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Thermal fluctuation correction to magnetization and specific heat of vortex solids
in type-II superconductors

Dingping Li* and Baruch Rosenstein†
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A systematic calculation of magnetization and specific heat contributions due to fluctuations of vortex lattice
in strongly type-II superconductors to precision of 1% is presented. We complete the calculation of the two
loop low temperature perturbation theory by including the umklapp processes. Then the Gaussian variational
method is adapted to calculation of thermodynamic characteristics of the two-dimensional and the three-
dimensional vortex solids in high magnetic field. Based on it as a starting point for a perturbation theory we
calculate the leading correction providing simultaneously an estimate of precision. The results are compared to
existing nonperturbative approaches.
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I. INTRODUCTION

Existence of a vortex lattice in type-II superconductors
magnetic field was predicted by Abrikosov and subseque
observed in various materials ranging from metals to highTc

cuprates. In the original treatment the mean field Ginzbu
Landau~GL! theory, which neglects thermal fluctuations
the vortex matter, was used. Thermal fluctuations are
pected to play a much larger role in highTc superconductors
than in the low temperature ones, because the Ginzburg
rameter Gi characterizing fluctuations is much larger.1 In ad-
dition, the presence of a strong magnetic field and str
anisotropy in superconductors like BSCCO effectively
duces their dimensionality, thereby further enhancing effe
of thermal fluctuations. Under these circumstances fluc
tions make the lattice softer, in turn influencing vario
physical properties like magnetization and specific he
Eventually it leads to melting of the vortex lattice into
vortex liquid far below the mean field phase transition line2,1

The first order melting transition was clearly demonstrated
both magnetization3 and specific heat experiments.4 To de-
velop a theory of these fluctuations, even in the case of l
est Landau level~LLL !, corresponding to regions of th
phase diagram ‘‘close’’ toHc2, is a very nontrivial task and
several different approaches were developed.

At the high temperature end~namely far above the mea
field transition temperature and thereby in the ‘‘vortex li
uid’’ phase! one can develop the traditional ‘‘loop’’ expan
sion. Since the melting line lies below the mean field lin
Thouless and Ruggeri5,6 proposed a perturbative expansio
which can be defined below this line. It contains one lo
together with a certain class of higher loop diagra
~‘‘bubbles’’! and therefore is ‘‘nonperturbative.’’ It wa
shown in field theory that summation of all the bubble d
grams is equivalent to the Gaussian variational approach7 In
this approach one searches for a ‘‘Gaussian’’ state having
lowest energy. The series provides accurate results at
temperatures, but become inapplicable for LLL dimensio
less temperatureaT;(T2Tm f(H))/(TH)1/2 smaller than 2
in 2D and foraT;(T2Tm f(H))/(TH)2/3 smaller than 1 in
0163-1829/2001/65~2!/024514~11!/$20.00 65 0245
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3D, both quite far above the melting line. Generally, attem
to extend the theory to lower temperature by Pade´ extrapo-
lation were not successful.8 It is in fact doubtful whether the
perturbative results based on Gaussian approximation as
ing translational invariant liquid state should be attempted
low aT .

In Ref. 9, it was shown that belowaT,25 different
Gaussian states which are no longer translationally invar
have lower energy. We will present the detailed calculat
here ~optimized perturbation theory was used to study
liquid state, see Refs. 9 and 10!. It is in general a very non-
trivial problem to find an inhomogeneous solutions of t
corresponding ‘‘gap equation’’~see Sec. IV!. However, using
previous experience with low temperature perturbat
theory,11,12 the problem can be significantly simplified an
solved using rapidly convergent ‘‘modes’’ expansion. A co
sistent perturbation theory should start from these state13

We then generalize the approach of Ref. 5 by setting u
perturbation theory around the Gaussian Abrikosov latt
state.

Magnetization and specific heat contributions due to v
tex lattices are calculated in perturbation theory around
state to next to leading order. This allows to estimate
precision of the calculation. It is the worst, about 1%, ne
the melting point ataT5210 and becomes better for lowe
aT . At low temperature the result is consistent with the fi
principles low temperature perturbation theory advanced
cently to the two loop order.11,12 The previous two loop cal-
culation is completed by including the Umklapp process
One can make several definitive qualitative conclusions
ing the improved accuracy of the results. The LLL scal
specific heat monotonously rises from its mean field value
1/bA at aT52` to a slightly higher value of 1.05/bA where
bA51.16 is Abrikosov parameter. This is at variance w
theory Ref. 14 which uses completely different ideas and
a freedom of arbitrarily choosing certain parameters on a
precision level. Although we calculate the contribution of t
LLL only, corrections due to higher Landau levels calculat
earlier in Refs. 15 and 16 using a less sophisticated met
can be included.
©2001 The American Physical Society14-1



d
nd
2D
od

S
pr
th

o
rg

e-

ng
s
e

ifi

nc

i
-

uc

L

w

nd

th-
del.
one

DINGPING LI AND BARUCH ROSENSTEIN PHYSICAL REVIEW B65 024514
The paper is organized as follows. The model is define
Sec. II. In Sec. III a brief summary of existing results a
Umklapp corrected two loop perturbative results in both
and 3D are given. Gaussian approximation and the m
expansion used is described in Sec. IV. The basic idea
expansion around the best Gaussian state is explained in
V. The leading corrections are calculated. Results are
sented and compared with perturbation theory and o
theories in Sec. VI together with conclusions.

