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Optimized perturbation theory in the vortex liquid of type-II superconductors
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We develop an optimized perturbation theory for the Ginzburg–Landau description of thermal fluctuations
effects in the vortex liquids. Unlike the high temperature expansion which is asymptotic, the optimized
expansion is convergent. Radius of convergence on the lowest Landau level isaT523 in two dimensions~2D!
andaT525 in three dimensions~3D!. It allows a systematic calculation of magnetization and specific heat
contributions due to thermal fluctuations of vortices in strongly type-II superconductors to a very high preci-
sion. The results are in good agreement with existing Monte Carlo simulations and experiments. Limitations of
various nonperturbative and phenomenological approaches are noted. In particular we show that there is no
exact intersection point of the magnetization curves both in 2D and 3D.
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I. INTRODUCTION

Thermal fluctuations play a much larger role in highTc

superconductors than in the low temperature ones bec
the Ginzburg parameter Gi characterizing fluctuations
much larger.1 In addition the presence of magnetic field a
strong anisotropy in superconductors like BSCCO effectiv
reduces their dimensionality thereby further enhancing
fects of thermal fluctuations. Under these circumstances
mean field line separating Abrikosov lattice from ‘‘norma
phase becomes a phase transition between vortex lattice
liquid far below the mean field phase transition line2,1 clearly
seen in both magnetization3 and specific heat experiments4

Between the mean field transition line and the melting po
physical quantities like the magnetization, conductivity, a
specific heat depend strongly on fluctuations. Several exp
mental observations call for a refined precise theory. For
ample, a striking feature of magnetization curves intersec
at the same point (T* ,H* ) was observed in a wide rage o
magnetic fields in both layered~2D or quasi-2D!5 materials
and more isotropic ones.6 To develop a quantitative theory o
these fluctuations even in the case of the lowest Landau l
~LLL ! corresponding to regions of the phase diagr
‘‘close’’ to Hc2 , is a very nontrivial task and several differe
approaches were developed.

A long time ago Thouless and Ruggeri7,8 proposed a per-
turbative expansion around a homogeneous~liquid! state in
which all the ‘‘bubble’’ diagrams~see Fig. 5! are resummed
Unfortunately they proved that the series are asymptotic
although the first few terms provide accurate results at v
high temperatures, the series become inapplicable for L
dimensionless temperatureaT ; (T2Tm f(H))/(TH)1/2

smaller than 2 in 2D quite far above the melting line~be-
lieved to be located aroundaT5212). Generally attempts to
extend the theory to lower temperatures by the Borel tra
form or Pade extrapolation were not successful.9 Several
nonperturbative methods have been also attempted.

Originally the RG method was proposed2 and developed10

although, since the transition is first order, no solutions of
RG equations can been found. The set of perturbative ‘‘p
quet’’ diagrams11 have been resummed and the largeN limit
0163-1829/2001/65~2!/024513~10!/$20.00 65 0245
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have been considered.12 Tesanovic and co-workers deve
oped a method based on an approximate separation o
two energy scales13 in both 2D and 3D. The larger contribu
tion ~98%! is the condensation energy, while the smaller o
~2%! describes motion of the vortices. The theory expla
the intersection of the magnetization curves. This ques
has been tackled in 2D by rather phenomenological appro
in Ref. 14. Some Monte Carlo simulations are available.15,16

Meantime experimental precision increased dramatica
New methods like measurement of magnetization using
Hall probes3 were invented. One can achieve a precision t
allows clearly to see a tiny magnetization jumps of only 0
Oe in BSCCO and a sharp peak in specific heat in YBCO

In this paper we apply optimized perturbation theo
~OPT! first developed in field theory17–19 to both the 2D and
3D LLL model. It allows to obtain a convergent series~rather
than asymptotic! and therefore to calculate magnetizatio
and specific heat of vortex liquids with definite precisio
The precision for various values of the LLL scaled tempe
tureaT are given in Tables III and IV. The radius of conve
gence isaT523 in 2D andaT525 in 3D. One the basis o
this one can make several definitive qualitative conclusio
The intersection of the magnetization lines in only appro
mate not only in 3D~the result already observed in Mon
Carlo simulation,16! but also in 2D. The theory by Tesanov
et al.13 in 2D describes the physics remarkably well in hig
temperatures, but deviates on the 5–10 % precision leve
aT522. Part of these results~the 2D! has been briefly pre-
sented in Ref. 20.

