, 3. Scaled specific heat E5) normalized by the mean
turbation theory and the Gaussian approximation. The differfield. One and two loop perturbation thedisolid lines p1 and p2,
ence between this theory and our result is smaller than Z%Spectivew’ Gaussian and post-Gaussian approximations
only whena;<<30 or at smalla; below the 2D melting line  (dashed—dotted lines g and pg, respectiveliheory Ref. 14
(which occurs atr=— 13 according to Monte Carfdand  (dashed line, )t

SCALED C

024514-7



DINGPING LI AND BARUCH ROSENSTEIN

the Gauss and post-Gaussian energy in the regi8f<as
<—6 are

a2 19.104
fgop="— 2. ——+2logas|+0.119- T
60.527 loga| 36.511
— + ,
2 2 v

a2 11.68
fngD: - Z_,BA +2 Iog| aTl +0.068- a—T
60.527 logay] .\ 38.705

+cC,.
aZ a2 ’

In 3D, similarly one found that

2
af 3.1777
fgap=— 55" A ——+2.848 3%a| Y2+ ——

0.8137log[ —ar]
ar '

(40)

B. Magnetization

The dimensionless LLL magnetization is defined as

d feff( aT)
m(ar)=——; ar (41)
and the measure magnetization is
e* e*h b' bw
(42)

wherey is the order parameter of the original model, a®d
is the rescaled one, which is equaldd.(at)/dar. Thus

e*h b’

bw
o 2aT, N a7m(@D:

We plot the scaled magnetization in regierB0<a;< —6.

47M=

(43

PHYSICAL REVIEW B65 024514

_ar_ 2 1910 13355 121.05l0§—ay]

Mg2p=
5 Ba ar  a? ad a3

7525 59.15 43.64log—a]

AMpgop= )
P a2 ad ad

respectively.
Similar discussion for the case of 3D can be deduced from
Egs.(41), Eqg. (40), and

/

47TM: |’r//r|22a-|—

bw )2/3
4my2

2>:_

2/3
m(ar),

e*h b’ bw
( (44)

My, 2aTe| 472
where the Gaussian scaled magnetization can be obtained by

differentiation of Eq.(40). We did not attempt to calculate
the post-Gaussian correction in 3D.

C. Specific heat
The scaled LLL specific heat is defined as

dzfeff(aT)

45
322 (45)

clar)=—

and the original specific heat is related to the scaled specific

heatc in 2D via
. [7h2abT, —3t—1+b (&)
m(a
2m*b’'T 2 T

wh2aT, (—t—1+b)
+ 2c(ay) |.
m*b’T 2 (ar

1
A ET

We plot the scaled specific heat divided by the mean field
valuec,,;=1/B, in the range—30<a;<—6 on Fig. 3. The
solid line is one loop approximation, while the gray line is
the two loop approximation. At large+| the post-Gaussian
(gray dashed—dotted linés very closed to the one loop re-
sult. Finally the Gaussian approximatiaiashed—dotted
line) is a bit lower. All these lines are slightly above mean
field. On the contrary, the result of Ref. ldashed gray line

is below the mean field. Our Gaussian result and its correc-

Again, the mean field contribution dominates, so we subtraction in this range can be conveniently fitted with

it in Fig. 2. The solid line is the one loop approximation,

while the gray line is the two loop approximation. At small Cq 2 382 521. 7 363.214 —ar]
negativear the postgaussiatthe upper gray dashed—dotted c_f: 1+Bal 5+ a_ 2 2
T T T T

line) is very close to the two loop result, while the Gaussian
approximation(the dashed—dotted lings a bit lower. All of
these lines are above mean field. On the other hand, the ~ ACq [ 15.05 2211 130914 —ar]

result of Ref. 14(the gray dashed lineis below the mean Cmi A ad at at '

field. Magnetization jump at the melting point is smaller than

our precision of 2% aar= —12. Our result for the Gaussian Qualitatively the Gaussian specific heat is consistent with
magnetization and the post-Gaussian correction in this rangexperiment$ which show that the specific heat first raise
can be conveniently fitted with before dropping sharply beyond the melting point.
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APPENDIX A

In this Appendix the basic definitions are collected. Bril-
louin zone averages of products of four quasimomentum
functions are defined by

B={|e|*eier ),

Y= {(0* )20 @), (A1)

Y= (@ e vo_iei).

We also need a more general prod(wtlcpkch:3gok4> in or-

der to calculate post-Gaussian corrections. This is just a per-
turbative four-leg vertex,

2

i 2w
2 .
(@, Pr, Pk, Pk, = exr{—z (ni—np+i—

a, NiKsy 8k, —ks

FIG. 4. Reciprical hexagonal lattice pointsbelonging to three

lowest order “stars” in the mode expansion gf . +ky—ka]N[ki =Ky, ko—Ky4],
) (A2)
D. Conclusions I,+Q[* _
Mlpl2] =2 e = =5+l 120 Qy iy