II. MODELS

To describe fluctuations of order parameter in thin films
layered superconductors one can start with the Ginzbu
Landau free energy

F5LzE d2x
\2

2mab
uDcu22aucu21

b8

2
ucu4, ~1!

whereA5(By,0) describes a constant magnetic field~con-
sidered nonfluctuating! in Landau gauge and covariant d
rivative is defined byD[“2 i (2p/F0)A, F0[hc/e* . For
strongly type-II superconductors like the highTc cuprates
(k;100) and not too far fromHc2 ~this is the range of
interest in this paper, for the detailed discussion of the ra
of applicability see Ref. 15! magnetic field is homogeneou
to a high degree due to superposition from many vortic
For simplicity we assumea(T)5aTc(12t), t[T/Tc , al-
though this temperature dependence can be easily mod
to better describe the experimentalHc2(T). The thickness of
a layer isLz .

Throughout most of the paper we will use the cohere
lengthj5A\2/(2mabaTc) as a unit of length and

dHc2~Tc!

dT
Tc5

F0

2pj2

as a unit of magnetic field. After the order parameter field
rescaled asc2→(2aTc /b8)c2, the dimensionless free en
ergy ~the Boltzmann factor! is

F

T
5

1

vE d2xF1

2
uDcu22

12t

2
ucu21

1

2
ucu4G . ~2!

The dimensionless coefficient describing the strength of fl
tuations is

v5A2 Gip2t5
mabb8

2\2aLz

t, Gi[
1

2 S 32pe2k2j2Tc

c2h2Lz
D 2

,

~3!

where Gi is the Ginzburg number in 2D . When (12t
2b)/12b!1, the lowest Landau level~LLL ! approximation
can be used.15 The model then simplifies due to the LL
constraint, 2(D2/2)c5(b/2)c, rescaling x→x/Ab, y
→y/Ab, anducu2→ucu2Abv/4p, one obtains

f 5
1

4pE d2xFaTucu21
1

2
ucu4G , ~4!
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where the 2D LLL reduced temperature

aT[2A4p

bv

12t2b

2
~5!

is the only parameter in the theory.17,5

For 3D materials with asymmetry along thez axis the GL
model takes the form

F5E d3x
\2

2mab
US“2

ie*

\c
ADcU2

1
\2

2mc
u]zcu2

1aucu21
b8

2
ucu4 ~6!

which can be again rescaled into

f 5
F

T
5

1

vE d3xF1

2
uDcu21

1

2
u]zcu22

12t

2
ucu21

1

2
ucu4G ,

~7!

by x→jx, y→jy, z→jz/g1/2, c2→(2aTc /b8)c2, where
g[mc /mab is anisotropy. The Ginzburg number is no
given by

Gi[
1

2 S 32pe2k2jTcg
1/2

c2h2 D 2

. ~8!

Within the LLL approximation, and rescalingx→x/Ab, y
→y/Ab, z→z(bv/4pA2)21/3, c2→(bv/4pA2)2/3c2, the
dimensionless free energy becomes

f 5
1

4pA2
E d3xF1

2
u]zcu21aTucu21

1

2
ucu4G . ~9!

The 3D reduced temperature is

aT52S bv

4pA2
D 22/3

12t2b

2
. ~10!

From now on we work with rescaled quantities only a
relate them to measured quantities in Sec. V.

III. PERTURBATION THEORIES AND EXISTING
NONPERTURBATIVE RESULTS

A variety of perturbative as well as nonperturbative me
ods have been used to study this seemingly simple mo
There are two phases. Neglecting thermal fluctuations,
obtains the lowest energy configurationc50 for aT.0 and

c5A2
aT

bA
w,

w5A 2p

ApaD
(

l 52`

`

expH i Fp l ~ l 21!

2
1

2p

aD
lxG

2
1

2 S y2
2p

aD
l D 2J ~11!
4-2
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THERMAL FLUCTUATION CORRECTION TO . . . PHYSICAL REVIEW B65 024514
for aT,0, whereaD5A4p/A3 is the lattice spacing in ou
units andbA51.16.

A. High temperature expansion in the liquid phase

Homogeneous ‘‘vortex liquid’’ phase~which is not sepa-
rated from the ‘‘normal’’ phase by a transition! has been
studied using high temperature perturbation theory by Th
less and Ruggeri.5 Unfortunately these asymptotic serie
~even pushed to a very high orders18! are applicable only
when aT.2. In order to extend the results to loweraT ,
attempts have been made to Pade´ resum the series6 imposing
a constraint that the result matches the Abrikosov mean fi
as aT→2`. However, if no matching to the limit is im
posed, the perturbative results cannot be significa
improved.8 Experiments,3,4 Monte Carlo simulations19 and
nonperturbative Bragg chain approximation20 all point out
that there is a first order melting transition aroundaT
5212. If this is the case it is difficult to support such
constraint.