The paper is organized as follows. The models are defi
in Sec. II and the general OPT described in Sec. III. The
and the 3D calculations are described in Sec. IV. Results
comparison with other theories and experiments are give
Sec. V. We conclude in Sec. VI.

II. MODELS

A. The 2D model

To describe fluctuations of order parameter in thin films
layered superconductors one can start with the Ginzbu
Landau free energy:
©2001 The American Physical Society13-1
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F5LzE d2x
\2

2mab
uDcu22aucu21

b8

2
ucu4, ~1!

whereA5(By,0) describes a constant magnetic field~con-
sidered nonfluctuating! in Landau gauge and covariant d
rivative is defined byD[“2 i (2p/F0)A,F0[hc/e* . For
strongly type II superconductors like the highTc cuprates
(k;100) and not too far fromHc2 ~this is the range of
interest in this paper, for the detailed discussion of the ra
of applicability see Ref. 21! magnetic field is homogeneou
to a high degree due to superposition from many vortic
For simplicity we assumea(T)5aTc(12t),t[T/Tc , al-
though this temperature dependence can be easily mod
to better describe the experimentalHc2(T). The thickness of
a layer isLz .

Throughout most of the paper will use the coheren
length j5A\2/(2mabaTc) as a unit of length and
@dHc2(Tc)/dT#Tc5F0/2pj2 as a unit of magnetic field. Af-
ter the order parameter field is rescaled asc2

→(2aTc /b8)c2, the dimensionless free energy~the Boltz-
mann factor! is

F

T
5

1

vE d2xF1

2
uDcu22

12t

2
ucu21

1

2
ucu4G . ~2!

The dimensionless coefficient describing the strength of fl
tuations is

v5A2 Gip2t5
mabb8

2\2aLz

t,Gi[
1

2 S 32pe2k2j2Tc

c2h2Lz
D 2

, ~3!

where Gi is the Ginzburg number in 2D . When (12t
2b)/12b!1, the lowest Landau level approximation can
used.21 The model then simplifies due to the LLL constrain
2(D2/2)c5(b/2)c to

f [
F

T
5

1

vE d2xF2
12t2b

2
ucu21

1

2
ucu4G . ~4!

This reduced model exhibits the LLL scaling. Rescali
againx→x/Ab,y→y/Ab, and ucu2→ucu2Abv/4p, one ob-
tains

f 5
1

4pE d2xFaTucu21
1

2
ucu4G , ~5!

where the 2D LLL reduced temperature

aT[2A4p

bv

12t2b

2
~6!

is the only parameter in the theory.22,7 In total, we have done
the rescaling

ucu2→ucu2S 2aTc

b8
D SAbv

4p D , x→jx/Ab,y→jy/Ab.

~7!

We will be interested in thermodynamic properties of t
model determined by partition functionZ5*DcDc̄ exp
02451
e

s.
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e

-

(2f) and will mainly study only the rescaled partition fun
tion Zr(aT)5*Dc rDc̄ rexp(2f)5Z/J, whereJ is a Jacobian.
Consequently to obtain, for example, the free energy den
from the corresponding quantity in the rescaled modelf eff
524p logZr /V8, one should use the following relation:

2
T logZ

V
5

T

4p

V8

V

~24p logZrJ!

V8

5
T

2p SAb

j D 2

logS 8paTc

b8T
Abv

4p D
1

T

4p SAb

j D 2

f eff . ~8!

From now on we work with rescaled quantities only a
relate them to measured quantities in Sec. V.

B. The 3D model

For 3D materials with asymmetry along thez axis the GL
model takes a form

F5E d3x
\2

2mab
US“2

ie*

\c
ADcU2

1
\2

2mc
u]zcu21aucu21

b8

2
ucu4 ~9!

which can be again rescaled into

f 5
F

T
5

1

vE d3xF1

2
uDcu21

1

2
u]zcu22

12t

2
ucu21

1

2
ucu4G ,

~10!

by x→jx,y→jy,z→jz/g1/2,c2→(2aTc /b8)c2, where g
[mc /mab is anisotropy. The Ginzburg number is now give
by

Gi[
1

2 S 32pe2k2jTcg
1/2

c2h2 D 2

. ~11!

Within the LLL approximation,

f 5
F

T
5

1

vE d3xF1

2
u]zcu22

12t2b

2
ucu21

1

2
ucu4G .

~12!