In this paper, we applied the Gaussian variational prin-
ciple to the problem of thermal fluctuations in vortex lattice
state. Then the correction to it was calculated perturbatively. +12y)Qx
This generalizes corresponding treatment of fluctuations in
the homogeneous phageortex liquid) by Thouless and WwhereQ are reciprocal lattice vectors,
co-workers’ Also Umklapp processes were included in the 5 5
low temperature two loop perturbation theory expression. Q=md;+myd,. (A3)
The results of Gaussian perturbative and some nonperturba- _ _
tive approaches were compared. The perturbative correctiorfgereks —Ka+ks—ks=n;d; +nd, is assumed and the basis
(up to two loop already show that the expression of the of reciprocal lattice is d,=(2m/ay)[1,— (1/43)], d,

theory of Ref. 14 with the mean field subtracted has wrong=[0,(4x/a,/3)], ay= V4/\/3 . It is dual to the lattice
sign. The Gaussian approximation provides a rigorous loweg, = (a,,0), d,=[(a,/2),(@,v3/2)]. When k;—k,+ks

bound and is superior over the one loop result. It is valid_ k,#n,d, +n,d, the quantity vanishes. The delta function
even in the region in which the one loop diverges. In particUifrers from the Kroneker

lar the end of point below which the overheated solid exists

as a metastable state is estimatedat —4.6. Similarly the

corrected Gaussian approximation is an improvement over y[k]:% ok+Q].

the two loop result in the temperature range near the melting

line. The calculation of the post-Gaussian correction allowd=rom the above formula, one gets the following expansion of
us to estimate the precision, for example, the specific heag8, :

precision is higher than 1% for 20<a;<—6 (the melting

exp[i(llx+|2x)lly]’

. . . 2

line is located atar=—12) and higher than 0.1% faa; B Xz _ ax

< —20. The specific heat of the vortex solid is predicted to 'Bk_m%qz exp — - tik-X =2 exg - PR
be monotonidunlike the theory of Ref. 14 where there is a ’ (A4)

minimum followed by a maximupnconsistent with several

experimenté. We hope that increased sensitivity of both WhereX=nd;+nyd,. .

magnetization and specific heat experiments will test the pre- 10 Simplify the minimization equations we used the fol-

cision of the theory(see Fig. 3. lowing general identity. Any sixfold @g) symmetric func-
tion F(k) [namely a function satisfying (k) =F(k’), where
k,k’ is related by a z/6 rotatiorn] obeys
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FIG. 6. Contributions to the post-Gaussian correction to free

FIG. 5. Feynman rules of the low temperature perturbation
energy.

theory. The solid linda) denoted théd mode propagator, while the
dashed line(b) denotes theA mode propagator. Various three
leg and four leg vertices are presented (—(f) and (g)—(k), The contribution from the diagrams in Fig.(B is
respectively. —1/16(277)5fx(foooa)y, and

APPENDIX B

— 20 _ +p- +12( _aptp-
In this Appendix we specify Feynman rules and collect foooa=|Pol*(—16P5PA +8PoPA) +[P5|*(—8P5 P,
expressions for diagrams. The solid line Figa)Sepresents +16P~P*)+c.c B3
O and the dashed line Fig(H represents. Figure. 5c) is oP)*e.c. B3)
a vertex with threeO. In the coordinate space, it is
2v[¢O(0")*+c.c]. Figure §o) is —2ive'O’A"  The diagrams in Fig. ®) are — 1/16(2m)3[ (fooaz)y and
—4iveOO0*AT +c.c, Fig. %g) is 3|O(X)|* Fig. 5h) is
2007(AO"—0OA"), and Fig. &) is 400'AA"

—[0*(AT)?+ccl. _  fonaa= 16(|Po|2+|PS|2)(|PAI2+|PAI2) + ([ PSP PA 12
Other vertices, for example, formulas for diagrams in
Fig. 5(e), 5(f), 5(j), and §k), can be obtained by substituting +P3[PA]* +c.c) —32APoPEPAPa+C.C). (B4

O—iA,A——iO from formulas for diagrams in Fig.(8),
5(c), 5(h), and gg), respectively. . o ) .
The propagator in coordinate space can be written as e diagrams in Fig. @) are —v</16(2m)"[(fo00)y and

<O+<x>0+<y)>=4kaEo<k><p:(x)wtk<y)=4wP5<x,y>, fooo=|Pol2(16P5 ¢(x) @(y) + 8PS e(X) g™ (y) +c.C)
+IPo(8P5 ¢(X) @(y) +16P50(X) ¢* (y) +C.C).
(O(x)O(y)) =4 kao<k><pk<x)<o,k<y>=4wP5<x,y), (B5)
(BD)

The diagrams in Fig. @) are —v?/16(2m)*/ «(f04)y and

<O(X)O*(y)>=47Tkao(k)<pk(X)<p:(y)=47rPo(x,y).

fooa= —8(Po)?Pa ¢* (X)¢* (y) — 16(|Po|*+|P5[?)
FunctionsP, (x,Y),Px (X,y),Pa(x,y) can be defined simi-

larly. X (PA@(X)@(y)—Pag* (X)(y))
One finds three loops contribution to free energy from +8P2P% o* (X) o(y) — 32PoPS[ P o* (X) oY)
two OOOO vertex contraction, see Fig. (@, oA y oPol Pa Y
- 1/16(277)5fx<f0000>ya - PX‘P*(X)‘P*(y)]‘FC.C. (B6)
foooo:4<|PO|4+|P8|4+4|POPS|2>y' (B2)

Other contributions, Fig.(@), 6(d), 6(i), 6(g) can be obtained
Coordinates are not written explicitly since all of them areby substitutingPo«>P, P« — Pa P,——Pg in Eq.
the samePo(X,y), etc. (B2), Eq. (B3), Eq. (B5), and Eq.(B6).
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