B. Low temperature perturbation theory in the solid phase:
Umklapp processes

Recently a low temperature perturbation theory arou
Abrikosov solution Eq.~11! was developed and shown to b
consistent up to the two loop order.11,12,16Since we will use
in the present study the same basis and notations and
will compare to the perturbative results we recount her
few basic expressions. The order parameter fieldc is divided
into a nonfluctuating~mean field! part and a small fluctuation

c~x!5A2aT

bA
w~x!1x~x!. ~12!

The fieldx can be expanded in a basis of quasi moment
eigenfunctions on LLL in 2D:

wk5A 2p

ApaD
(

l 52`

`

expH i Fp l ~ l 21!

2
1

2p~x2ky!

aD
l 2xkxG

2
1

2 S y1kx2
2p

aD
l D 2J . ~13!

Then we diagonalize the quadratic term of free energy
~4! to obtain the spectrum. Instead of the complex fieldx,
two ‘‘real’’ fields O andA will be used,

x~x!5
1

A2
E

k

exp@2 iuk/2#wk~x!

~A2p!2
~Ok1 iAk!,

~14!

x* ~x!5
1

A2
E

k

exp@ iuk/2#wk* ~x!

~A2p!2
~O2k2 iA2k!,

where gk5ugkuexp@iuk# and definition ofgk ~and all other
definitions of functions! can be found in Appendix A. The
eigenvalues found by Eilenberger in Ref. 21 are
02451
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eA~k!52aTS 211
2

bA
bk2

1

bA
ugku D ,

~15!

eO~k!52aTS 211
2

bA
bk1

1

bA
ugku D .

where bk is defined in Appendix A. In particular, whenk
→0 ~Ref. 22!,

eA'0.12uaTuuku4. ~16!

The second excitation modeeO has a finite gap. The free
energy to the two loop order was calculated in Ref. 12, ho
ever the Umklapp processes were not included in some
loop corrections. These processes correspond to momen
nonconserving~up to integer times inverse lattice constan!
four leg vertices@see Appendix A, Eq.~A2!#. We therefore
recalculated these coefficients. The result in 2D is@see Figs.
1~a! and 1~b!#

f eff 2D52
aT

2

2bA
12 log

uaTu

4p2
2

19.9

aT
2

1cv , ~17!

where cv5^ log@(eA(k)eO(k)/aT
2#&522.92. In 3D, similar

calculation~extending the one carried in Ref. 11 to Umklap
processes! gives

f eff 3D52
aT

2

2bA
12.848uaTu1/21

2.4

aT
. ~18!

C. Nonperturbative methods

Few nonperturbative methods have been attempted.
sanovic and co-workers14 developed a method based on
approximate separation of the two energy scales. The la
contribution ~98%! is the condensation energy, while th
smaller one~2%! describes motion of the vortices. The resu
for energy in 2D is

f eff52
aT

2U2

4
2

aT
2U

2 AU2

4
1

2

aT
2
12 arc sinhFaTU

2A2
G ,

~19!

U5
1

2 F 1

A2
1

1

AbA

1tanhF aT

4A2
1

1

2G S 1

A2
2

1

AbA
D G .

Corresponding expressions in 3D were also derived.
No melting phase transition is seen since it belongs to

2% which cannot be accounted for within this approa
There exist several Monte Carlo~MC! simulations of the
system.19 The expression Eq.~19! agrees quite well with
high temperature perturbation theory and MC simulatio
and has been used to fit both magnetization and specific
experiments,4 but only the mean field level agrees with lo
temperature perturbation theory. Expanding Eq.~19! in 1/aT ,
one obtains an opposite sign of the one loop contribution,
Fig. 1~a! and discussion in Sec. VI.

Other interesting nonperturbative methods include
1/N expansion23,24 in which the GL model is generalized t
4-3
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DINGPING LI AND BARUCH ROSENSTEIN PHYSICAL REVIEW B65 024514
an N component theory and the phenomenological ‘‘Bra
chain fluctuation approximation’’20 based on the elasticity
theory of the vortex matter.

IV. GAUSSIAN VARIATIONAL APPROACH

A. General anzatz

Gaussian variational approach originated in quantum
chanics and has been developed in various forms and a
of physics.25,26 In quantum mechanics it consists of choosi
a Gaussian wave function which has the lowest energy
pectation value. When fermionic fields are present the
proximation corresponds to BCS or Hartree–Fock va
tional state. In scalar field theory one optimizes the quadr
part of the free energy

f 5E 2
1

2
faD21fa1V~fa!

5E 1

2
~fa2va!G21ab~fb2vb!1Ṽ~G,fa!

5K1Ṽ. ~20!

To obtain ‘‘shift’’ va and ‘‘width of the Gaussian’’G, one
minimizes the Gaussian effective free energy,26 which is an
exact upper bound on the energy~see proof in Ref. 25!. The
result of the Gaussian approximation can be thought o
resummation of all the ‘‘cacti’’ or loop diagrams.5,7 Further
corrections will be obtained in Sec. V by inserting this so
tion for G and taking more terms in the expansion ofZ.