It also possesses an LLL scaling different from t
2D one. After a rescaling x→x/Ab,y→y/Ab,z
→z@(bv/4pA2)#21/3,c2→@(bv/4pA2)#2/3c2, the dimen-
sionless free energy becomes

f 5
1

4pA2
E d3xF1

2
u]zcu21aTucu21

1

2
ucu4G . ~13!

The 3D reduced temperature is

aT52S bv

4pA2
D 22/3

12t2b

2
. ~14!
3-2
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The relation between the original and scaled quantity~the 3D
Jacobian contains an ultraviolet divergent term which c
cels the corresponding one loop divergence and is not wri
here! is

2
T logZ

V
5

T

4pA2

V8

V

~24pA2 logZrJ!

V8

5
T

4p

Agb

j3 S bv

4pA2
D 1/3

f eff . ~15!

III. GENERAL IDEA OF THE OPTIMIZED GAUSSIAN
PERTURBATION THEORY FOR SCALAR FIELDS

We will use a variant of OPT, the optimized Gaussi
series19 to study the vortex liquid. It is based on the ‘‘prin
ciple of minimal sensitivity’’ idea,17 first introduced in quan-
tum mechanics. Any perturbation theory starts from dividi
the Hamiltonian into a solvable ‘‘large’’ part and a perturb
tion. Since we can solve any quadratic Hamiltonian we h
a freedom to choose ‘‘the best’’ such quadratic part. Qu
generally such an optimization converts an asymptotic se
into a convergent one~see a comprehensive discussion, r
erences and a proof in Ref. 19!. Here we describe the imple
mentation of the OPT idea using a simple model of a r
scalar fieldf,

f 5 1
2 fD21f1V~f!, ~16!

where D2152“

21m2 is considered as a matrix in th
function space. The free energy is divided into the ‘‘larg
quadratic part and a perturbation introducing variational
rameter functionG21:

f 5K1av,

K5 1
2 fG21f,v5 f 2 1

2 fG21f. ~17!

Here the auxiliary parametera was introduced to generate
perturbation theory. It will be set to one at the end of t
calculation. Expanding the logarithm of the statistical sum
orderan11,

Z5E Df exp~2K !exp~2av !

5E Df(
i 50

1

i !
~av ! i exp~2K !,

f̃ n@G#52 logZ

52 logF E Df exp~2K !G2 (
i 51

n11
~2a! i

i !
^v i&K ,

~18!

where ^ &K denotes the sum of all the connected Feynm
diagrams withG as a propagator and then takinga→1, we
obtain a functional ofG. To define thenth order OPT ap-
proximant f n one minimizesf̃ n@G# with respect toG:
02451
-
n

e
e
es
-

l

’
-

o

n

f n5min
G

f̃ n@G#. ~19!

The leading order of this expansion, the Gaussian appr
mation, has been used since early days of quantum mec
ics and in particular was popularized by Feynman.23 The
higher orders however were defined and explored only m
recently. Until now the method has been applied and co
prehensively investigated in quantum mechanics only~Ref.
19 and references therein! although attempts in field theor
have been made.17

IV. OPT IN THE GINZBURG –LANDAU MODEL

A. 2D

Due to the translational symmetry of the vortex liqu
there is only one variational parameter,«, in the free energy
defined by

K5
«

4p
ucu2,

v51
a

4p FaHucu21
1

2
ucu4G ~20!

whereaH[aT2«. It is convenient to use the quasimome
tum eigenfunctions similar to those used extensively in
vortex lattice:

wk5A 2p

Apan

(
l 52`

`

expH i Fp l ~ l 21!

2
1

2p~x2ky!

an

l 2xkxG
2

1

2 S y1kx2
2p

anup
l D 2J , ~21!

wherean5A4p/A3. We expand

c~x!5E
k

wk~x!

~A2p!2
c~k!. ~22!

Then the propagator in the quasimomentum basis is

^c~k!c~ l !&5
4p

«
d~k1 l !. ~23!

In the coordinate space

FIG. 1. Feynman rules for OPE:~a!, ~b!, ~c! are propagator, the
four-line vertex and the mass insertion, respectively.
3-3
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^c* ~x1 ,y1!c~x2 ,y2!&

5
2

«
expF2

i

2
~x12x2!~y11y2!G

3expH 2
1

4
@~x12x2!21~y12y2!2#J . ~24!