B. 2D Abrikosov vortex lattice

In our case of one complex field one should consider
most general quadratic form

K5E
x,y

~c* ~x!2v* ~x!!G21~x,y!~c~y!2v~y!!1~c

2v~x!!H* ~c2v~x!!1~c* 2v* ~x!!H~c* 2v* ~x!!.

~21!

Assuming hexagonal symmetry~a safe assumption for th
present purpose!, the shift should be proportional to th
mean field solution Eq.~12!, v(x)5vw(x), with a constantv
taken real thanks to global U~1! gauge symmetry. On LLL,
as in perturbation theory, we will use variablesOk and Ak
defined in Eq.~14! instead ofc(x),

c~x!5vw~x!1
1

A22p
E

k
expF2

iuk

2 Gwk~x!~Ok1 iAk!.

~22!

The phase defined after Eq.~14! is quite important for sim-
plification of the problem and was introduced for future co
venience. The most general quadratic form is
02451
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K5
1

8pEk
OkGOO

21~k!O2k1AkGAA
21~k!A2k

1OkGOA
21~k!A2k1AkGOA

21~k!O2k , ~23!

with matrix of functionsG(k) on Brillouin zone to be deter-
mined together with the constantv by the variational prin-
ciple. The corresponding Gaussian free energy is

f Gauss5aTv21
bA

2
v4222^ log@~4p!2 det~G!#&k

1^aT~GOO~k!1GAA~k!!1v2@~2bk1ugku!GOO~k!

1~2bk2ugku!GAA~k!#&k^bk2 l@GOO~k!1GAA~k!#

3@GOO~ l !1GAA~ l !#&k,l1
1

2bA
$^ugku~GOO~k!

2GAA~k!!&214^ugkuGOA~k!&k
2%, ~24!

where ^•••&k denotes average over the Brillouin zone. T
minimization equations are

v252
aT

bA
2

1

bA
^~2bk1ugku!GOO~k!

1~2bk2ugku!GAA~k!&k , ~25!

@G~k!21#OO5aT1v2~2bk1ugku!

1 K S 2bk2 l1
ugkuug l u

bA
DGOO~ l !

1S 2bk2 l2
ugkuug l u

bA
DGAA~k!L

l

, ~26!

@G~k!21#AA5aT1v2~2bk2ugku!

1 K S 2bk2 l1
ugkuug l u

bA
DGAA~ l !

1S 2bk2 l2
ugkuug l u

bA
DGOO~k!L

l

, ~27!

@G~k!21#OA52
GOA~k!

GOO~k!GAA~k!2GOA~k!2

54
ugku
bA

^ug l uGOA~ l !& l . ~28!

These equations look quite intractable, however they can
simplified. The crucial observation is that after we have
serted the phase exp@2iuk/2# in Eq. ~22! using our experi-
ence with perturbation theory,GAO appears explicitly only
on the right-hand side of the last equation. It also implici
appears on the left-hand side due to a need to invert
matrix G. Obviously GOA(k)50 is a solution and in this
case the matrix diagonalizes. However general solution
be shown to differ from this simple one just by a glob
4-4
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gauge transformation. Subtracting Eq.~26! from Eq.~27! and
using Eq.~28!, we observe that matrixG21 has the form

G21[S EO~k! EOA~k!

EOA~k! EA~k!
D

5S E~k!1D1ugku D2ugku

D2ugku E~k!2D1ugku
D ,

whereD1 ,D2 are constants. Substituting this into the Gau
ian energy one finds that it depends onD1 ,D2 via the com-
bination D5AD1

21D2
2 only. Therefore without loss of gen

erality we can setD250, thereby returning to theGOA50
case.27

Using this observation the gap equations significan
simplify. The functionE(k) and the constantD satisfy

E~k!5aT12v2bk12K bk2 l S 1

EO~ l !
1

1

EA~ l ! D L
l

, ~29!

bAD5aT22K bkS 1

EO~k!
1

1

EA~k! D L
k

. ~30!

The Gaussian energy becomes

f 5v2aT1
bA

2
v41 f 11 f 21 f 3 ,

~31!

f 15K logFEO~k!

4p2 G1 logFEA~k!

4p2 G L
k

,

f 25221 K aTS 1

EO~k!
1

1

EA~k! D1v2F ~2bk1ugku!

3
1

EO~k!
1~2bk2ugku)

1

EA~k!G L
k

,

~32!

f 35 K bk2 lF 1

EO~k!
1

1

EA~k!GF 1

EO~ l !
1

1

EA~ l !G L
k,l

1
1

2bA
F K ugkuS 1

EO~k!
2

1

EA~k! D L
k
G2

.

Using Eq.~29!, a formula

bk5 (
n50

`

xnbn~k!,

bn~k![ (
uXu25naD

2
exp@ ik•X#

derived in Appendix A and the hexagonal symmetry of t
spectrum, one deduces thatE(k) can be expanded in
‘‘modes’’
02451
-

y
E~k!5( Enbn~k!. ~33!

The integern determines the distance of a points on recip
cal lattice from the origin~see Fig. 4! and x[exp@2aD

2/2#
5exp@22p/A3#50.0265. One estimates thatEn.xnaT ,
therefore the coefficients decrease exponentially withn. Note
~see Fig. 4! that for some integers, for example,n52,5,6,
bn50. Retaining only the firsts modes will be called ‘‘thes
mode approximation.’’ We minimized numerically th
Gaussian energy by varyingv,D and the first few modes o
E(k). The sample results for variousaT and number of
modes are given in Table I.

We see that in the interesting region of not very low te
peratures the energy converges extremely fast. In prac
two modes are quite enough. The results for the Gaus
energy are plotted in Fig. 1 and will be compared with oth
approaches in Sec. VI. Furthermore one can show
aroundaT,24.6, the Gaussian liquid energy is larger th
the Gaussian solid energy. So naturally whenaT,24.6, one
should use the Gaussian solid to set up a perturbation the
For aT.24.2, there is no solution for the gap equations.

C. 3D Abrikosov vortex lattice

In 3D, we expand in bases of plane waves in the th
direction times previously used quasimomentum function

c~x,z!5vw~x!1
1

A2~2p!3/2Ek,kz

expF2
iuk

2 G
3wk~x!expi ~kz•z!~Ok1 iAk!. ~34!

The quadratic form is

K5
1

8pA2
E

k
OkGOO

21~k!O2k1AkGAA
21~k!A2k , ~35!

where integration overk is understood as integration ove
Brillouin zone and overkz . Most of the derivation and im-
portant observations are intact. The modifications are

TABLE I. Mode expansion 2D.

aT 1 mode 2 modes 3 modes

21000 2446 023.8395 2431 171.9948 2431 171.9757
2300 240 131.292 17 238 796.0277 238 796.022 97
2100 24450.416 36 24303.286 85 24303.285 93
250 21106.515 75 21070.638 06 21070.637 91
220 2171.678 045 2166.690 727 2166.690 827
210 239.292 885 238.433 571 238.433 645
25 27.315 3440 27.223 7197 27.223 7422
4-5
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GOO
21~k!5

kz
2

2
1EO~k!,

GAA
21~k!5

kz
2

2
1EA~k!.

The corresponding Gaussian free energy density~after in-
tegration overkz! is

f 5v2aT1
bA

2
v41 f 11 f 21 f 3 ,

~36!
f 15^AEO~k!1AEA~k!&k ,

f 25aTK 1

AEO~k!
1

1

AEA~k!
L

k

1K v2F ~2bk1ugku!

3
1

AEO~k!
1~2bk2ugkD 1

AEA~k!
G

k

,

~37!

f 35K bk2 lF 1

AEO~k!
1

1

AEA~k!
GF 1

AEO~ l!
1

1

AEA~ l!
G L

k,l

1
1

2bA
F K ugkuS 1

AEO~k!
2

1

AEA~k!
D L

k
G 2

.

Minimizing the above energy, gap equations similar to tha
2D can be obtained. One finds that

EO~k!5E~k!1Dugku,

EA~k!5E~k!2Dugku.

E(k) can be solved by modes expansion 2D. We minimiz
numerically the Gaussian energy by varyingv,D and first
few modes ofE(k). The sample results of free energy de
sity for variousaT with three modes are given in Table II.

In practice two modes are also quite enough in 3D. As
the case of 2D, one can show that aroundaT,25.5, the
gaussian liquid energy is larger than the Gaussian solid
ergy. So naturally whenaT,25.5, one should use th
Gaussian solid to set up a perturbation theory in 3D. Wh
aroundaT.25, there is no solution for the gap equation

V. CORRECTIONS TO THE GAUSSIAN APPROXIMATION

In this section, we calculate the lowest order correction
the Gaussian approximation~that will be called post-
Gaussian correction!, which will determine the precision o
02451
n

d

-

n

n-

n

o

the Gaussian approximation. This is necessary in order t
experiments and compare with low temperature perturba
theory and other nonperturbative methods.

First we review a general idea behind calculating syste
atic corrections to the Gaussian approximation.25 The proce-
dure is rather similar to calculating corrections to t
Hartree–Fock approximations used in fermionic syste
Gaussian variational principle provided us with the best~in a
certain sense! quadratic part of the free energyK from which
the ‘‘steepest descent’’ corrections can be calculated.
free energy is divided into the quadratic part and a ‘‘sma
perturbationṼ. For a general scalar theory defined in E
~20! it takes the form

f 5K1aṼ,

K5 1
2 faG21abfb, ~38!

Ṽ52 1
2 faD21fa1V~fa!2 1

2 faG21abfb.

Here the auxiliary parametera was introduced to set up
perturbation theory. It will be set to one at the end of t
calculation. Expanding the logarithm of the statistical sum
powers ofa,

Z5E Dfa exp~2K !exp~2aṼ!

5E Dfa(
n50

1

n!
~aṼ!n exp~2K !, ~39!

one retains only the first few terms. It was shown in Ref.
that generally only two-particle irreducible diagrams contr
ute to the post-Gaussian correction. The Gaussian app
mation corresponds to retaining only the first two termsn
50,1, while the post-Gaussian correction retains in addit
the contribution of ordera2.