The Feynman rules are given in Fig. 1. We have a propag
denoted by a directed line, Fig. 1~a!, connecting two points
(x1 ,y1) to (x2 ,y2). For the first term inv, we have a vertex
represented by a dot on a line, Fig. 1~c! with a value of
(a/4p)aH . The second term is a four line vertex, Fig. 1~b!,

with a value of (a/4p) 1
2 . To calculate the effective energ

density f eff524p ln Z, we draw all the connected vacuu
diagrams. Then one of the coordinates is fixed, and all
others are integrated out. We calculated directly diagrams
to the three loop order shown on Figs. 2, 3, and 4 with
following result:

f̃ 052* S 2

«2
1

aH

«
1 log

«

4p2D ,

f̃ 15 f̃ 02
1

«4
~1818aH«1aH

2 «2!,

f̃ 25 f̃ 11
2

9«6
~6621324aH«154aH

2 «213aH
3 «3!. ~25!

FIG. 2. Feynman diagrams for Gaussian (n5)0 free energy

f̃ 0@G# prior to minimization.

FIG. 3. Additional ~to those in Fig. 2! Feynman diagrams fo

post-Gaussian (n51) free energyf̃ 1@G# prior to minimization.
02451
or

e
p

eHowever to take advantage of the existing long series of
nonoptimized Gaussian expansion, we found a relation of
OPE to these series. Originally Thouless and Ruggeri ca
lated these seriesf eff to sixth order, but it was subsequent
extended to 12th by Hikamiet al.24 and to 13th by Hu and
MacDonald.25 It can be presented using variablex introduced
by Thouless and Ruggeri,7

x5
1

«2
, «5

1

2
~aT1AaT

2116!, ~26!

as follows:

f eff52 log
«

4p2
12 f 2D~x!, ~27!

f 2D~x!5 (
n51

`

cnxn. ~28!

The coefficients are given in Table. I. We can obtain all t
OPT diagrams which do not appear in the Gaussian the
by insertions of bubbles and vertex Fig. 1~c! insertions from
the diagrams contributing to the nonoptimized theo
Bubbles or ‘‘cacti’’ diagrams, see Fig. 5 are effectively i
serted in Eq.~27! by technique known in field theory,26

f eff52 log
«1

4p2
12 f 2D~x!,

x5
a

«1
2

,«15
1

2
~«21A«2

2116a!. ~29!

FIG. 4. Additional~to those in Figs. 2 and 3! Feynman diagrams

for n52 free energyf̃ 2@G# prior to minimization.
3-4
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Summing up all the insertions of the mass vertex is achie
by

«25«1aaH . ~30!

We then expandf eff to orderan11, and then takinga51, to
obtain f n . Calculatingf n that way, we checked that indee
the first three orders agree with the calculation performed
a direct calculation. Here a few more terms are displaye

f̃ 35 f̃ 22
8133

5«8
2

2648aH

3«7
2

180aH
2

«6
2

16aH
3

«5
2

aH
4

2«4
,

f̃ 45 f̃ 31
21 894.3

«10
1

13 012.8aH

«9

1
3089.33aH

2

«8
1

360aH
3

«7
1

20aH
4

«6
1

0.4aH
5

«5
. ~31!

Thenth OPT approximantf n is obtained by minimization of
f̃ n(«) with respect to«,

S ]

]«
2

]

]aH
D f̃ n~«,aH!50. ~32!

The above equation is equal to 1/«2n13 times a polynomial
gn(z) of order n in z[«•aH . This was proved using the
conformal map~see Sec. IV C below! in Ref. 27 even for
more general cases. This property simplifies greatly the t
one has to find roots of polynomials rather than solving tr
scendental equations. There aren ~real or complex! solutions
for gn(z)50. However ~as in the case of anharmon

TABLE I. Coefficientscn andzn in 2D.

n cn zn21

1 22 24
2 21 26
3 38

9 212.239 721 181 139 888
4 2392

29
30 27.508 888 400 035 477

5 471.396 594 516 594 46 27.349 933 383 279 474
6 26471.562 574 955 1446 214.152 646 217 045 422
7 101 279.327 845 970 63 29.961 364 397 930 787
8 21 779 798.787 594 7522 29.174 960 576 928 443
9 34 709 019.614 363 678 215.232 548 389 083 844
10 2744 093 435.668 222 31 211.629 924 499 110 746
11 17 399 454 123.559 521 210.839 981 752 5306
12 2440 863 989 257.285 10 215.936 692 766 1989
13 12 035 432 945 204.531 212.753 308 785 106 007

FIG. 5. Summing all bubble diagrams.
02451
d

y

k:
-

oscillator19! the best root is the real root with the smalle
absolute value. The rootszn for n50 to n512 are given in
Table. I.