Feynman rules in our case are shown in Fig. 5. We h
two propagators for fieldsA and O and three and four leg
vertices. Using these rules the postgaussian correction is
sented on Fig. 6 as a set of two and three loop diagrams.
corresponding expressions are given in Appendix B. T
Brillouin zone averages were computed numerically us
the three modes gaussian solution of the previous sec
Now we turn to discussion of the results.
TABLE II. Mode expansion 3D.

aT 2300 2100 250 230 220 210 25.5

f 238 757.2294 24283.2287 21057.6453 2372.2690 2159.5392 233.9873 26.5103
4-6
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VI. RESULTS, COMPARISON WITH OTHER
APPROACHES AND CONCLUSION

Results for LLL scaled energy, magnetization and spec
heat in 2D are presented in Figs. 1, 2, and 3, respective

A. Energy

The Gaussian energy provides a rigorous upper bound
free energy.25 Figure 1~a! shows the 2D Gaussian energy~the
dashed–dotted line!, which in the range ofaT from 230 to
210 is just above the mean field~the solid gray line!. This is
because it correctly accounts for the~positive! logarithmic
one loop correction of Eq.~17!. In contrast the results of th
theory by Tesanovicet al.14 ~the dashed gray line! are lower
than the mean field. This reflects the fact that although
correct largeuaTu limit is built in, the expansion of the ex
pression Eq.~19! gives negative coefficient of the loguaTu
term. This is inconsistent with both the low temperature p
turbation theory and the Gaussian approximation. The dif
ence between this theory and our result is smaller than
only whenaT,30 or at smallaT below the 2D melting line
~which occurs ataT5213 according to Monte Carlo19 and

FIG. 1. Scaled free energy of vortex solid. From top to botto
Gaussian approximation~dashed–dotted line!, mean field ~solid
line!, theory Ref. 14~dashed line!. Inset, corrections to mean fiel
calculated using~from top to bottom! Gaussian~dashed–dotted
line!, one loop perturbation theory~dotted line!, and theory Ref. 14
~dashed line!. ~b! More refined comparison of different approxim
tions to free energy. Mean field as well as the one loop perturba
contributions are subtracted.
02451
c

on

e

r-
r-
%

phenomenological estimates18,1! where the lines become
closer again. It never gets larger than 10% though. To ef
tively quantitatively study the model one has to subtract
dominant mean field contribution. This is done in the inset
Fig. 1~a!. We plot the gaussian result~the dashed–dotted
line!, the one loop perturbative result~the solid line! and Eq.
~19! ~the dashed gray line! in an expanded region2100
,aT,210. The Gaussian approximation is a bit higher th
the one loop.

To determine the precision of the Gaussian approxima
and compare with the perturbative two loop result, we f
ther subtracted the one loop contribution on Fig. 1~b!. As
expected the post-Gaussian result is lower than the Gaus
though higher than the two loop. The difference between
Gaussian and the post-Gaussian approximation in the re
shown is aboutuD f u50.2, which translates into 0.2% ataT
5230, 0.4% ataT5220 and 2% ataT5212. The fit for

,

e

FIG. 2. Thermal fluctuations correction to magnetization of v
tex solid. From top to bottom, one and two loop perturbation the
~solid lines p1 and p2, respectively!, Gaussian and post-Gaussia
approximations~dashed–dotted lines g and pg, respectively!, theory
Ref. 14~dashed line, t!.

FIG. 3. Scaled specific heat Eq.~45! normalized by the mean
field. One and two loop perturbation theory~solid lines p1 and p2,
respectively!, Gaussian and post-Gaussian approximatio
~dashed–dotted lines g and pg, respectively!, theory Ref. 14
~dashed line, t!.
4-7
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the Gauss and post-Gaussian energy in the region230,aT
,26 are

f g2D52
aT

2

2bA
12 loguaTu10.1192

19.104

aT

2
60.527 loguaTu

aT
2

1
36.511

aT
2

1cv ,

f pg2D52
aT

2

2bA
12 loguaTu10.0682

11.68

aT

2
60.527 loguaTu

aT
2

1
38.705

aT
2

1cv .

In 3D, similarly one found that

f g3D52
aT

2

2bA
12.848 35uaTu1/21

3.1777

aT

2
0.8137 log2@2aT#

aT
. ~40!

B. Magnetization

The dimensionless LLL magnetization is defined as

m~aT!52
d feff~aT!

daT
~41!

and the measure magnetization is

4pM52
e* h

cmab
^ucu2&52

e* h

cmab
uc r u2

b8

2aTc
Abv

4p
,

~42!

wherec is the order parameter of the original model, andc r
is the rescaled one, which is equal tod feff(aT)/daT . Thus

4pM5
e* h

cmab

b8

2aTc
Abv

4p
m~aT!. ~43!