We then obtain«(aT)5(aT1AaT
224zn)/2 solving zn

5«•aH5«aT2«2. For z0524, we obtain the Gaussian re
sult, dashed line marked ‘‘T0’’ on Fig. 1 of Ref. 20.

B. 3D

In the 3D, the LLL Ginzburg–Landau model, we set

K5
1

4pA2
S «ucu21

1

2
u]zcu2D ,

v51
a

4pA2
FaHucu21

1

2
ucu4G , ~33!

whereaH5aT2« and

c~x!5E
k3

E
k

exp@ izkz#wk~x!

~A2p!3
c~k!. ~34!

The propagator is

^c~k!c~ l !&5
4pA2

«1
kz

2

2

d~k1 l !, ~35!

or in the coordinate space

^c~x1 ,y1,z1!c~x2 ,y2 ,z2!&

5
A2

p E
kz

exp@ ikz~z12z2!#

«1
kz

2

2

expF2
i

2
~x12x2!~y11y2!G

3expH 2
1

4
@~x12x2!21~y12y2!2#J . ~36!

Thus the propagator in the coordinate space factorizes in
function of coordinates (x,y) perpendicular to magnetic field
and a function of the coordinatez parallel to it. The mass
insertion vertex, Fig. 1~c!, now has a value of (a/4pA2)aH ,
while the four line vertex is (a/8pA2). The calculation is
basically the same as in 2D, the only difference being ex
integrations overkz . However since the propagator facto
izes, these integrations can be reduced to correspondin
tegrations in quantum mechanics of the anharmo
oscillator.7

Again we can take an advantage of existing long serie
the nonoptimized Gaussian expansion.7,24 The results to sev-
enth order are

f eff54A«14A« f 3d~x!,

f 3D~x!5( cnxn, x5
1

2A«3
, ~37!
3-5
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whereA« is given by a solution of the cubic gap equatio
(A«)32aTA«2450,

A«5aT~5413A32423aT
3!21/31 1

3 ~5413A32423aT
3!1/3,

~38!

and coefficientcn are listed in Table II. Similarly the OPT
formula for the effective energy density can be obtained
using the generational function

f eff54A«114A«1f 3D~x!, x5
a

2~A«1!3
, ~39!

andA«1 is given by a solution of equation

~A«1!32«2A«124a50 ~40!

with «25«1aaH . The solution of Eq.~40! can be obtained
perturbatively ina,

A«15A«21
2a

«2
2

6a2

«2
5/2

1
32a3

«2
4

2
210a4

«2
11/2

1
1536a5

«2
7

2
12 012a6

«2
17/2

1
98 304a7

«2
10

2
831 402a8

«2
23/2

1
7 208 960a9

«2
13

1•••. ~41!

Expandingf eff in a to ordern11, then one then setsa51 to
obtain f̃ n .

We list here the first few OPT approximantsf̃ n ,

f̃ 054A«1
2aH

A«
1

4

«
,

f̃ 15 f̃ 02
1

2A«5
~1718aHA«1aH

2 «!, ~42!

f̃ 25 f̃ 11
1

24«4
~9071510aHA«196aH

2 «16aH
3 A«3!,

TABLE II. Coefficientscn andzn in 3D.

n cn zn21

1 22 24
2 20.5 25
3 1.583 333 333 28.803 178 648 215 79
4 212.667 361 111 26.187 603 657 880 674
5 125.595 526 19 25.960 012 621 607 176
6 21430.592 8959 29.472 127 468 171 98
7 18 342.765 997 27.430 474 107 869 646
8 2261 118.677 03 26.907 260 317 913 621
9 4 084 812.307 29.819 535 183 5546
02451
y

f̃ 35 f̃ 22
228.833 506 941 7501

A«11
2

151.166 666 666aH

«5

2
37.1875aH

2

A«11
2

4aH
3

«4
2

0.156 25aH
4

A«7
.

The OPTnth order resultf n(aT) is obtained optimizingf̃ n
by varying«:

S ]

]«
2

]

]aH
D f̃ n~«,aH!50. ~43!

Similarly to Eq. ~32! in 2D this is equal to
(1/« (3n/2)12)gn(z), where nowz[aHA« andgn(z) is a rank
n polynomial. Solvinggn(z) and choosing a real root with
the smallest absolute value,19 we obtainzn listed in Table II
up to n58. Then we solve forA« the equationz5aHA«
5(aT2«)A«. The solution is

A«521/3aT~227z1A2108aT
31729z2!21/3

1
1

321/3
~227z1A2108aT

31729z2!1/3. ~44!

C. Rate of convergence of OPE

The remarkable convergence of OPE in simple mod
was investigated in numerous works.18,27 It was found that at
high orders the convergence of partition function of simp
integrals ~similar to the ‘‘zero-dimensional GL’’ studied in
Ref. 9!,

Z5E
2`

`

dw e2(aw21w4)

is exponentially fast. The remainder in bound by18,27

r N5uZ2ZNu,c1 exp@2c2N#.

For anharmonic oscillator~both positive and negative qua
dratic term! it is just a bit slower:

RN5uE2ENu,c1 exp@2c2N1/3#,

whereE is the ground state energy. We follow here the co
vergence proof of Ref. 27. The basic idea is to construc
conformal map28 from the original couplingg to a coupling
of bounded range and isolate a nonanalytic prefactor. S
pose we have a perturbative expansion~usually asymptotic,
sometimes non-Borel summable!

E~g!5 (
n50

`

cngn.

One defines a set of conformal maps dependent on param
r of couplingg onto new couplingb:

ḡ~b,r!5r
b

~12b!k
.

3-6
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While range ofg is the cut complex plane, the range ofb is
compact and has an apple like shape~see Fig. 1 of the secon
paper in Ref. 27!. The value of parameterr for each approx-
imant will be defined later. Then one defines a scaled ene

C~b,r!5~12b!sE~ ḡ~b,r!!,

where the prefactor (12b)s is determined by strong cou
pling limit so thatC(b,r) is bounded everywhere. Approx
mants toC are expansion toNth order inb,

CN~b,r̄ !5 (
n50

N
1

n!

]n

]bn
@~12b!aE~ ḡ~b,r̄ !!#,

with parameterr̄ substituted by

r̄5
g

b
~12b!k.

The energy approximant becomes

EN~b!5
CN~b!

~12b!s
.

Two exponentss5 1
2 and k5 3

2 , for example, anharmonic
oscillator and 3D GL model. OPE is equivalent to choos
b which minimizesEN(b). It can be shown quite generall
~see Appendix C of second paper in Ref. 27 and Ref. 19! that
the minimization equation is a polynomial one inr. This is
in line with our observation in previous sections that mi
mization equations are polynomial inz with r identified as
21/z.

The remainderRN5uE2ENu using dispersion relation is
bounded by

RN,c1gs/k~ r̄Nb!N1c2 expF2NS r̄

g
D 1/kG ,

where exponentb is determined by discontinuity ofE(g) at
small negativeg,

DiscE~g!;expF2
const

~2g!1/bG ,

whereb51 for anharmonic oscillator andb53/4 for 3D GL
model.7 For 3D GL model, we found thatRN,c1
3exp@2c2N

1/3# as in the anharmonic oscillator.

V. RESULTS AND COMPARISON WITH OTHER
THEORIES AND EXPERIMENTS

A. Energy, precision of OPT

In Fig. 1 of Ref. 20 we present OPT for ordersn50
~Gaussian!, 1,3,4,5,6,8,9,12 together with several orde
(T0, . . . ,T12) of the nonoptimized high temperature expa
sion in 2D. The values of free energy of 2D and 3D mod
for severalaT are tabulated in Table III and Table IV, respe
tively. One clearly observes that in 2D the OPT series c
verge aboveaT522.5 and diverge belowaT523.5. On the
other hand, the nonoptimized series never converge de
02451
gy

g

s
-
s

-

ite

the fact that aboveaT52 first few approximants provide a
quite precise estimate consistent with OPT. AboveaT54 the
liquid becomes essentially a normal metal and fluctuati
effects are negligible~see Fig. 2 of Ref. 20 and Fig. 7! and
are hard to measure. Therefore the information the OPT p
vides is essential to compare with experiments on magn
zation and specific heat.

If precision is defined as (f 122 f 10)/ f 10, we obtain
4.87%,1.27%,0.387%,0.222%,0.032% ataT522,21.5,
21,20.5,0, respectively. We choose approximantsn
50,1,3,4,6,7,9,10,12 because they are ‘‘the best roots’’ i
sense defined in Ref. 19, Chapt. 5. For comparison w
other theories and experiments on Fig. 2 of Ref. 20 and F
7 we use the 10th approximant.