We plot the scaled magnetization in region230,aT,26.
Again, the mean field contribution dominates, so we subt
it in Fig. 2. The solid line is the one loop approximatio
while the gray line is the two loop approximation. At sma
negativeaT the postgaussian~the upper gray dashed–dotte
line! is very close to the two loop result, while the Gauss
approximation~the dashed–dotted line! is a bit lower. All of
these lines are above mean field. On the other hand,
result of Ref. 14~the gray dashed line! is below the mean
field. Magnetization jump at the melting point is smaller th
our precision of 2% ataT5212. Our result for the Gaussia
magnetization and the post-Gaussian correction in this ra
can be conveniently fitted with
02451
ct

n

he

ge

mg2D5
aT

bA
2

2

aT
2

19.10

aT
2

1
133.55

aT
3

2
121.05 log@2aT#

aT
3

,

Dmpg2D5
7.525

aT
2

2
59.15

aT
3

1
43.64 log@2aT#

aT
3

,

respectively.
Similar discussion for the case of 3D can be deduced fr

Eqs.~41!, Eq. ~40!, and

4pM52
e* h

cmab
^ucu2&52

e* h

cmab
uc r u2

b8

2aTc
S bv

4pA2
D 2/3

5
e* h

cmab

b8

2aTc
S bv

4pA2
D 2/3

m~aT!, ~44!

where the Gaussian scaled magnetization can be obtaine
differentiation of Eq.~40!. We did not attempt to calculate
the post-Gaussian correction in 3D.

C. Specific heat

The scaled LLL specific heat is defined as

c~aT!52
d2f eff~aT!

daT
2

~45!

and the original specific heat is related to the scaled spe
heatc in 2D via

C5
1

4pj2T
F2b1Ap\2abTc

2m* b8T

23t211b

2
m~aT!

1
p\2aTc

m* b8T

~2t211b!

2
2c~aT!G .

We plot the scaled specific heat divided by the mean fi
valuecm f51/bA in the range230,aT,26 on Fig. 3. The
solid line is one loop approximation, while the gray line
the two loop approximation. At largeuaTu the post-Gaussian
~gray dashed–dotted line! is very closed to the one loop re
sult. Finally the Gaussian approximation~dashed–dotted
line! is a bit lower. All these lines are slightly above mea
field. On the contrary, the result of Ref. 14~dashed gray line!
is below the mean field. Our Gaussian result and its corr
tion in this range can be conveniently fitted with

cg

cm f
511bAS 2

aT
2

1
38.2

aT
3

2
521.7

aT
4

1
363.2 ln@2aT#

aT
4 D

Dcg

cm f
5bAS 2

15.05

aT
3

1
221.1

aT
4

2
130.9 ln@2aT#

aT
4 D .

Qualitatively the Gaussian specific heat is consistent w
experiments4 which show that the specific heat first rais
before dropping sharply beyond the melting point.
4-8
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D. Conclusions

In this paper, we applied the Gaussian variational pr
ciple to the problem of thermal fluctuations in vortex latti
state. Then the correction to it was calculated perturbativ
This generalizes corresponding treatment of fluctuations
the homogeneous phase~vortex liquid! by Thouless and
co-workers.5 Also Umklapp processes were included in t
low temperature two loop perturbation theory expressi
The results of Gaussian perturbative and some nonpertu
tive approaches were compared. The perturbative correct
~up to two loop! already show that the expression of t
theory of Ref. 14 with the mean field subtracted has wro
sign. The Gaussian approximation provides a rigorous lo
bound and is superior over the one loop result. It is va
even in the region in which the one loop diverges. In parti
lar the end of point below which the overheated solid ex
as a metastable state is estimated ataT524.6. Similarly the
corrected Gaussian approximation is an improvement o
the two loop result in the temperature range near the mel
line. The calculation of the post-Gaussian correction allo
us to estimate the precision, for example, the specific h
precision is higher than 1% for220,aT,26 ~the melting
line is located ataT5212) and higher than 0.1% foraT

,220. The specific heat of the vortex solid is predicted
be monotonic~unlike the theory of Ref. 14 where there is
minimum followed by a maximum! consistent with severa
experiments.4 We hope that increased sensitivity of bo
magnetization and specific heat experiments will test the
cision of the theory~see Fig. 3!.
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FIG. 4. Reciprical hexagonal lattice pointsX belonging to three
lowest order ‘‘stars’’ in the mode expansion ofbk .
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APPENDIX A

In this Appendix the basic definitions are collected. Br
louin zone averages of products of four quasimoment
functions are defined by

bk5^uwu2wkWwkW
* &,

gk5^~w* !2w2kWwkW&, ~A1!

gk,l5^wk* w2k* w2 lWw lW&.

We also need a more general product^wk1
* wk2

wk3
* wk4

& in or-

der to calculate post-Gaussian corrections. This is just a
turbative four-leg vertex,

^wk1
* wk2

wk3
* wk4

&5expF ip2

2
~n1

22n1!1 i
2p

aD
n1k3yGdq@k12k2

1k32k4#l@k12k2 ,k22k4#,
~A2!

l@ l1 ,l2#5(
Q

expF2
u l11Qu2

2
1 i ~ l 1x1 l 2x!Qy2 i ~ l 1y

1 l 2y!QxGexp@ i ~ l 1x1 l 2x!l 1y#,

whereQ are reciprocal lattice vectors,

Q5m1d̃11m2d̃2 . ~A3!