In 3D the picture is much the same, see Fig. 6. The se
converge aboveaT524.5 and diverge belowaT525.5.
The nonoptimized series are useful only aboveaT521.

We define the precision as (f 72 f 4)/ f 7 . f 4 and f 7 are the
best roots among the sequences. Then we ob
6.55%,2.94%,0.0247%,0.007 792 22%, ataT525,23,
21.5,21, respectively.

B. Other theories

We compare with other theoretical treatments of the sa
model. A direct method is the Monte Carlo simulation of t
same model. The 2D model was simulated by Moore, Ka
and Nagaosa, and Hu MacDonald. The circles on Fig. 7
specific heat are the results of the Monte Carlo simulation

TABLE III. Free energy f n at different orders~a constant
22 log 4p2 was subtracted!.

aT 22 21.5 21 20.5

f 0 22.194 16 21.429 41 20.749 027 20.146 255
f 1 22.775 16 21.805 56 20.988 706 20.297 222
f 3 22.538 54 21.682 94 20.925 643 20.264 857
f 4 22.558 89 21.691 43 20.929 12 20.266 258
f 6 22.700 76 21.740 15 20.945 544 20.271 734
f 7 22.624 47 21.718 22 20.939 384 20.270 031
f 9 22.515 33 21.692 3 20.933 365 20.268 653
f 10 22.599 43 21.709 44 20.936 772 20.269 318
f 12 22.726 13 21.731 13 20.940 395 20.269 915

TABLE IV. Free energyf n at different orders for 3D.

aT 25 23 21.5 21

f 0 24.733 13 0 2.657 63 3.411 12
f 1 26.493 20.375 697 2.539 01 3.328 29
f 2 26.925 85 20.427 383 2.5287 3.3222
f 3 25.275 95 20.280 923 2.555 51 3.338
f 4 25.680 59 20.292 936 2.554 55 3.337 57
f 5 24.680 76 20.265 834 2.556 47 3.338 39
f 6 27.326 54 20.313 048 2.553 64 3.337 22
f 7 25.331 49 20.301 797 2.553 92 3.337 31
f 8 28.019 07 20.316 175 2.553 59 3.3372
3-7
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FIG. 6. The 3D OPT energy and nonopt
mized energy at different orders~denoted by
numbers and ‘‘T’’ plus numbers, respectively!.
One can see clearly OPT series are converge
for example, ataT525.
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the LLL system by Kato and Nagaosa in Ref. 15 perform
with 256 vortices. In 3D the model was simulated with 1
vortices by Sasik and Stroud,16 magnetization data are com
pared with our results on Fig. 8.

An analytic theory used successfully to fit the magneti
tion and the specific heat data29 was developed in Ref. 13
Their free energy density is

f eff52
aT

2U2

4
1

aTU

2
AU2aT

2

4
1212 arcsinhFaTU

2A2
G ,

U5
1

2 F 1

A2
1

1

AbA

1tanhF aT

4A2
1

1

2G S 1

A2
2

1

AbA
D G . ~45!

The corresponding magnetization and specific heat
shown as dashed lines in Fig. 2 of Ref. 20 and Fig. 7,
spectively. The theory applies not only to the liquid pha
but also to the solid although the transition is not se
~should be considered as a 2% effect not determined by
theory!. At large positiveaT neglecting the exponentially
small contributions toU, one obtains

FIG. 7. The 2D specific heat. The Monte Carlo data by Kato a
Nagaosa in Ref. 15~points!, specific heat from OPT forn510 ~the
solid line!, from phenomenological formula~the dotted line!, and
Tesanovicet al ~Ref. 13! theory ~the dashed line!.
02451
d

-

re
-
,
n
he

f eff52
aT

2

8
1

aT

2A2
AaT

2

8
1212 arcsinhFaT

4 G
5122 log 212 logaT1

4

aT
2

2
16

aT
4

1
320

3aT
6

. ~46!

On the other hand, the high temperature expansion of
optimized Gaussian is

22 log 4p212 logaT1
4

aT
2

2
18

aT
4

1
1324

9aT
6

. ~47!

One observes that the high temperature expansion of
theories are in remarkable agreement up to the order 1/aT

4 .

C. Magnetization, 2D

Experiments on great variety of layered high Tc cupra
~Bi or Tl5 based! show that in 2D, magnetization curves fo
different applied field intersect at a single point (M* ,T* ).
The range of magnetic fields is surprisingly large~from sev-

d FIG. 8. The 3D magnetization plot. The Monte Carlo data
Sasik and Stroud in Ref. 15~points!, specific heat from OPT of
different OPE approximants are denoted by numbers. The bes
proximants aren54,7 ~solid line!.
3-8
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eral hundred Oe to several Tesla!. Assuming this it is easy to
derive the scaled LLL magnetization just from the existen
of the point. The dimensionless LLL magnetization is d
fined as30

m~aT!52
d feff~aT!

daT
~48!

and the measure magnetization is

4pM52
e* h

cmab
^ucu2&52

e* h

cmab
uc r u2S 2aTc

b8
DAbv

4p
,

~49!

wherec is the order parameter of the original model, andc r
is the rescaled one, which is equal to@d feff(aT)#/daT . Thus

4pM5
e* h

cmab
S 2aTc

b8
DAbv

4p
m~aT!. ~50!

Using the definition of aT52h@(12t2b)/Abt#,h
5(2p2Gi)21/4,b can be written as

b5tS aT

2h
6A12t

t
1

aT
2

4h2D 2

. ~51!

Thus Eq.~50! implies that

m~aT!5
4pcmabM

e* h

b8

2aTc

h

Abt

5
4pchmabM

e* ht

b8

2aTc

1

UA12t

t
1

aT
2

4h2
6

aT

2h
U

5
4pcmabMh

e* hu12tu

b8

2aTc
UA12t

t
1

aT
2

4h2
6

aT

2h
U . ~52!

If we assume that the experimental observation that all
magnetization curves intersect at some po
(T* ,M* ),m(aT) is

m~aT!5C1~aT6AC21aT
2!, ~53!

C15
2pcmabM*

e* hu12t* u

b8

2aTc
, C254h2

12t*

t*
.

On the other hand, if we require that the first two terms of
high temperature expansion of Eq.~53! and the high tem-
perature expansion of the magnetization are equal, one fi
that

C15 1
4 , C2516.

When we plot this line on Fig. 2 of Ref. 20~the dotted line!
we find that at lower temperatures the magnetization is o
estimated. On the other hand, magnetization of the theor
Tesanovicet al. ~the dashed line on Fig. 2 of Ref. 20! under-
02451
e
-

e
t

e

ds

r-
of

estimate the magnetization. The OPE results are consis
with the data within the precision range until the radius
convergenceaT523. It is important to note that deviation
of both the phenomenological formula Eq.~53! and the Te-
sanovic’s are clearly beyond our precision range.

We conclude therefore that although the theory of T
sanovicet al. is very good at high temperatures~deviations
only at the order 1/aT

4) they become of the order 5–10%
aT523. The advantage of this theory is however that
interpolated smoothly to the solid and never deviates m
than 10%. The coincidence of the intersection of all the lin
at the same point (T* ,M* ) cannot be exact. Like in 3D it is
just approximate, although the approximation is quite go
especially at high magnetic fields.

D. Specific heat, 2D

The specific heat OPE result is compared in Fig. 7 w
Monte Carlo simulation of the same model by Kato a
Nagaosa15 ~black circles!, the phenomenological formula fol
lowing from Eq. ~53! ~dotted line!, and the theory of Te-
sanovicet al.13 ~dashed line!. The agreement with the direc
MC simulation is very good.

E. Magnetization in 3D

We compare here our results on the LLL scaled magn
zation with the Monte Carlo simulation of the LLL syste
by Sasik and Stroud.16 They are actually more precise in 3D
Figure 8 contains several OPE approximantsn
50,1,2,3,4,7,8) and their data on all three magnetic fie
~representing 2T,3T, and 5T in model YBCO!. According to
the criterion of the ‘‘best root’’ the best approximant shou
be n57. Clearly up to the radius of convergence the agr
ment is within the expected precision.

VI. CONCLUSION

In this paper we obtained the optimized perturbati
theory results for both the 2D and the 3D LLL model.
allows to obtain a convergent series~rather than asymptotic!.
The magnetization and specific heat of vortex liquids w
definite precision are calculated. On the basis of this one
make several definitive qualitative conclusions. The inters
tion of the magnetization lines is only approximate not on
in 3D ~the result already observed in Monte Car
simulation16!, but also in 2D. The theory by Tesanovic,13

which uses completely different ideas, describes the phy
remarkably well in high temperatures and deviates on
5–10% precision level ataT522 in 2D.
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