Herek12k21k32k45n1d̃11n2d̃2 is assumed and the bas
of reciprocal lattice is d̃15(2p/aD)@1,2(1/A3)#, d̃2

5@0,(4p/aDA3)#, aD5A4p/A3 . It is dual to the lattice
e15(aD,0), d25@(aD/2),(aDA3/2)#. When k12k21k3

2k4Þn1d̃11n2d̃2 the quantity vanishes. The delta functio
differs from the Kroneker,

dq@k#5(
Q

d@k1Q#.

From the above formula, one gets the following expansion
bk :

bk5 (
m1,m2

expF2
uXu2

2
1 ik•XG5(

n
expF2

aD
2

2
nGbn~k!,

~A4!

whereX5n1d11n2d2.
To simplify the minimization equations we used the fo

lowing general identity. Any sixfold (D6) symmetric func-
tion F(k) @namely a function satisfyingF(k)5F(k8), where
k,k8 is related by a 2p/6 rotation# obeys

E
k
F~k!gkgk,l5

g l

bA
E

k
F~k!ugku2, ~A5!

wheregk andgk,l are defined in Eq.~A1!. This can be seen
by expandingF in Fourier modes and symmetrizing.
4-9
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APPENDIX B

In this Appendix we specify Feynman rules and colle
expressions for diagrams. The solid line Fig. 5~a! represents
O and the dashed line Fig. 5~b! representsA. Figure. 5~c! is
a vertex with threeO. In the coordinate space, it i
2v@wO(O1)21c.c.#. Figure 5~c! is 22ivw1O2A1

24ivwOO1A11c.c, Fig. 5~g! is 1
2 uO(x)u4, Fig. 5~h! is

2OO1(AO12OA1), and Fig. 5~i! is 4OO1AA1

2@O2(A1)21c.c.#.
Other vertices, for example, formulas for diagrams

Fig. 5~e!, 5~f!, 5~j!, and 5~k!, can be obtained by substitutin
O→ iA,A→2 iO from formulas for diagrams in Fig. 5~d!,
5~c!, 5~h!, and 5~g!, respectively.

The propagator in coordinate space can be written as

^O1~x!O1~y!&54pE
k
EO~k!wk* ~x!w2k* ~y!54pPO

1~x,y!,

^O~x!O~y!&54pE
k
EO~k!wk~x!w2k~y!54pPO

2~x,y!,

~B1!

^O~x!O1~y!&54pE
k
EO~k!wk~x!wk* ~y!54pPO~x,y!.

FunctionsPA
1(x,y),PA

2(x,y),PA(x,y) can be defined simi-
larly.

One finds three loops contribution to free energy fro
two OOOO vertex contraction, see Fig. 6~a!,
21/16(2p)5*x^ f oooo&y ,

f oooo54^uPOu41uPO
1u414uPOPO

1u2&y . ~B2!

Coordinates are not written explicitly since all of them a
the samePO(x,y), etc.

FIG. 5. Feynman rules of the low temperature perturbat
theory. The solid line~a! denoted theO mode propagator, while the
dashed line~b! denotes theA mode propagator. Various thre
leg and four leg vertices are presented in~c!–~f! and ~g!–~k!,
respectively.
02451
t

The contribution from the diagrams in Fig. 6~b! is
21/16(2p)5*x^ f oooa&y , and

f oooa5uPOu2~216PO
1PA

218POPA* !1uPO
1u2~28PO

1PA
2

116POPA* !1c.c. ~B3!

The diagrams in Fig. 6~c! are21/16(2p)5*x^ f ooaa&y and

f ooaa516~ uPOu21uPO
1u2!~ uPAu21uPA

1u2!14~@PO
1#2@PA

2#2

1PO
2 @PA

2 #* 1c.c.!232~PO
2PO* PA

1PA1c.c.!. ~B4!

The diagrams in Fig. 6~f! are2v2/16(2p)4*x^ f ooo&y and

f ooo5uPOu2~16PO
1w~x!w~y!18PO* w~x!w* ~y!1c.c.!

1uPO
1u2~8PO

1w~x!w~y!116PO* w~x!w* ~y!1c.c.!.

~B5!

The diagrams in Fig. 6~h! are2v2/16(2p)4*x^ f ooa&y and

f ooa528~PO
2!2PA

1w* ~x!w* ~y!216~ uPOu21uPO
1u2!

3„PA
1w~x!w~y!2PAw* ~x!w~y!…

18PO
2 PA* w* ~x!w~y!232POPO

2@PA
1w* ~x!w~y!

2PA* w* ~x!w* ~y!#1c.c. ~B6!

Other contributions, Fig. 6~e!, 6~d!, 6~i!, 6~g! can be obtained
by substituting PO↔PA, PA

1↔2PO,
1 PA

2↔2PO
2 in Eq.

~B2!, Eq. ~B3!, Eq. ~B5!, and Eq.~B6!.

n
FIG. 6. Contributions to the post-Gaussian correction to f

energy.
4-10
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